1
|
Stepanova OV, Fursa GA, Karsuntseva EK, Andretsova SS, Chadin AV, Voronova AD, Shishkina VS, Semkina AS, Reshetov IV, Chekhonin VP. Features of Remyelination after Transplantation of Olfactory Ensheathing Cells with Neurotrophic Factors into Spinal Cord Cysts. Bull Exp Biol Med 2024; 176:666-671. [PMID: 38727956 DOI: 10.1007/s10517-024-06088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 05/18/2024]
Abstract
This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.
Collapse
Affiliation(s)
- O V Stepanova
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G A Fursa
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E K Karsuntseva
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - S S Andretsova
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A V Chadin
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A D Voronova
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V S Shishkina
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A S Semkina
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V P Chekhonin
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
Li B, Mei XF. Naringin may promote functional recovery following spinal cord injury by modulating microglial polarization through the PPAR-γ/NF-κB signaling pathway. Brain Res 2023; 1821:148563. [PMID: 37661010 DOI: 10.1016/j.brainres.2023.148563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE The flavonoid Naringin (Nar) has been extensively investigated and found to have multiple pharmacological properties, including neuroprotection. Although recent reports have shown that Nar can effectively treat spinal cord injury (SCI), its potential mechanism remains unknown. This study aimed to investigate the effects of Nar on motor recovery and inflammatory responses after SCI and to elucidate its mechanism. METHODS SCI rat models were established using Allen's weight-drop method. The rats were intragastrically given Nar (40 mg/kg) for 21 d, and their motor function before surgery and on the 1st, 3rd, 7th, 14th, 21st days after surgery was assessed by the Basso-Beattie-Bresnahan (BBB) scale and examined by the grid walking test (GWT). The enzyme linked immunosorbent assay (ELISA) was used to detect the interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1 levels in rat spinal cord tissues, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to measure the mRNA expression levels of microglial activation markers CD68 and ionized calcium binding adaptor molecule 1 (Iba-1), M1 markers inducible nitric oxide synthase (iNOS) and IL-6, and M2 markers CD206 and Arginase 1 (Arg1). The expression levels of peroxisome proliferator-activated receptor gamma/nuclear factor kappa B (PPAR-γ/NF-κB) pathway-related proteins in rat spinal cord tissues were determined using western blotting. RESULTS Nar significantly increased the BBB score and decreased the mean error rate of GWT in SCI rats. Additionally, Nar effectively inhibited microglial activation and expression of M1 markers in spinal cord tissues. It also elevated M2 polarization-related gene expression and significantly lowered the levels of inflammatory factors. Further investigation showed that Nar enhanced the expression of PPAR-γ protein and inhibited NF-κB pathway activity. CONCLUSION Nar promotes functional recovery by regulating microglial polarization and inhibiting the inflammatory response in SCI, and its mechanism may be related to the PPAR-γ/NF-κB signaling pathway activity.
Collapse
Affiliation(s)
- Bo Li
- Suzhou Medical College of Soochow University. Suzhou, Jiangsu 215000, China; Department of Surgery, The Third Affiliated Hospital of Jin Zhou Medical University, Jinzhou, Liaoning 121000, China
| | - Xi-Fan Mei
- Department of Surgery, The Third Affiliated Hospital of Jin Zhou Medical University, Jinzhou, Liaoning 121000, China.
| |
Collapse
|
3
|
Dong X, Hong H, Cui Z. Function of GSK‑3 signaling in spinal cord injury (Review). Exp Ther Med 2023; 26:541. [PMID: 37869638 PMCID: PMC10587879 DOI: 10.3892/etm.2023.12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/10/2023] [Indexed: 10/24/2023] Open
Abstract
Spinal cord injury (SCI) is a major social problem with a heavy burden on patient physiology and psychology. Glial scar formation and irreversible neuron loss are the two key points during SCI progression. During the acute phase of spinal cord injury, glial scars form, limiting the progression of inflammation. However, in the subacute or chronic phase, glial scarring inhibits axon regeneration. Following spinal cord injury, irreversible loss of neurons leads to further aggravation of spinal cord injury. Several therapies have been developed to improve either glial scar or neuron loss; however, few therapies reach the stage of clinical trials and there are no mainstream therapies for SCI. Exploring the key mechanism of SCI is crucial for finding further treatments. Glycogen synthase kinase-3 (GSK-3) is a widely expressed kinase with important physiological and pathophysiological functions in vivo. Dysfunction of the GSK-3 signaling pathway during SCI has been widely discussed for controlling neurite growth in vitro and in vivo, improving the proliferation and neuronal differentiation of endogenous neural stem cells and functional recovery from spinal cord injury. SCI can decrease the phosphorylated (p)/total (t)-GSK-3β ratio, which leads to an increase in apoptosis, whereas treatment with GSK-3 inhibitors can promote neurogenesis. In addition, several therapies for the treatment of SCI involve signaling pathways associated with GSK-3. Furthermore, signaling pathways associated with GSK-3 also participate in the pathological process of neuropathic pain that remains following SCI. The present review summarized the roles of GSK-3 signaling in SCI to aid in the understanding of GSK-3 signaling during the pathological processes of SCI and to provide evidence for the development of comprehensive treatments.
Collapse
Affiliation(s)
- Xiong Dong
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hongxiang Hong
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
4
|
Xu B, Liu D, Liu W, Long G, Liu W, Wu Y, He X, Shen Y, Jiang P, Yin M, Fan Y, Shen H, Shi L, Zhang Q, Xue W, Jin C, Chen Z, Chen B, Li J, Hu Y, Li X, Xiao Z, Zhao Y, Dai J. Engineered human spinal cord-like tissues with dorsal and ventral neuronal progenitors for spinal cord injury repair in rats and monkeys. Bioact Mater 2023; 27:125-137. [PMID: 37064803 PMCID: PMC10090126 DOI: 10.1016/j.bioactmat.2023.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Transplanting human neural progenitor cells is a promising method of replenishing the lost neurons after spinal cord injury (SCI), but differentiating neural progenitor cells into the diverse types of mature functional spinal cord neurons in vivo is challenging. In this study, engineered human embryonic spinal cord-like tissues with dorsal and ventral neuronal characters (DV-SC) were generated by inducing human neural progenitor cells (hscNPCs) to differentiate into various types of dorsal and ventral neuronal cells on collagen scaffold in vitro. Transplantation of DV-SC into complete SCI models in rats and monkeys showed better therapeutic effects than undifferentiated hscNPCs, including pronounced cell survival and maturation. DV-SC formed a targeted connection with the host's ascending and descending axons, partially restored interrupted neural circuits, and improved motor evoked potentials and the hindlimb function of animals with SCI. This suggests that the transplantation of pre-differentiated hscNPCs with spinal cord dorsal and ventral neuronal characteristics could be a promising strategy for SCI repair.
