1
|
Krishnamohan M, Kaplanov I, Maudi-Boker S, Yousef M, Machluf-Katz N, Cohen I, Elkabets M, Titus J, Bersudsky M, Apte RN, Voronov E, Braiman A. Tumor Cell-Associated IL-1α Affects Breast Cancer Progression and Metastasis in Mice through Manipulation of the Tumor Immune Microenvironment. Int J Mol Sci 2024; 25:3950. [PMID: 38612760 PMCID: PMC11011794 DOI: 10.3390/ijms25073950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.
Collapse
Affiliation(s)
- Mathumathi Krishnamohan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Irena Kaplanov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Sapir Maudi-Boker
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Muhammad Yousef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Noy Machluf-Katz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Idan Cohen
- Cancer Center, Emek Medical Center, Afula 18101, Israel;
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Jaison Titus
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| |
Collapse
|
2
|
Myszczyszyn A, Popp O, Kunz S, Sporbert A, Jung S, Penning LC, Fendler A, Mertins P, Birchmeier W. Mice with renal-specific alterations of stem cell-associated signaling develop symptoms of chronic kidney disease but surprisingly no tumors. PLoS One 2024; 19:e0282938. [PMID: 38512983 PMCID: PMC10957084 DOI: 10.1371/journal.pone.0282938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 01/13/2024] [Indexed: 03/23/2024] Open
Abstract
Previously, we found that Wnt and Notch signaling govern stem cells of clear cell kidney cancer (ccRCC) in patients. To mimic stem cell responses in the normal kidney in vitro in a marker-unbiased fashion, we have established tubular organoids (tubuloids) from total single adult mouse kidney epithelial cells in Matrigel and serum-free conditions. Deep proteomic and phosphoproteomic analyses revealed that tubuloids resembled renewal of adult kidney tubular epithelia, since tubuloid cells displayed activity of Wnt and Notch signaling, long-term proliferation and expression of markers of proximal and distal nephron lineages. In our wish to model stem cell-derived human ccRCC, we have generated two types of genetic double kidney mutants in mice: Wnt-β-catenin-GOF together with Notch-GOF and Wnt-β-catenin-GOF together with a most common alteration in ccRCC, Vhl-LOF. An inducible Pax8-rtTA-LC1-Cre was used to drive recombination specifically in adult kidney epithelial cells. We confirmed mutagenesis of β-catenin, Notch and Vhl alleles on DNA, protein and mRNA target gene levels. Surprisingly, we observed symptoms of chronic kidney disease (CKD) in mutant mice, but no increased proliferation and tumorigenesis. Thus, the responses of kidney stem cells in the tubuloid and genetic systems produced different phenotypes, i.e. enhanced renewal versus CKD.
Collapse
Affiliation(s)
- Adam Myszczyszyn
- Cancer Research Program, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Oliver Popp
- Proteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Severine Kunz
- Electron Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simone Jung
- Cancer Research Program, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Louis C. Penning
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Annika Fendler
- Cancer Research Program, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Mertins
- Proteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
3
|
Ma W, Arima Y, Umemoto T, Yokomizo T, Xu Y, Miharada K, Tanaka Y, Suda T. Metabolic regulation in erythroid differentiation by systemic ketogenesis in fasted mice. Exp Hematol 2024; 129:104124. [PMID: 37898316 DOI: 10.1016/j.exphem.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Erythroid terminal differentiation and maturation depend on an enormous energy supply. During periods of fasting, ketone bodies from the liver are transported into circulation and utilized as crucial fuel for peripheral tissues. However, the effects of fasting or ketogenesis on erythroid behavior remain unknown. Here, we generated a mouse model with insufficient ketogenesis by conditionally knocking out the gene encoding the hepatocyte-specific ketogenic enzyme hydroxymethylglutary-CoA synthase 2 (Hmgcs2 KO). Intriguingly, erythroid maturation was enhanced with boosted fatty acid synthesis in the bone marrow of a hepatic Hmgcs2 KO mouse under fasting conditions, suggesting that systemic ketogenesis has a profound effect on erythropoiesis. Moreover, we observed significantly activated fatty acid synthesis and mevalonate pathways along with reduced histone acetylation in immature erythrocytes under a less systemic ketogenesis condition. Our findings revealed a new insight into erythroid differentiation, in which metabolic homeostasis and histone acetylation mediated by ketone bodies are essential factors in adaptation toward nutrient deprivation and stressed erythropoiesis.
Collapse
Affiliation(s)
- Wenjuan Ma
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuqing Xu
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kenichi Miharada
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yosuke Tanaka
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Toshio Suda
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Cancer Science Institute of Singapore, Centre for Translation Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Bradey AL, Fitter S, Duggan J, Wilczek V, Williams CMD, Cheney EA, Noll JE, Tangseefa P, Panagopoulos V, Zannettino ACW. Calorie restriction has no effect on bone marrow tumour burden in a Vk*MYC transplant model of multiple myeloma. Sci Rep 2022; 12:13128. [PMID: 35908046 PMCID: PMC9338941 DOI: 10.1038/s41598-022-17403-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Multiple myeloma (MM) is an incurable haematological malignancy, caused by the uncontrolled proliferation of plasma cells within the bone marrow (BM). Obesity is a known risk factor for MM, however, few studies have investigated the potential of dietary intervention to prevent MM progression. Calorie restriction (CR) is associated with many health benefits including reduced cancer incidence and progression. To investigate if CR could reduce MM progression, dietary regimes [30% CR, normal chow diet (NCD), or high fat diet (HFD)] were initiated in C57BL/6J mice. Diet-induced changes were assessed, followed by inoculation of mice with Vk*MYC MM cells (Vk14451-GFP) at 16 weeks of age. Tumour progression was monitored by serum paraprotein, and at endpoint, BM and splenic tumour burden was analysed by flow cytometry. 30% CR promoted weight loss, improved glucose tolerance, increased BM adiposity and elevated serum adiponectin compared to NCD-fed mice. Despite these metabolic changes, CR had no significant effect on serum paraprotein levels. Furthermore, endpoint analysis found that dietary changes were insufficient to affect BM tumour burden, however, HFD resulted in an average two-fold increase in splenic tumour burden. Overall, these findings suggest diet-induced BM changes may not be key drivers of MM progression in the Vk14451-GFP transplant model of myeloma.
Collapse
Affiliation(s)
- Alanah L Bradey
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jvaughn Duggan
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Vicki Wilczek
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Connor M D Williams
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Emma Aj Cheney
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Pawanrat Tangseefa
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia. .,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.,Department of Haematology, Royal Adelaide Hospital, Adelaide, Australia.,Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
5
|
Hong C, Lu H, Huang X, Chen M, Jin R, Dai X, Gong F, Dong H, Wang H, Gao XM. Neutrophils as regulators of macrophage-induced inflammation in a setting of allogeneic bone marrow transplantation. Stem Cell Reports 2022; 17:1561-1575. [PMID: 35777356 PMCID: PMC9287675 DOI: 10.1016/j.stemcr.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
Clinical data reveal that patients with allogeneic hematopoietic stem cell transplantation (HSCT) are vulnerable to infection and prone to developing severe sepsis, which greatly compromises the success of transplantation, indicating a dysregulation of inflammatory immune response in this clinical setting. Here, by using a mouse model of haploidentical bone marrow transplantation (haplo-BMT), we found that uncontrolled macrophage inflammation underlies the pathogenesis of both LPS- and E.coli-induced sepsis in recipient animals with graft-versus-host disease (GVHD). Deficient neutrophil maturation in GVHD mice post-haplo-BMT diminished modulation of macrophage-induced inflammation, which was mechanistically dependent on MMP9-mediated activation of TGF-β1. Accordingly, adoptive transfer of mature neutrophils purified from wild-type donor mice inhibited both sterile and infectious sepsis in GVHD mice post-haplo-BMT. Together, our findings identify a novel mature neutrophil-dependent regulation of macrophage inflammatory response in a haplo-BMT setting and provide useful clues for developing clinical strategies for patients suffering from post-HSCT sepsis. Macrophage inflammation leads to the development of post-haplo-BMT sepsis Impaired neutrophil maturation diminishes regulation of macrophage inflammation Extramedullary granulopoiesis fails to support neutrophil maturation after haplo-BMT Neutrophils regulate macrophage inflammation via MMP9-mediated TGF-β1 activation
Collapse
Affiliation(s)
- Chao Hong
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Hongyun Lu
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaohong Huang
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Ming Chen
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Rong Jin
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaoqiu Dai
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Fangyuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongliang Dong
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongmin Wang
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Elazab MFA, Elbaiomy AEA, Ahmed MS, Alsharif KF, Dahran N, Elmahallawy EK, Mokhbatly AA. Ameliorative Effects of Bovine Lactoferrin on Benzene-Induced Hematotoxicity in Albino Rats. Front Vet Sci 2022; 9:907580. [PMID: 35812844 PMCID: PMC9257330 DOI: 10.3389/fvets.2022.907580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Benzene (Bz) is one of the major products of the petrochemical industry globally, which induces aplastic anemia and leukemia in humans and animals. This study aimed to investigate the modulatory effects of bovine lactoferrin (bLf) on Bz-induced hematotoxicity in albino rats. Eighty male rats were randomly divided into eight groups: corn oil group [2 mL/kg body weight (BW)], bLf groups (100, 200, and 300 mg/kg BW), Bz group (Bz 2 mL/kg BW; corn oil 2 mL/kg BW), and Bz + bLf groups (Bz 2 mL/kg BW; corn oil 2 mL/kg BW; bLf 100, 200, and 300 mg/kg BW). Hematobiochemical results exhibited marked pancytopenia, a significant decrease in total protein, albumin, α2- and γ-globulin, ferritin, serum iron, and total iron-binding capacity (TIBC), and an increase in serum bioactivities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and erythropoietin hormone levels in Bz-treated rats. Histopathological examination revealed a marked reduction in all hematopoietic cell lines in the bone marrow (BM), necrosis in the white pulp of the spleen and cytosolic hydrops, and apoptosis of hepatocytes in the Bz-treated group. Rats treated with bLf (300 mg/kg BW) revealed marked increases in total protein, albumin, α2- and γ-globulin, ferritin, serum iron, and TIBC levels and decreases both in ALP and LDH bioactivities and erythropoietin hormone levels compared with the Bz-treated group. Histopathological results were concomitant with hematobiochemical parameters in rats treated with bLf (300 mg/kg BW), almost showing restoration of the normal cellularity of BM, the architecture of red and white pulps of the spleen, and even the normal hypertrophy of hepatocytes compared with the control groups. To conclude, bLf (300 mg/kg BW) can be recommended to treat Bz-induced hematotoxicity.