Collapse
|
5
|
Zhang M, An H, Gu Z, Huang Z, Zhang F, Jiang BG, Wen Y, Zhang P. Mimosa-Inspired Stimuli-Responsive Curling Bioadhesive Tape Promotes Peripheral Nerve Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212015. [PMID: 37205796 DOI: 10.1002/adma.202212015] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Trauma often results in peripheral nerve injuries (PNIs). These injuries are particularly challenging therapeutically because of variable nerve diameters, slow axonal regeneration, infection of severed ends, fragility of the nerve tissue, and the intricacy of surgical intervention. Surgical suturing is likely to cause additional damage to peripheral nerves. Therefore, an ideal nerve scaffold should possess good biocompatibility, diameter adaptability, and a stable biological interface for seamless biointegration with tissues. Inspired by the curl of Mimosa pudica, this study aimed to design and develop a diameter-adaptable, suture-free, stimulated curling bioadhesive tape (SCT) hydrogel for repairing PNI. The hydrogel is fabricated from chitosan and acrylic acid-N-hydroxysuccinimide lipid via gradient crosslinking using glutaraldehyde. It closely matches the nerves of different individuals and regions, thereby providing a bionic scaffold for axonal regeneration. In addition, this hydrogel rapidly absorbs tissue fluid from the nerve surface achieving durable wet-interface adhesion. Furthermore, the chitosan-based SCT hydrogel loaded with insulin-like growth factor-I effectively promotes peripheral nerve regeneration with excellent bioactivity. This procedure for peripheral nerve injury repair using the SCT hydrogel is simple and reduces the difficulty and duration of surgery, thereby advancing adaptive biointerfaces and reliable materials for nerve repair.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, China
| | - Bao-Guo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, China
| |
Collapse
|
6
|
Liu D, Lu G, Shi B, Ni H, Wang J, Qiu Y, Yang L, Zhu Z, Yi X, Du X, Shi B. ROS-Scavenging Hydrogels Synergize with Neural Stem Cells to Enhance Spinal Cord Injury Repair via Regulating Microenvironment and Facilitating Nerve Regeneration. Adv Healthc Mater 2023; 12:e2300123. [PMID: 36989238 DOI: 10.1002/adhm.202300123] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Although stem cell-based therapy is recognized as a promising therapeutic strategy for spinal cord injury (SCI), its efficacy is greatly limited by local reactive oxygen species (ROS)-abundant and hyper-inflammatory microenvironments. It is still a challenge to develop bioactive scaffolds with outstanding antioxidant capacity for neural stem cells (NSCs) transplantation. In this study, albumin biomimetic cerium oxide nanoparticles (CeO2 @BSA nanoparticles, CeNPs) are prepared in a simple and efficient manner and dispersed in gelatin methacryloyl to obtain the ROS-scavenging hydrogel (CeNP-Gel). CeNP-Gel synergistically promotes neurogenesis via alleviating oxidative stress microenvironments and improving the viability of encapsulated NSCs. More interestingly, in the presence of CeNP-Gel, microglial polarization to anti-inflammatory M2 subtype are obviously facilitated, which is further verified to be associated with phosphoinositide 3-kinase/protein kinase B pathway activation. Additionally, the injectable ROS-scavenging hydrogel is confirmed to induce the integration and neural differentiation of transplanted NSCs. Compared with the blank-gel group, the survival rate of NSCs in CeNP-Gel group is about 3.5 times higher, and the neural differentiation efficiency is about 2.1 times higher. Therefore, the NSCs-laden ROS-scavenging hydrogel represents a comprehensive strategy with great application prospect for the treatment of SCI through comprehensively modulating the adverse microenvironment.
Collapse
Affiliation(s)
- Dun Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Geng Lu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Bo Shi
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Huanyu Ni
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Jun Wang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Lin Yang
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 210037, P. R. China
| | - Xiao Du
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Benlong Shi
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, P. R. China
| |
Collapse
|
7
|
Yu H, Yang S, Li H, Wu R, Lai B, Zheng Q. Activating Endogenous Neurogenesis for Spinal Cord Injury Repair: Recent Advances and Future Prospects. Neurospine 2023; 20:164-180. [PMID: 37016865 PMCID: PMC10080446 DOI: 10.14245/ns.2245184.296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/29/2022] [Indexed: 04/03/2023] Open
Abstract
After spinal cord injury (SCI), endogenous neural stem cells are activated and migrate to the injury site where they differentiate into astrocytes, but they rarely differentiate into neurons. It is difficult for brain-derived information to be transmitted through the injury site after SCI because of the lack of neurons that can relay neural information through the injury site, and the functional recovery of adult mammals is difficult to achieve. The development of bioactive materials, tissue engineering, stem cell therapy, and physiotherapy has provided new strategies for the treatment of SCI and shown broad application prospects, such as promoting endogenous neurogenesis after SCI. In this review, we focus on novel approaches including tissue engineering, stem cell technology, and physiotherapy to promote endogenous neurogenesis and their therapeutic effects on SCI. Moreover, we explore the mechanisms and challenges of endogenous neurogenesis for the repair of SCI.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shangbin Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haotao Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Co-corresponding Author Biqin Lai Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Southern Medical University, Guangzhou, China
- Corresponding Author Qiujian Zheng Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Stepanova OV, Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Chadin AV, Karsuntseva EK, Reshetov IV, Chekhonin VP. Prospects for the use of olfactory mucosa cells in bioprinting for the treatment of spinal cord injuries. World J Clin Cases 2023; 11:322-331. [PMID: 36686356 PMCID: PMC9850961 DOI: 10.12998/wjcc.v11.i2.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The review focuses on the most important areas of cell therapy for spinal cord injuries. Olfactory mucosa cells are promising for transplantation. Obtaining these cells is safe for patients. The use of olfactory mucosa cells is effective in restoring motor function due to the remyelination and regeneration of axons after spinal cord injuries. These cells express neurotrophic factors that play an important role in the functional recovery of nerve tissue after spinal cord injuries. In addition, it is possible to increase the content of neurotrophic factors, at the site of injury, exogenously by the direct injection of neurotrophic factors or their delivery using gene therapy. The advantages of olfactory mucosa cells, in combination with neurotrophic factors, open up wide possibilities for their application in three-dimensional and four-dimensional bioprinting technology treating spinal cord injuries.