Collapse
Affiliation(s)
- Mohamed F. Abou Elazab
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Asmaa E. A. Elbaiomy
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohamed S. Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Abdallah A. Mokhbatly
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
7
|
Mende N, Laurenti E. Hematopoietic stem and progenitor cells outside the bone marrow: where, when, and why. Exp Hematol 2021; 104:9-16. [PMID: 34687807 DOI: 10.1016/j.exphem.2021.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Bone marrow (BM) is the primary site of adult blood production, hosting the majority of all hematopoietic stem and progenitor cells (HSPCs). Rare HSPCs are also found outside of the BM at steady state. In times of large hematopoietic demand or BM failure, substantial production of mature blood cells from HSPCs can occur in a number of tissues, in a process termed extramedullary hematopoiesis (EMH). Over the past decades, our understanding of BM hematopoiesis has advanced drastically. In contrast there has been very little focus on the study of extramedullary HSPC pools and their contributions to blood production. Here we summarize what is currently known about extramedullary HSPCs and EMH in mice and humans. We describe the evidence of existing extramedullary HSPC pools at steady state, then discuss their role in the hematopoietic stress response. We highlight that although EMH in humans is much less pronounced and likely physiologically distinct to that in mice, it can be informative about premalignant and malignant changes. Finally, we reflect on the open questions in the field and on whether a better understanding of EMH, particularly in humans, may have relevant clinical implications for hematological and nonhematological disorders.
Collapse
Affiliation(s)
- Nicole Mende
- Department of Haematology and Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Elisa Laurenti
- Department of Haematology and Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Kamran S, Al-Obaidi A, Al-Khazraji Y, Alderson J, Reddy PS. Obstructive Jaundice Secondary to Extramedullary Hematopoiesis. Cureus 2021; 13:e17927. [PMID: 34660119 PMCID: PMC8513937 DOI: 10.7759/cureus.17927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 11/13/2022] Open
Abstract
Extramedullary hematopoiesis (EMH) is the development of hematopoietic tissue outside of the bone marrow. In adults, the bone marrow is the main site of hematopoiesis. When this process occurs outside of the bone marrow, it is a sign of disease or deficiency. Clinically, the findings of EMH may be diverse. One rare complication that can arise from EMH is obstructive jaundice. This occurs when there is a blockage of bile flow leading to retention of bilirubin in hepatocytes. Identifying the markers of EMH and obstructive jaundice is important for optimizing positive outcomes. While often asymptomatic, EMH can be deadly if left untreated. In this case, we present a patient with obstructive jaundice secondary to EMH.
Collapse
Affiliation(s)
- Syed Kamran
- Internal Medicine, Kansas University School of Medicine, Wichita, USA
| | - Ammar Al-Obaidi
- Internal Medicine, Kansas University School of Medicine, Wichita, USA
| | | | - Joel Alderson
- Pathology, Ascension Via Christi St. Francis Hospital, Wichita, USA
| | - Pavan S Reddy
- Internal Medicine, Kansas University School of Medicine, Wichita, USA
| |
Collapse
|
9
|
Maier JI, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, Schell C. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells 2021; 10:cells10061509. [PMID: 34203913 PMCID: PMC8232754 DOI: 10.3390/cells10061509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Glomerular kidney disease causing nephrotic syndrome is a complex systemic disorder and is associated with significant morbidity in affected patient populations. Despite its clinical relevance, well-established models are largely missing to further elucidate the implications of uncontrolled urinary protein loss. To overcome this limitation, we generated a novel, inducible, podocyte-specific transgenic mouse model (Epb41l5fl/fl*Nphs1-rtTA-3G*tetOCre), developing nephrotic syndrome in adult mice. Animals were comprehensively characterized, including microbiome analysis and multiplexed immunofluorescence imaging. Induced knockout mice developed a phenotype consistent with focal segmental glomerular sclerosis (FSGS). Although these mice showed hallmark features of severe nephrotic syndrome (including proteinuria, hypoalbuminemia and dyslipidemia), they did not exhibit overt chronic kidney disease (CKD) phenotypes. Analysis of the gut microbiome demonstrated distinct dysbiosis and highly significant enrichment of the Alistipes genus. Moreover, Epb41l5-deficient mice developed marked organ pathologies, including extramedullary hematopoiesis of the spleen. Multiplex immunofluorescence imaging demonstrated red pulp macrophage proliferation and mTOR activation as driving factors of hematopoietic niche expansion. Thus, this novel mouse model for adult-onset nephrotic syndrome reveals the significant impact of proteinuria on extra-renal manifestations, demonstrating the versatility of this model for nephrotic syndrome-related research.
Collapse
Affiliation(s)
- Jasmin I. Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.H.); (G.W.)
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.H.); (G.W.)