Collapse
Affiliation(s)
- Olga Vladislavovna Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Grigorii Andreevich Fursa
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Svetlana Sergeevna Andretsova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Biology, Moscow State University, Moscow 119991, Russia
| | - Valentina Sergeevna Shishkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Anastasia Denisovna Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Andrey Viktorovich Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | | | | | - Vladimir Pavlovich Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnologу, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
9
|
Yang R, Pan J, Wang Y, Xia P, Tai M, Jiang Z, Chen G. Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment. Front Cell Neurosci 2022; 16:1005399. [PMID: 36467604 PMCID: PMC9712200 DOI: 10.3389/fncel.2022.1005399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/02/2022] [Indexed: 08/10/2023] Open
Abstract
Spinal cord injury (SCI) is a serious neurological trauma that is challenging to treat. After SCI, many neurons in the injured area die due to necrosis or apoptosis, and astrocytes, oligodendrocytes, microglia and other non-neuronal cells become dysfunctional, hindering the repair of the injured spinal cord. Corrective surgery and biological, physical and pharmacological therapies are commonly used treatment modalities for SCI; however, no current therapeutic strategies can achieve complete recovery. Somatic cell reprogramming is a promising technology that has gradually become a feasible therapeutic approach for repairing the injured spinal cord. This revolutionary technology can reprogram fibroblasts, astrocytes, NG2 cells and neural progenitor cells into neurons or oligodendrocytes for spinal cord repair. In this review, we provide an overview of the transcription factors, genes, microRNAs (miRNAs), small molecules and combinations of these factors that can mediate somatic cell reprogramming to repair the injured spinal cord. Although many challenges and questions related to this technique remain, we believe that the beneficial effect of somatic cell reprogramming provides new ideas for achieving functional recovery after SCI and a direction for the development of treatments for SCI.
Collapse
Affiliation(s)
- Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yankai Wang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Panhui Xia
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Mingliang Tai
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Zhihao Jiang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
10
|
Liu T, Zhu W, Zhang X, He C, Liu X, Xin Q, Chen K, Wang H. Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5079153. [PMID: 35978649 PMCID: PMC9377911 DOI: 10.1155/2022/5079153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating central nervous system disease caused by accidental events, resulting in loss of sensory and motor function. Considering the multiple effects of primary and secondary injuries after spinal cord injury, including oxidative stress, tissue apoptosis, inflammatory response, and neuronal autophagy, it is crucial to understand the underlying pathophysiological mechanisms, local microenvironment changes, and neural tissue functional recovery for preparing novel treatment strategies. Treatment based on cell transplantation has become the forefront of spinal cord injury therapy. The transplanted cells provide physical and nutritional support for the damaged tissue. At the same time, the implantation of biomaterials with specific biological functions at the site of the SCI has also been proved to improve the local inhibitory microenvironment and promote axonal regeneration, etc. The combined transplantation of cells and functional biomaterials for SCI treatment can result in greater neuroprotective and regenerative effects by regulating cell differentiation, enhancing cell survival, and providing physical and directional support for axon regeneration and neural circuit remodeling. This article reviews the pathophysiology of the spinal cord, changes in the microenvironment after injury, and the mechanisms and strategies for spinal cord regeneration and repair. The article will focus on summarizing and discussing the latest intervention models based on cell and functional biomaterial transplantation and the latest progress in combinational therapies in SCI repair. Finally, we propose the future prospects and challenges of current treatment regimens for SCI repair, to provide references for scientists and clinicians to seek better SCI repair strategies in the future.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Wenhao Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoyu Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Xiaolong Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Qiang Xin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Kexin Chen
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Haifeng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Neurotrophin-3 Enhances the Effectiveness of Cell Therapy in Chronic Spinal Cord Injuries. Bull Exp Biol Med 2022; 173:114-118. [DOI: 10.1007/s10517-022-05504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/25/2022]
|
12
|
Zeng YS, Ding Y, Xu HY, Zeng X, Lai BQ, Li G, Ma YH. Electro-acupuncture and its combination with adult stem cell transplantation for spinal cord injury treatment: A summary of current laboratory findings and a review of literature. CNS Neurosci Ther 2022; 28:635-647. [PMID: 35174644 PMCID: PMC8981476 DOI: 10.1111/cns.13813] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/18/2022] Open
Abstract
The incidence and disability rate of spinal cord injury (SCI) worldwide are high, imposing a heavy burden on patients. Considerable research efforts have been directed toward identifying new strategies to effectively treat SCI. Governor Vessel electro‐acupuncture (GV‐EA), used in traditional Chinese medicine, combines acupuncture with modern electrical stimulation. It has been shown to improve the microenvironment of injured spinal cord (SC) by increasing levels of endogenous neurotrophic factors and reducing inflammation, thereby protecting injured neurons and promoting myelination. In addition, axons extending from transplanted stem cell‐derived neurons can potentially bridge the two severed ends of tissues in a transected SC to rebuild neuronal circuits and restore motor and sensory functions. However, every single treatment approach to severe SCI has proven unsatisfactory. Combining different treatments—for example, electro‐acupuncture (EA) with adult stem cell transplantation—appears to be a more promising strategy. In this review, we have summarized the recent progress over the past two decades by our team especially in the use of GV‐EA for the repair of SCI. By this strategy, we have shown that EA can stimulate the nerve endings of the meningeal branch. This would elicit the dorsal root ganglion neurons to secrete excess amounts of calcitonin gene‐related peptide centrally in the SC. The neuropeptide then activates the local cells to secrete neurotrophin‐3 (NT‐3), which mediates the survival and differentiation of donor stem cells overexpressing the NT‐3 receptor, at the injury/graft site of the SC. Increased local production of NT‐3 facilitates reconstruction of host neural tissue such as nerve fiber regeneration and myelination. All this events in sequence would ultimately strengthen the cortical motor‐evoked potentials and restore the motor function of paralyzed limbs. The information presented herein provides a basis for future studies on the clinical application of GV‐EA and adult stem cell transplantation for the treatment of SCI.