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
- Correspondence:
| |
Collapse
|
10
|
Hétu-Arbour R, Tlili M, Bandeira Ferreira FL, Abidin BM, Kwarteng EO, Heinonen KM. Cell-intrinsic Wnt4 promotes hematopoietic stem and progenitor cell self-renewal. STEM CELLS (DAYTON, OHIO) 2021; 39:1207-1220. [PMID: 33882146 DOI: 10.1002/stem.3385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/25/2021] [Indexed: 11/05/2022]
Abstract
Although intracellular Wnt signaling pathways need to be tightly regulated to promote hematopoietic stem cell self-renewal, the source and identity of important Wnt ligands in the bone marrow is still largely unknown. The noncanonical ligand Wnt4 is expressed in the bone marrow as well as in the stroma, and its overexpression in fetal liver cells facilitates thymic recovery; however, its impact on adult hematopoietic stem cell function remains unclear. Here, we report that the deletion of Wnt4 from hematopoietic cells in mice (Wnt4Δ/Δ ) resulted in decreased lymphopoiesis at steady state. This was likely at least in part due to the increased proinflammatory environment present in the bone marrow of Wnt4Δ/Δ mice. Wnt4Δ/Δ hematopoietic stem cells displayed reduced reconstitution capacity in serial transplants, thus demonstrating defective self-renewal, and they expanded poorly in response to lipopolysaccharide stimulation. This appeared to be the result of the absence of Wnt4 in stem/progenitor cells, as myeloid-restricted Wnt4 deletion had no notable effect. Finally, we observed that Wnt4Δ/Δ stem/progenitor cells were more quiescent, presenting enhanced levels of stress-associated JNK phosphorylation and p16INK4a expression, likely contributing to the reduced expansion observed in transplants. In conclusion, our results identify a new, largely autocrine role for Wnt4 in hematopoietic stem cell self-renewal, suggesting that regulation of Wnt signaling in hematopoiesis may not need Wnt secretion and could be independent of morphogen gradients.
Collapse
Affiliation(s)
- Roxann Hétu-Arbour
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Mouna Tlili
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Fabio Luiz Bandeira Ferreira
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Belma Melda Abidin
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Edward O Kwarteng
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Krista M Heinonen
- Institut national de la recherche scientifique, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|
11
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Castrillo A, Boscá L. Contribution of Extramedullary Hematopoiesis to Atherosclerosis. The Spleen as a Neglected Hub of Inflammatory Cells. Front Immunol 2020; 11:586527. [PMID: 33193412 PMCID: PMC7649205 DOI: 10.3389/fimmu.2020.586527] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) incidence is becoming higher. This fact is promoted by metabolic disorders such as obesity, and aging. Atherosclerosis is the underlying cause of most of these pathologies. It is a chronic inflammatory disease that begins with the progressive accumulation of lipids and fibrotic materials in the blood-vessel wall, which leads to massive leukocyte recruitment. Rupture of the fibrous cap of the atherogenic cusps is responsible for tissue ischemic events, among them myocardial infarction. Extramedullary hematopoiesis (EMH), or blood cell production outside the bone marrow (BM), occurs when the normal production of these cells is impaired (chronic hematological and genetic disorders, leukemia, etc.) or is altered by metabolic disorders, such as hypercholesterolemia, or after myocardial infarction. Recent studies indicate that the main EMH tissues (spleen, liver, adipose and lymph nodes) complement the hematopoietic function of the BM, producing circulating inflammatory cells that infiltrate into the atheroma. Indeed, the spleen, which is a secondary lymphopoietic organ with high metabolic activity, contains a reservoir of myeloid progenitors and monocytes, constituting an important source of inflammatory cells to the atherosclerotic lesion. Furthermore, the spleen also plays an important role in lipid homeostasis and immune-cell selection. Interestingly, clinical evidence from splenectomized subjects shows that they are more susceptible to developing pathologies, such as dyslipidemia and atherosclerosis due to the loss of immune selection. Although CVDs represent the leading cause of death worldwide, the mechanisms involving the spleen-atherosclerosis-heart axis cross-talk remain poorly characterized.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM) and Universidad de Las Palmas, Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Grupo de Investigación Medio Ambiente y Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM) and Universidad de Las Palmas, Gran Canaria, Spain
| |
Collapse
|
12
|
Soares-da-Silva F, Peixoto M, Cumano A, Pinto-do-Ó P. Crosstalk Between the Hepatic and Hematopoietic Systems During Embryonic Development. Front Cell Dev Biol 2020; 8:612. [PMID: 32793589 PMCID: PMC7387668 DOI: 10.3389/fcell.2020.00612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) generated during embryonic development are able to maintain hematopoiesis for the lifetime, producing all mature blood lineages. HSC transplantation is a widely used cell therapy intervention in the treatment of hematologic, autoimmune and genetic disorders. Its use, however, is hampered by the inability to expand HSCs ex vivo, urging for a better understanding of the mechanisms regulating their physiological expansion. In the adult, HSCs reside in the bone marrow, in specific microenvironments that support stem cell maintenance and differentiation. Conversely, while developing, HSCs are transiently present in the fetal liver, the major hematopoietic site in the embryo, where they expand. Deeper insights on the dynamics of fetal liver composition along development, and on how these different cell types impact hematopoiesis, are needed. Both, the hematopoietic and hepatic fetal systems have been extensively studied, albeit independently. This review aims to explore their concurrent establishment and evaluate to what degree they may cross modulate their respective development. As insights on the molecular networks that govern physiological HSC expansion accumulate, it is foreseeable that strategies to enhance HSC proliferation will be improved.
Collapse
Affiliation(s)
- Francisca Soares-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Márcia Peixoto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ana Cumano
- Lymphocytes and Immunity Unit, Immunology Department, Pasteur Institute, Paris, France
- INSERM U1223, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Perpetua Pinto-do-Ó
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Gawish R, Bulat T, Biaggio M, Lassnig C, Bago-Horvath Z, Macho-Maschler S, Poelzl A, Simonović N, Prchal-Murphy M, Rom R, Amenitsch L, Ferrarese L, Kornhoff J, Lederer T, Svinka J, Eferl R, Bosmann M, Kalinke U, Stoiber D, Sexl V, Krmpotić A, Jonjić S, Müller M, Strobl B. Myeloid Cells Restrict MCMV and Drive Stress-Induced Extramedullary Hematopoiesis through STAT1. Cell Rep 2020; 26:2394-2406.e5. [PMID: 30811989 DOI: 10.1016/j.celrep.2019.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/13/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) has a high prevalence worldwide, is often fatal for immunocompromised patients, and causes bone marrow suppression. Deficiency of signal transducer and activator of transcription 1 (STAT1) results in severely impaired antiviral immunity. We have used cell-type restricted deletion of Stat1 to determine the importance of myeloid cell activity for the defense against murine CMV (MCMV). We show that myeloid STAT1 limits MCMV burden and infection-associated pathology in the spleen but does not affect ultimate clearance of infection. Unexpectedly, we found an essential role of myeloid STAT1 in the induction of extramedullary hematopoiesis (EMH). The EMH-promoting function of STAT1 was not restricted to MCMV infection but was also observed during CpG oligodeoxynucleotide-induced sterile inflammation. Collectively, we provide genetic evidence that signaling through STAT1 in myeloid cells is required to restrict MCMV at early time points post-infection and to induce compensatory hematopoiesis in the spleen.
Collapse
Affiliation(s)
- Riem Gawish
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Tanja Bulat
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Mario Biaggio
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Biomodels Austria, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | | - Sabine Macho-Maschler
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Biomodels Austria, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Andrea Poelzl
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Natalija Simonović
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Rita Rom
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Lena Amenitsch
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Luca Ferrarese
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Juliana Kornhoff
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Therese Lederer
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Jasmin Svinka
- Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert Eferl
- Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research, Vienna and Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Biomodels Austria, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
14
|
Absence of functional compensation between coagulation factor VIII and plasminogen in double-knockout mice. Blood Adv 2019; 2:3126-3136. [PMID: 30459211 DOI: 10.1182/bloodadvances.2018024851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Plasminogen deficiency is associated with severely compromised fibrinolysis and extravascular deposition of fibrin. In contrast, coagulation factor VIII (FVIII) deficiency leads to prolonged and excessive bleeding. Based on opposing biological functions of plasminogen and FVIII deficiencies, we hypothesized that genetic elimination of FVIII would alleviate the systemic formation of fibrin deposits associated with plasminogen deficiency and, in turn, elimination of plasminogen would limit bleeding symptoms associated with FVIII deficiency. Mice with single and combined deficiencies of FVIII (F8-/-) and plasminogen (Plg-/-) were evaluated for phenotypic characteristics of plasminogen deficiency, including wasting disease, shortened lifespan, rectal prolapse, and multiorgan fibrin deposition. Conversely, to specifically examine the role of plasmin-mediated fibrinolysis on bleeding caused by FVIII deficiency, F8-/- and F8-/-/Plg-/- mice were subjected to a bleeding challenge. Mice with a combined deficiency in FVIII and plasminogen displayed no phenotypic differences relative to mice with single FVIII or plasminogen deficiency. Plg-/- and F8-/-/Plg-/- mice exhibited the same penetrance and severity of wasting disease, rectal prolapse, extravascular fibrin deposits, and reduced viability. Furthermore, following a tail vein-bleeding challenge, no significant differences in bleeding times or total blood loss could be detected between F8-/- and F8-/-/Plg-/- mice. Moreover, F8-/- and F8-/-/Plg-/- mice responded similarly to recombinant FVIII (rFVIII) therapy. In summary, the pathological phenotype of Plg-/- mice developed independently of FVIII-dependent coagulation, and elimination of plasmin-driven fibrinolysis did not play a significant role in a nonmucosal bleeding model in hemophilia A mice.
Collapse
|
15
|
Short C, Lim HK, Tan J, O'Neill HC. Targeting the Spleen as an Alternative Site for Hematopoiesis. Bioessays 2019; 41:e1800234. [PMID: 30970171 DOI: 10.1002/bies.201800234] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/25/2019] [Indexed: 12/21/2022]
Abstract
Bone marrow is the main site for hematopoiesis in adults. It acts as a niche for hematopoietic stem cells (HSCs) and contains non-hematopoietic cells that contribute to stem cell dormancy, quiescence, self-renewal, and differentiation. HSC also exist in resting spleen of several species, although their contribution to hematopoiesis under steady-state conditions is unknown. The spleen can however undergo extramedullary hematopoiesis (EMH) triggered by physiological stress or disease. With the loss of bone marrow niches in aging and disease, the spleen as an alternative tissue site for hematopoiesis is an important consideration for future therapy, particularly during HSC transplantation. In terms of harnessing the spleen as a site for hematopoiesis, here the remarkable regenerative capacity of the spleen is considered with a view to forming additional or ectopic spleen tissue through cell engraftment. Studies in mice indicate the potential for such grafts to support the influx of hematopoietic cells leading to the development of normal spleen architecture. An important goal will be the formation of functional ectopic spleen tissue as an aid to hematopoietic recovery following clinical treatments that impact bone marrow. For example, expansion or replacement of niches could be considered where myeloablation ahead of HSC transplantation compromises treatment outcomes.