Collapse
Affiliation(s)
- Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Sun F, Zhang H, Huang T, Shi J, Wei T, Wang Y. S100A9 blockade improves the functional recovery after spinal cord injury via mediating neutrophil infiltration. Exp Ther Med 2022; 23:291. [PMID: 35317450 PMCID: PMC8908460 DOI: 10.3892/etm.2022.11220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury (SCI) refers to damage to the spinal cord resulting from trauma, disease or degeneration. Controlling the inflammatory process and restoring neural homeostasis is hypothesized to prevent injury aggravation. S100 calcium-binding protein A9 (S100A9) is a pro-inflammatory alarm protein, which is expressed in and released by activated neutrophils. However, whether S100A9 could serve as an effective target for the treatment of SCI has not been reported to date. In the present study, a T10 spinal cord contusion injury model was established in Sprague-Dawley rats. S100A9 expression level was determined in the serum and injured spinal cord tissue via ELISA, reverse transcription-quantitative PCR (RT-qPCR) and western blotting. The S100A9-specific blocker, ABR-238901 (ABR), was administered during the inflammatory phase of SCI, as a form of treatment. Subsequently, the morphological structure, neuronal viability and inflammatory levels of injured spinal cord were observed by histopathology, immunohistochemistry and RT-qPCR. In the obtained results, S100A9 was found to be highly expressed in the injured spinal cord and serum in the first 3 days after SCI. However, at 28 days after surgery, ABR treatment significantly improved motor function, reduced the cavity formation and neutrophil infiltration in the lesion, which was verified via H&E staining and immunohistochemistry for myeloperoxidase. Furthermore, ABR treatment was found to effectively improve the survival and viability of neurons, as shown via Nissl staining and immunofluorescence of the synaptic plasticity markers, microtubule associated protein 2 and neurofilament 200. Moreover, S100A9 blockade effectively upregulated the mRNA expression level of the anti-inflammatory genes, IL-4 and IL-10 and downregulated the mRNA expression level of the pro-inflammatory factors, IL-1β, IL-6 and TNF-α. In addition, S100A9 blockade notably alleviated the apoptosis level of the injured nerve cells. Therefore, the findings of the present study revealed that S100A9 may be a useful target for the treatment of SCI.
Collapse
Affiliation(s)
- Feng Sun
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Haiwei Zhang
- Imaging, General Hospital of Heilongjiang General Administration of Agriculture and Reclamation, Harbin, Heilongjiang 150000, P.R. China
| | - Tianwen Huang
- Department of Orthopedics, General Hospital of Heilongjiang General Administration of Agriculture and Reclamation, Harbin, Heilongjiang 150000, P.R. China
| | - Jianhui Shi
- Department of Orthopaedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Tianli Wei
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Yansong Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
14
|
Sosnovtseva AO, Stepanova OV, Stepanenko AA, Voronova AD, Chadin AV, Valikhov MP, Chekhonin VP. Recombinant Adenoviruses for Delivery of Therapeutics Following Spinal Cord Injury. Front Pharmacol 2022; 12:777628. [PMID: 35082666 PMCID: PMC8784517 DOI: 10.3389/fphar.2021.777628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
The regeneration of nerve tissue after spinal cord injury is a complex and poorly understood process. Medication and surgery are not very effective treatments for patients with spinal cord injuries. Gene therapy is a popular approach for the treatment of such patients. The delivery of therapeutic genes is carried out in a variety of ways, such as direct injection of therapeutic vectors at the site of injury, retrograde delivery of vectors, and ex vivo therapy using various cells. Recombinant adenoviruses are often used as vectors for gene transfer. This review discusses the advantages, limitations and prospects of adenovectors in spinal cord injury therapy.
Collapse
Affiliation(s)
- Anastasiia O Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V Stepanova
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia D Voronova
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey V Chadin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marat P Valikhov
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
15
|
Stepanova OV, Voronova AD, Sosnovtseva AO, Stepanenko AA, Chadin AV, Karsuntseva EK, Fursa GA, Valikhov MP, Semkina AS, Vorobyev PO, Reshetov IV, Chekhonin VP. Study of the Therapeutic Efficiency of Transduced Olfactory Ensheathing Cells in Spinal Cord Cysts. Stem Cells Dev 2021; 31:9-17. [PMID: 34847755 DOI: 10.1089/scd.2021.0265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttraumatic spinal cord cysts are difficult to treat with medication and surgery. Gene-cell therapy is a promising area of treatment for such patients. However, optimal gene-cell construct for this therapy has not been developed. We investigated the therapeutic efficiency of human olfactory ensheathing cells (OECs) transduced by adenoviral vector encoding the mature form of brain-derived neurotrophic factor (mBDNF) in spinal cord cysts. The adenoviral vectors Ad5/35-CAG-mBDNF and Ad5/35-CAG-Fluc were constructed. Spinal cysts were modeled in female Wistar rats. We selected animals at the early and intermediate stages of recovery with scores to 13 according to the Basso, Beattie and Bresnahan (BBB) scale. The efficiency of therapy was evaluated by BBB tests. No cytotoxicity was detected using the Resazurin/AlamarBlue assay for both vectors at multiplicity of infection (MOIs) of 1, 5, and 25. There was an increase in the proliferation of cells treated with Ad5/35-CAG-mBDNF at MOIs of 5 and 25. The hind limb mobility after the transplantation of Ad5/35-CAG-mBDNF- and Ad5/35-CAG-Fluc-transduced human OECs and nontransduced OECs had approximately the same tendency to improve. Cyst reduction was observed with the transplantation of all the samples. Although Ad5/35-CAG-mBDNF-transduced OECs had high BDNF expression levels in vitro, these cells lacked positive effect in vivo because they did not exhibit significant effect concerning functional test when comparing the groups that received the same numbers of OECs. The therapeutic efficiency of transduced OECs appears to be due to the cell component. The autological and tissue-specific human OECs are promising for the personalized cell therapy. It is extremely important to test new gene-cell constructs based on these cells for further clinical use.