Collapse
Affiliation(s)
- Christie Short
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| | - Hong K Lim
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| | - Jonathan Tan
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| | - Helen C O'Neill
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| |
Collapse
|
16
|
Kangawa A, Otake M, Enya S, Yoshida T, Shibata M. Histological Changes of the Testicular Interstitium during Postnatal Development in Microminipigs. Toxicol Pathol 2019; 47:469-482. [PMID: 30739565 DOI: 10.1177/0192623319827477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microminipigs have become an attractive animal model for the toxicology- and pharmacology-related studies because of their manageable size. In this study, the development of the testicular interstitium and steroidogenesis in microminipigs, from 0 to 12 months of age, were investigated. Testicular interstitium was mostly composed of two types of Leydig cells (large and small Leydig cells) and a few macrophages and mast cells. Large Leydig cells were observed in the peritubular area throughout all the ages. Small Leydig cells were present in the interlobular and subcapsular areas at an early age and then gradually converted into large Leydig cells. Testicular composition of the Leydig cells began to increase after 3 months of age, when spermatogenesis was completed, and reached approximately 35% at 12 months. Steroidogenic enzymes in Leydig cells were detected by immunohistochemistry from 0 month of age. Serum testosterone levels increased substantially from 1.5 to 4.5 months of age, which coincided well with the age of sexual development previously reported in microminipigs. Because the interstitial space of the testis has dramatic variations between species, the basic information obtained in the present study will be a useful reference for all the future toxicity evaluations in microminipigs.
Collapse
Affiliation(s)
- Akihisa Kangawa
- 1 Swine and Poultry Department, Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa, Shizuoka, Japan
| | - Masayoshi Otake
- 1 Swine and Poultry Department, Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa, Shizuoka, Japan
| | - Satoko Enya
- 1 Swine and Poultry Department, Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa, Shizuoka, Japan
| | - Toshinori Yoshida
- 2 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Masatoshi Shibata
- 1 Swine and Poultry Department, Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa, Shizuoka, Japan
| |
Collapse
|
17
|
Klein F, von Muenchow L, Capoferri G, Heiler S, Alberti-Servera L, Rolink H, Engdahl C, Rolink M, Mitrovic M, Cvijetic G, Andersson J, Ceredig R, Tsapogas P, Rolink A. Accumulation of Multipotent Hematopoietic Progenitors in Peripheral Lymphoid Organs of Mice Over-expressing Interleukin-7 and Flt3-Ligand. Front Immunol 2018; 9:2258. [PMID: 30364182 PMCID: PMC6191501 DOI: 10.3389/fimmu.2018.02258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022] Open
Abstract
Interleukin-7 (IL-7) and Flt3-ligand (FL) are two cytokines important for the generation of B cells, as manifested by the impaired B cell development in mice deficient for either cytokine or their respective receptors and by the complete block in B cell differentiation in the absence of both cytokines. IL-7 is an important survival and proliferation factor for B cell progenitors, whereas FL acts on several early developmental stages, prior to B cell commitment. We have generated mice constitutively over-expressing both IL-7 and FL. These double transgenic mice develop splenomegaly and lymphadenopathy characterized by tremendously enlarged lymph nodes even in young animals. Lymphoid, myeloid and dendritic cell numbers are increased compared to mice over-expressing either of the two cytokines alone and the effect on their expansion is synergistic, rather than additive. B cell progenitors, early progenitors with myeloid and lymphoid potential (EPLM), common lymphoid progenitors (CLP) and lineage−, Sca1+, kit+ (LSK) cells are all increased not only in the bone marrow but also in peripheral blood, spleen and even lymph nodes. When transplanted into irradiated wild-type mice, lymph node cells show long-term multilineage reconstitution, further confirming the presence of functional hematopoietic progenitors therein. Our double transgenic mouse model shows that sustained and combined over-expression of IL-7 and FL leads to a massive expansion of most bone marrow hematopoietic progenitors and to their associated presence in peripheral lymphoid organs where they reside and potentially differentiate further, thus leading to the synergistic increase in mature lymphoid and myeloid cell numbers. The present study provides further in vivo evidence for the concerted action of IL-7 and FL on lymphopoiesis and suggests that extramedullary niches, including those in lymph nodes, can support the survival and maintenance of hematopoietic progenitors that under physiological conditions develop exclusively in the bone marrow.