Collapse
Affiliation(s)
- Olga V Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Anastasia D Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Anastasiia O Sosnovtseva
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Aleksei A Stepanenko
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey V Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | | | - Grigorii A Fursa
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Biology, Moscow State University, Moscow, Russia
| | - Marat P Valikhov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Alevtina S Semkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Pavel O Vorobyev
- Laboratory of Cell Proliferation, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Igor V Reshetov
- Department of Plastic Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
16
|
Ma YH, Shi HJ, Wei QS, Deng QW, Sun JH, Liu Z, Lai BQ, Li G, Ding Y, Niu WT, Zeng YS, Zeng X. Developing a mechanically matched decellularized spinal cord scaffold for the in situ matrix-based neural repair of spinal cord injury. Biomaterials 2021; 279:121192. [PMID: 34700225 DOI: 10.1016/j.biomaterials.2021.121192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Tissue engineering is a promising strategy to repair spinal cord injury (SCI). However, a bioscaffold with mechanical properties that match those of the pathological spinal cord tissue and a pro-regenerative matrix that allows robust neurogenesis for overcoming post-SCI scar formation has yet to be developed. Here, we report that a mechanically enhanced decellularized spinal cord (DSC) scaffold with a thin poly (lactic-co-glycolic acid) (PLGA) outer shell may fulfill the requirements for effective in situ neuroengineering after SCI. Using chemical extraction and electrospinning methods, we successfully constructed PLGA thin shell-ensheathed DSC scaffolds (PLGA-DSC scaffolds) in a way that removed major inhibitory components while preserving the permissive matrix. The DSCs exhibited good cytocompatibility with neural stem cells (NSCs) and significantly enhanced their differentiation toward neurons in vitro. Due to the mechanical reinforcement, the implanted PLGA-DSC scaffolds showed markedly increased resilience to infiltration by myofibroblasts and the deposition of dense collagen matrix, thereby creating a neurogenic niche favorable for the targeted migration, residence and neuronal differentiation of endogenous NSCs after SCI. Furthermore, PLGA-DSC presented a mild immunogenic property but prominent ability to polarize macrophages from the M1 phenotype to the M2 phenotype, leading to significant tissue regeneration and functional restoration after SCI. Taken together, the results demonstrate that the mechanically matched PLGA-DSC scaffolds show promise for effective tissue repair after SCI.
Collapse
Affiliation(s)
- Yuan-Huan Ma
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Key Laboratory of Age-Related Cardiocerebral Diseases, Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong Province, 524023, China; Guangzhou Institute of Clinical Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong Province, 510180, PR China
| | - Hui-Juan Shi
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China
| | - Qing-Shuai Wei
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China
| | - Qing-Wen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Jia-Hui Sun
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Zhou Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Guangdong Key Laboratory of Age-Related Cardiocerebral Diseases, Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong Province, 524023, China
| | - Bi-Qin Lai
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Ge Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Wan-Ting Niu
- Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong Province, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
17
|
Lai BQ, Zeng X, Han WT, Che MT, Ding Y, Li G, Zeng YS. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 2021; 279:121211. [PMID: 34710795 DOI: 10.1016/j.biomaterials.2021.121211] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
The inability of adult mammals to recover function lost after severe spinal cord injury (SCI) has been known for millennia and is mainly attributed to a failure of brain-derived nerve fiber regeneration across the lesion. Potential approaches to re-establishing locomotor function rely on neuronal relays to reconnect the segregated neural networks of the spinal cord. Intense research over the past 30 years has focused on endogenous and exogenous neuronal relays, but progress has been slow and the results often controversial. Treatments with stem cell-derived neuronal relays alone or together with functional electrical stimulation offer the possibility of improved repair of neuronal networks. In this review, we focus on approaches to recovery of motor function in paralyzed patients after severe SCI based on novel therapies such as implantation of stem cell-derived neuronal relays and functional electrical stimulation. Recent research progress offers hope that SCI patients will one day be able to recover motor function and sensory perception.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Wei-Tao Han
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Du W, Deng Y, Jiang R, Tong L, Li R, Jiang X. Clemastine Enhances Myelination, Delays Axonal Loss and Promotes Functional Recovery in Spinal Cord Injury. Neurochem Res 2021; 47:503-515. [PMID: 34661796 PMCID: PMC8827101 DOI: 10.1007/s11064-021-03465-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/04/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022]
Abstract
Recent evidence has shown that demyelination occurs along with axonal degeneration in spinal cord injury (SCI) during the secondary injury phase. Oligodendrocyte precursor cells (OPC) are present in the lesions but fail to differentiate into mature oligodendrocytes and form new myelin. Given the limited recovery of neuronal functions after SCI in adults without effective treatment available so far, it remains unknown whether enhancing OPC differentiation and myelination could benefit the recovery of SCI. To show the significance of myelin regeneration after SCI, the injury was treated with clemastine in the rat model. Clemastine is an FDA-approved drug that is potent in promoting oligodendrocyte differentiation and myelination in vivo, for four weeks following SCI. Motor function was assessed using sloping boards and grid walking tests and scored according to the Basso, Beattie, and Bresnahan protocol. The myelin integrity and protein expression were evaluated using transmission electron microscopy and immunofluorescence, respectively. The results indicated that clemastine treatment preserves myelin integrity, decreases loss of axons and improves functional recovery in the rat SCI model. The presented data suggest that myelination-enhancing strategies may serve as a potential therapeutic approach for the functional recovery in SCI.
Collapse
Affiliation(s)
- Weihong Du
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yongbing Deng
- Department of Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
| | - Rong Jiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Luyao Tong
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ruixue Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Xue Jiang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Gilmour AD, Reshamwala R, Wright AA, Ekberg JAK, St John JA. Optimizing Olfactory Ensheathing Cell Transplantation for Spinal Cord Injury Repair. J Neurotrauma 2021; 37:817-829. [PMID: 32056492 DOI: 10.1089/neu.2019.6939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell transplantation constitutes an important avenue for development of new treatments for spinal cord injury (SCI). These therapies are aimed at supporting neural repair and/or replacing lost cells at the injury site. To date, various cell types have been trialed, with most studies focusing on different types of stem cells or glial cells. Here, we review commonly used cell transplantation approaches for spinal cord injury (SCI) repair, with focus on transplantation of olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system. OECs are promising candidates for promotion of neural repair given that they support continuous regeneration of the olfactory nerve that occurs throughout life. Further, OECs can be accessed from the nasal mucosa (olfactory neuroepithelium) at the roof of the nasal cavity and can be autologously transplanted. OEC transplantation has been trialed in many animal models of SCI, as well as in human clinical trials. While several studies have been promising, outcomes are variable and the method needs improvement to enhance aspects such as cell survival, integration, and migration. As a case study, we include the approaches used by our team (the Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia) to address the current problems with OEC transplantation and discuss how the therapeutic potential of OEC transplantation can be improved. Our approach includes discovery research to improve our knowledge of OEC biology, identifying natural and synthetic compounds to stimulate the neural repair properties of OECs, and designing three-dimensional cell constructs to create stable and transplantable cell structures.
Collapse
Affiliation(s)
- Aaron D Gilmour
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Ronak Reshamwala
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Alison A Wright
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
20
|
Wu Z, Lu Z, Ou J, Su X, Liu J. Inflammatory response and oxidative stress attenuated by sulfiredoxin‑1 in neuron‑like cells depends on nuclear factor erythroid‑2‑related factor 2. Mol Med Rep 2020; 22:4734-4742. [PMID: 33173963 PMCID: PMC7646873 DOI: 10.3892/mmr.2020.11545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/26/2020] [Indexed: 01/23/2023] Open
Abstract
Sulfiredoxin‑1 (SRX1) is a conserved endogenous antioxidative protein, which is involved in the response to cellular damage caused by oxidative stress. Oxidative stress and inflammation are the primary pathological changes in spinal cord injuries (SCI). The aim of present study was to explore the roles of SRX1 in SCI. Using reverse transcription‑quantitative PCR and western blotting, the present study discovered that the expression levels of SRX1 were downregulated in the spinal cord tissues of SCI model rats. Massive irregular cavities and decreased Nissl bodies were observed in the model group compared with the sham group. Thus, to determine the underlying mechanisms, neuron‑like PC12 cells were cultured in vitro. Western blotting analysis indicated that SRX1 expression levels were downregulated following the exposure of cells to lipopolysaccharide (LPS). Following the transfection with the SRX1 overexpression plasmid and stimulation with LPS, the results of the Cell Counting Kit‑8 assay indicated that the cell viability was increased compared with LPS stimulation alone. Furthermore, the expression levels of proinflammatory cytokines secreted by LPS‑treated PC12 cells were downregulated following SRX1 overexpression. Increased malondialdehyde content, decreased superoxide dismutase activity and reactive oxygen species production were also identified in PC12 cells treated with LPS using commercial detection kits, whereas the overexpression of SRX1 partially reversed the effects caused by LPS stimulation. The aforementioned results were further verified by determining the expression levels of antioxidative proteins using western blotting analysis. In addition, nuclear factor erythroid‑2‑related factor 2 (NRF2), a transcription factor known to regulate SRX1, was indicated to participate in the protective effect of SRX1 against oxidative stress. Inhibition of NRF2 further downregulated the expression levels of SRX1, NAD(P)H dehydrogenase quinone 1 and heme oxygenase‑1 in the presence of LPS, while activation of NRF2 reversed the effects of LPS on the expression levels of these proteins. In conclusion, the results of the present study indicated that the anti‑inflammatory and antioxidative effects of SRX1 may depend on NRF2, providing evidence that SRX1 may serve as a novel molecular target to exert a neuroprotective effect in SCI.
Collapse
Affiliation(s)
- Zhiliang Wu
- Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Zhenghao Lu
- Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jun Ou
- Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Xiaotao Su
- Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jingnan Liu
- Department of Spinal Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421000, P.R. China
| |
Collapse
|
21
|
Lin R, Xu J, Ma Q, Chen M, Wang L, Wen S, Yang C, Ma C, Wang Y, Luo Q, Zhu N. Alterations in the fecal microbiota of patients with spinal cord injury. PLoS One 2020; 15:e0236470. [PMID: 32750057 PMCID: PMC7402510 DOI: 10.1371/journal.pone.0236470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/07/2020] [Indexed: 01/03/2023] Open
Abstract
Objectives Spinal cord injury (SCI) is associated with severe autonomic dysfunction. Patients with SCI often suffer from a lack of central nervous system control over the gastrointestinal system. Therefore, we hypothesized that patients with SCI would cause intestinal flora imbalance. We investigated alterations in the fecal microbiome in a group of patients with SCI. Methods Microbial communities in the feces of 23 patients and 23 healthy controls were investigated using high-throughput Illumina Miseq sequencing targeting the V3-V4 region of the 16S ribosomal RNA (rRNA) gene. The relative abundances between the fecal microbiota at the genus level in patients with SCI and healthy individuals were determined using cluster analysis. Results The structure and quantity of fecal microbiota differed significantly between patients with SCI and healthy controls, but the richness and diversity were not significantly different. A two-dimensional heatmap showed that the relative abundances of forty-five operational taxonomic units (OTUs) were significantly enriched either in SCI or healthy samples. Among these, 18 OTUs were more abundant in healthy controls than in patients with SCI, and 27 OTUs were more abundant in the SCI group than in healthy controls. Conclusion Our study showed that patients with SCI exhibited microbiome dysbiosis.