Collapse
Affiliation(s)
- Fabian Klein
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Lilly von Muenchow
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Giuseppina Capoferri
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Stefan Heiler
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Llucia Alberti-Servera
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Hannie Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Corinne Engdahl
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Michael Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Mladen Mitrovic
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Grozdan Cvijetic
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Jan Andersson
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Rhodri Ceredig
- Discipline of Physiology, College of Medicine & Nursing Health Science, National University of Ireland, Galway, Ireland
| | - Panagiotis Tsapogas
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Kogame T, Hirata M, Kataoka T, Seidel J, Ueshima C, Matsui M, Nomura T, Kabashima K. Presence of SCF/CXCL12 double-positive large blast-like cells at the site of cutaneous extramedullary haematopoiesis. J Eur Acad Dermatol Venereol 2018; 32:e465-e466. [DOI: 10.1111/jdv.15068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- T. Kogame
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
- Ijinkai Takeda General Hospital; Kyoto Japan
| | - M. Hirata
- Department of Diagnostic Pathology; Kyoto University Hospital; Kyoto Japan
| | - T.R. Kataoka
- Department of Diagnostic Pathology; Kyoto University Hospital; Kyoto Japan
| | - J.A. Seidel
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - C. Ueshima
- Department of Diagnostic Pathology; Kyoto University Hospital; Kyoto Japan
| | - M. Matsui
- Ijinkai Takeda General Hospital; Kyoto Japan
| | - T. Nomura
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - K. Kabashima
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| |
Collapse
|
19
|
Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Sci Rep 2018; 8:8308. [PMID: 29844356 PMCID: PMC5974313 DOI: 10.1038/s41598-018-26693-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
Extramedullary hematopoiesis (EMH) in postnatal life is a pathological process in which the differentiation of hematopoietic stem/progenitor cells (HSPCs) occurs outside the bone marrow (BM) to respond to hematopoietic emergencies. The spleen is a major site for EMH; however, the cellular and molecular nature of the stromal cell components supporting HSPC maintenance, the niche for EMH in the spleen remain poorly understood compared to the growing understanding of the BM niche at the steady-state as well as in emergency hematopoiesis. In the present study, we demonstrate that mesenchymal progenitor-like cells expressing Tlx1, an essential transcription factor for spleen organogenesis, and selectively localized in the perifollicular region of the red pulp of the spleen, are a major source of HSPC niche factors. Consistently, overexpression of Tlx1 in situ induces EMH, which is associated with mobilization of HSPC into the circulation and their recruitment into the spleen where they proliferate and differentiate. The alterations in the splenic microenvironment induced by Tlx1 overexpression in situ phenocopy lipopolysaccharide (LPS)-induced EMH, and the conditional loss of Tlx1 abolished LPS-induced splenic EMH. These findings indicate that activation of Tlx1 expression in the postnatal splenic mesenchymal cells is critical for the development of splenic EMH.
Collapse
|
20
|
Tiwari P, Mahajan V, Muhrerkar K. An unusual presentation of primary myelofibrosis. Indian J Tuberc 2017; 65:262-265. [PMID: 29933872 DOI: 10.1016/j.ijtb.2017.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 11/26/2022]
Abstract
Extramedullary hematopoisis (EMH) normally occurs in fetal life, but it is pathological in later life and most of the time because of underlying marrow diseases. Sometimes EMH tissue can present with large masses which can cause compressive and constitutional symptoms. They can be wrongly diagnosed as malignancy and pulmonary tuberculosis. Here in this case report we are reporting a case with mediastinal EMH because of underlying mylofibrosis.
Collapse
Affiliation(s)
- Prateek Tiwari
- Department of Medical Oncology, Cancer Institute (WIA), Adyar, Chennai, India.
| | - Vandana Mahajan
- Department of Radiodiagnosis, Cancer Institute (WIA), Adyar, Chennai, India
| | - Kanchan Muhrerkar
- Department of Pathology, Cancer Institute (WIA), Adyar, Chennai, India
| |
Collapse
|
21
|
Mahiout S, Lindén J, Esteban J, Sánchez-Pérez I, Sankari S, Pettersson L, Håkansson H, Pohjanvirta R. Toxicological characterisation of two novel selective aryl hydrocarbon receptor modulators in Sprague-Dawley rats. Toxicol Appl Pharmacol 2017; 326:54-65. [PMID: 28433708 DOI: 10.1016/j.taap.2017.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022]
Abstract
The aryl hydrocarbon receptor (AHR) mediates the toxicity of dioxins, but also plays important physiological roles. Selective AHR modulators, which elicit some effects imparted by this receptor without causing the marked toxicity of dioxins, are presently under intense scrutiny. Two novel such compounds are IMA-08401 (N-acetyl-N-phenyl-4-acetoxy-5-chloro-1,2-dihydro-1-methyl-2-oxo-quinoline-3-carboxamide) and IMA-07101 (N-acetyl-N-(4-trifluoromethylphenyl)-4-acetoxy-1,2-dihydro-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide). They represent, as diacetyl prodrugs, AHR-active metabolites of the drug compounds laquinimod and tasquinimod, respectively, which are intended for the treatment of autoimmune diseases and cancer. Here, we toxicologically assessed the novel compounds in Sprague-Dawley rats, after a single dose (8.75-92.5mg/kg) and 5-day repeated dosing at the highest doses achievable (IMA-08401: 100mg/kg/day; and IMA-07101: 75mg/kg/day). There were no overt clinical signs of toxicity, but body weight gain was marginally retarded, and the treatments induced minimal hepatic extramedullary haematopoiesis. Further, both the absolute and relative weights of the thymus were significantly decreased. Cyp1a1 gene expression was substantially increased in all tissues examined. The hepatic induction profile of other AHR battery genes was distinct from that caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The only marked alterations in serum clinical chemistry variables were a reduction in triglycerides and an increase in 3-hydroxybutyrate. Liver and kidney retinol and retinyl palmitate concentrations were affected largely in the same manner as reported for TCDD. In vitro, the novel compounds activated CYP1A1 effectively in H4IIE cells. Altogether, these novel compounds appear to act as potent activators of the AHR, but lack some major characteristic toxicities of dioxins. They therefore represent promising new selective AHR modulators.
Collapse
Affiliation(s)
- Selma Mahiout
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | - Jere Lindén
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Javier Esteban
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Ismael Sánchez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Satu Sankari
- Central Laboratory of the Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | | | - Helen Håkansson
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| |
Collapse
|
22
|
Lekovic D, Gotic M, Milic N, Zivojinovic B, Jovanovic J, Colovic N, Milosevic V, Bogdanovic A. Predictive parameters for imatinib failure in patients with chronic myeloid leukemia. Hematology 2017; 22:460-466. [PMID: 28327053 DOI: 10.1080/10245332.2017.1302179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE Until recently, imatinib was the standard first-line treatment in chronic myeloid leukemia (CML). The inclusion of nilotinib and dasatinib as first-line options in CML raised a debate on treatment selection. The aim of our study was to analyze predictive parameters for imatinib response as the first-line treatment of CML patients. METHODS The study included 168 consecutive patients with chronic phase Philadelphia-positive CML who were diagnosed and treated with Imatinib 400 mg once daily at a single university hospital. Numerous parameters were analyzed in terms of imatinib response including comorbidities as well as occurrence of second malignancies. RESULTS After the median follow-up of 87 months in 61 patients (36.3%), the imatinib failure was verified. Cox regression analysis identified hepatomegaly (p = 0.001), leukocytosis ≥ 100 × 109/l (p = 0.001), blood blasts ≥ 1% (p = 0.002), and the presence of additional cytogenetic aberrations (p = 0.002) as predictors of Imatinib failure. Based on these findings, a new prognostic model was developed according to which imatinib failure had 17% (8/47) of patients in low risk, 34.9% (30/86) of patients in intermediate risk, and 76.7% (23/30) of patients in high-risk group (HR = 3.973, 95% CI for HR 2.237-7.053, p < 0.001). CONCLUSION The new score allows better selection of patients who are suitable for treatment with imatinib and may guideline the clinical decision for front-line treatment of CML.
Collapse
Affiliation(s)
- Danijela Lekovic
- a Clinic for Hematology , Clinical Center of Serbia , Belgrade , Serbia.,b Medical Faculty , University of Belgrade , Belgrade , Serbia
| | - Mirjana Gotic
- a Clinic for Hematology , Clinical Center of Serbia , Belgrade , Serbia.,b Medical Faculty , University of Belgrade , Belgrade , Serbia
| | - Natasa Milic
- b Medical Faculty , University of Belgrade , Belgrade , Serbia.,c Institute for Medical Statistics , University of Belgrade , Belgrade , Serbia
| | | | - Jelica Jovanovic
- a Clinic for Hematology , Clinical Center of Serbia , Belgrade , Serbia
| | - Natasa Colovic
- a Clinic for Hematology , Clinical Center of Serbia , Belgrade , Serbia.,b Medical Faculty , University of Belgrade , Belgrade , Serbia
| | - Violeta Milosevic
- a Clinic for Hematology , Clinical Center of Serbia , Belgrade , Serbia
| | - Andrija Bogdanovic
- a Clinic for Hematology , Clinical Center of Serbia , Belgrade , Serbia.,b Medical Faculty , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
23
|
Liu HH, Chen FP, Liu RK, Lin CL, Chang KT. Ginsenoside Rg1 improves bone marrow haematopoietic activity via extramedullary haematopoiesis of the spleen. J Cell Mol Med 2015; 19:2575-86. [PMID: 26153045 PMCID: PMC4627563 DOI: 10.1111/jcmm.12643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclophosphamide (CY) is a chemotherapeutic agent used for cancer and immunological diseases. It induces cytotoxicity of bone marrow and causes myelosuppression and extramedullary haematopoiesis (EMH) in treated patients. EMH is characterized with the emergence of multipotent haematopoietic progenitors most likely in the spleen and liver. Previous studies indicated that a Chinese medicine, ginsenoside Rg1, confers a significant effect to elevate the number of lineage (Lin−) Sca-1+ c-Kit+ haematopoietic stem and progenitor cells (HSPCs) and restore the function of bone marrow in CY-treated myelosuppressed mice. However, whether the amelioration of bone marrow by Rg1 accompanies an alleviation of EMH in the spleen was still unknown. In our study, the cellularity and weight of the spleen were significantly reduced after Rg1 treatment in CY-treated mice. Moreover, the number of c-Kit+ HSPCs was significantly decreased but not as a result of apoptosis, indicating that Rg1 alleviated EMH of the spleen induced by CY. Unexpectedly, the proliferation activity of c-Kit+ HSPCs was only up-regulated in the spleen, but not in the bone marrow, after Rg1 treatment in CY-treated mice. We also found that a fraction of c-Kit+/CD45+ HSPCs was simultaneously increased in the circulation after Rg1 treatment. Interestingly, the effects of Rg1 on the elevation of HSPCs in bone marrow and in the peripheral blood were suppressed in CY-treated splenectomized mice. These results demonstrated that Rg1 improves myelosuppression induced by CY through its action on the proliferation of HSPCs in EMH of the spleen and migration of HSPCs from the spleen to the bone marrow.
Collapse
Affiliation(s)
- Hua-Hsing Liu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Fei-Peng Chen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Rong-Kai Liu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chun-Lin Lin
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ko-Tung Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|