Collapse
Affiliation(s)
- Ruizhu Lin
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Second Department of Rehabilitation, the Designated Rehabilitation Cooperation Hospital of General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jianfeng Xu
- Traditional Chinese Medicine and Traumatology, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Ma
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Meihua Chen
- Second Department of Rehabilitation, the Designated Rehabilitation Cooperation Hospital of General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Wang
- Second Department of Rehabilitation, the Designated Rehabilitation Cooperation Hospital of General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Sha Wen
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Caixia Yang
- Second Department of Rehabilitation, the Designated Rehabilitation Cooperation Hospital of General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chuan Ma
- Second Department of Rehabilitation, the Designated Rehabilitation Cooperation Hospital of General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yue Wang
- Traditional Chinese Medicine and Traumatology, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qiang Luo
- Second Department of Rehabilitation, the Designated Rehabilitation Cooperation Hospital of General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ning Zhu
- Department of Rehabilitation Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- * E-mail:
| |
Collapse
|
22
|
Zhong J, Xu J, Lu S, Wang Z, Zheng Y, Tang Q, Zhu J, Zhu T. A Prevascularization Strategy Using Novel Fibrous Porous Silk Scaffolds for Tissue Regeneration in Mice with Spinal Cord Injury. Stem Cells Dev 2020; 29:615-624. [PMID: 32085678 DOI: 10.1089/scd.2019.0199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Junjie Zhong
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Jiaxin Xu
- Endoscopy Centre and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijun Lu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, China
| | - Zhifu Wang
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Yongtao Zheng
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Qisheng Tang
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Jianhong Zhu
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Tongming Zhu
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| |
Collapse
|
23
|
Domínguez-Bajo A, González-Mayorga A, López-Dolado E, Munuera C, García-Hernández M, Serrano MC. Graphene Oxide Microfibers Promote Regenerative Responses after Chronic Implantation in the Cervical Injured Spinal Cord. ACS Biomater Sci Eng 2020; 6:2401-2414. [PMID: 33455347 DOI: 10.1021/acsbiomaterials.0c00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is characterized by the disruption of neuronal axons and the creation of an inhibitory environment for spinal tissue regeneration. For decades, researchers and clinicians have been devoting a great effort to develop novel therapeutic approaches which include the fabrication of biocompatible implants that could guide neural tissue repair in the lesion site in an attempt to recover the functionality of the nervous tissue. In this context, although fiberlike structures have been hypothesized to serve as a topographical guidance for axonal regrowth, work on the exploration of this type of materials is still limited for SCI. Aiming to develop such guidance platforms, we recently designed and explored in vitro reduced graphene oxide materials in the shape of microfibers (rGO-MFs). After preliminary studies to assess the feasibility of their implantation at the injured spinal cord in vivo, no evident signs of subacute local toxicity were noticed (10 days of implantation). In this work, we specifically examine for the first time the regenerative potential of these scaffolds, slightly modified in their fabrication for improved reproducibility, when chronically interfaced with a cervical spinal cord injury. After extensive characterization of their physicochemical properties and in vitro experiments with neural progenitor cells, their neural regenerative capacity in vivo is investigated in a rat experimental model of SCI after 4 months of implantation (chronic state). Behavioral tests involving the use of forelimbs are performed. Immunofluorescence studies evidence that rGO-MFs scaffolds foster the presence of neuronal structures along with blood vessels both within the epicenter and in the surroundings of the lesion area. Moreover, the inflammatory response does not worsen by the presence of this material. These findings outline the potential of rGO-MF-based scaffolds to promote regenerative features at the injured spinal cord such as axonal and vascular growth. Further studies including biological functionalization might improve their therapeutic potential by a synergistic effect of topographical and chemical cues, thus boosting neural repair after SCI.
Collapse
Affiliation(s)
- Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Ankor González-Mayorga
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos (HNP), Servicio de Salud de Castilla-La Mancha (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Elisa López-Dolado
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos (HNP), Servicio de Salud de Castilla-La Mancha (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain.,Research Unit of "Design and Development of Biomaterials for Neural Regeneration", HNP-SESCAM, Joint Research Unit with CSIC, 45071 Toledo, Spain
| | - Carmen Munuera
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Mar García-Hernández
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
24
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
25
|
Wang Y, Jiao J, Ren P, Wu M. Upregulation of miRNA-223-3p ameliorates RIP3-mediated necroptosis and inflammatory responses via targeting RIP3 after spinal cord injury. J Cell Biochem 2019; 120:11582-11592. [PMID: 30821011 DOI: 10.1002/jcb.28438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Spinal cord injury (SCI) has been a major burden on the society because of the high rate of disability. Receptor-interacting protein 3 (RIP3)-mediated necroptosis is a newly discovered pathway of programmed cell death and is involved in multiple pathologies of various human diseases. Micro RNAs (miRNAs) have been shown to be a potential target for therapeutic interventions after SCI. The aim of the present study is to explore the potential role of miR-223-3p and possible mechanism in SCI. We found that miR-223-3p was significantly downregulated in spinal neurons after H2 O 2 -induced damage, while RIP3-mediated necroptosis was elevated. Accordingly, RIP3-mediated necroptosis and the inflammatory factor secretion could be significantly inhibited by Nec-1 treatment. In adittion, overexpression of miR-223-3p in spinal neurons protected against H 2 O 2 -induced necroptosis, and ablation of miR-223-3p exhibited the opposite effect. We found that miR-223-3p bound to the 3'-untranslated region of RIP3 mRNA to negatively regulate the expression of RIP3. Moreover, the activated RIP3 reversed the inhibition of RIP3 and MLKL expression and the levels of TNF-α, IL-1β, and lactate dehydrogenase, which were induced by transfection with miR-223-3p in a H 2 O 2 -induced model. Finally, these results indicate that miR-223-3p negatively regulates the RIP3 necroptotic signaling cascades and inflammatory factor secretion, which significantly relieves injury of spinal neurons. The miR-223-3p/RIP3 pathway offers a novel therapeutic target for the protection of spinal neurons after SCI.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Pengfei Ren
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
26
|
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. Int J Mol Sci 2019; 20:ijms20112698. [PMID: 31159345 PMCID: PMC6600381 DOI: 10.3390/ijms20112698] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) constitutes an inestimable public health issue. The most crucial phase in the pathophysiological process of SCI concerns the well-known secondary injury, which is the uncontrolled and destructive cascade occurring later with aberrant molecular signaling, inflammation, vascular changes, and secondary cellular dysfunctions. The use of mesenchymal stem cells (MSCs) represents one of the most important and promising tested strategies. Their appeal, among the other sources and types of stem cells, increased because of their ease of isolation/preservation and their properties. Nevertheless, encouraging promise from preclinical studies was followed by weak and conflicting results in clinical trials. In this review, the therapeutic role of MSCs is discussed, together with their properties, application, limitations, and future perspectives.
Collapse
Affiliation(s)
- Fabio Cofano
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Matteo Monticelli
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Francesco Zenga
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Ducati
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
27
|
Mohammadshirazi A, Sadrosadat H, Jaberi R, Zareikheirabadi M, Mirsadeghi S, Naghdabadi Z, Ghaneezabadi M, Fardmanesh M, Baharvand H, Kiani S. Combinational therapy of lithium and human neural stem cells in rat spinal cord contusion model. J Cell Physiol 2019; 234:20742-20754. [PMID: 31004353 DOI: 10.1002/jcp.28680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
A large number of treatment approaches have been used for spinal cord injury improvement, a medically incurable disorder, and subsequently stem cell transplantation appears to be a promising strategy. The main objective of this study is to ascertain whether combinational therapy of human neural stem cells (hNSCs) together with lithium chloride improves cell survival, proliferation, and differentiation in a rat spinal contusion model, or not. Contusive spinal cord injury was implemented on Wistar male rats. Experimental groups comprised of: control, hNSCs transplanted, lithium chloride (Li), and hNSCs and lithium chloride (hNSCs + Li). In every experimental group, locomotor activity score and motor evoked potential (MEP) were performed to evaluate motor recovery as well as histological assessments to determine mechanisms of improvement. In accordance with our results, the hNSCs + Li and the Li groups showed significant improvement in locomotor scores and MEP. Also, Histological assessments revealed that transplanted hNSCs are capable of differentiation and migration along the spinal cord. Although NESTIN-positive cells were proliferated significantly in the Lithium group in comparison with control and the hNSCs + Li groups, the quantity of ED1 cells in the hNSCs + Li was significantly larger than the other two groups. Our results demonstrate that combinational therapy of hNSCs with lithium chloride and lithium chloride individually are adequate for ameliorating more than partial functional recovery and endogenous repair in spinal cord-injured rats.
Collapse
Affiliation(s)
- Atiyeh Mohammadshirazi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Hoda Sadrosadat
- Department of Physiology, Tarbiat Modarres University, Tehran, Iran
| | - Razieh Jaberi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Masoomeh Zareikheirabadi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Mirsadeghi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Naghdabadi
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mahdieh Ghaneezabadi
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mehdi Fardmanesh
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sahar Kiani
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Jin H, Zhang YT, Yang Y, Wen LY, Wang JH, Xu HY, Lai BQ, Feng B, Che MT, Qiu XC, Li ZL, Wang LJ, Ruan JW, Jiang B, Zeng X, Deng QW, Li G, Ding Y, Zeng YS. Electroacupuncture Facilitates the Integration of Neural Stem Cell-Derived Neural Network with Transected Rat Spinal Cord. Stem Cell Reports 2019; 12:274-289. [PMID: 30661994 PMCID: PMC6373172 DOI: 10.1016/j.stemcr.2018.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
The hostile environment of an injured spinal cord makes it challenging to achieve higher viability in a grafted tissue-engineered neural network used to reconstruct the spinal cord circuit. Here, we investigate whether cell survival and synaptic transmission within an NT-3 and TRKC gene-overexpressing neural stem cell-derived neural network scaffold (NN) transplanted into transected spinal cord could be promoted by electroacupuncture (EA) through improving the microenvironment. Our results showed that EA facilitated the cell survival, neuronal differentiation, and synapse formation of a transplanted NN. Pseudorabies virus tracing demonstrated that EA strengthened synaptic integration of the transplanted NN with the host neural circuit. The combination therapy also promoted axonal regeneration, spinal conductivity, and functional recovery. The findings highlight EA as a potential and safe supplementary therapeutic strategy to reinforce the survival and synaptogenesis of a transplanted NN as a neuronal relay to bridge the two severed ends of an injured spinal cord. EA promotes the survival and synapse formation of NSC-derived neurons in grafted NN EA strengthens synaptic integration of grafted NN with the spinal cord neural circuit EA enhances NT-3 level and activates NT-3/TRKC/AKT pathway in the injury/graft site The combination therapy increases axonal regeneration and spinal functional recovery
Collapse
Affiliation(s)
- Hui Jin
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yu-Ting Zhang
- Center of Reproductive Medicine of Shunde Hospital, Southern Medical University, Shunde, Guangdong 528300, China
| | - Yang Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan-Yu Wen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun-Hua Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Bi-Qin Lai
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue-Cheng Qiu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Ling Li
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lai-Jian Wang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Ruan
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Wen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ge Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
29
|
Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A. Minimally Invasive and Regenerative Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804041. [PMID: 30565732 PMCID: PMC6709364 DOI: 10.1002/adma.201804041] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Indexed: 05/03/2023]
Abstract
Advances in biomaterial synthesis and fabrication, stem cell biology, bioimaging, microsurgery procedures, and microscale technologies have made minimally invasive therapeutics a viable tool in regenerative medicine. Therapeutics, herein defined as cells, biomaterials, biomolecules, and their combinations, can be delivered in a minimally invasive way to regenerate different tissues in the body, such as bone, cartilage, pancreas, cardiac, skeletal muscle, liver, skin, and neural tissues. Sophisticated methods of tracking, sensing, and stimulation of therapeutics in vivo using nano-biomaterials and soft bioelectronic devices provide great opportunities to further develop minimally invasive and regenerative therapeutics (MIRET). In general, minimally invasive delivery methods offer high yield with low risk of complications and reduced costs compared to conventional delivery methods. Here, minimally invasive approaches for delivering regenerative therapeutics into the body are reviewed. The use of MIRET to treat different tissues and organs is described. Although some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients. Finally, some future perspective and challenges for this emerging field are highlighted.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mario El Tahchi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- LBMI, Department of Physics, Lebanese University - Faculty of Sciences 2, PO Box 90656, Jdeidet, Lebanon
| | - Junmin Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Kasinan Suthiwanich
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Amir Sheikhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Rahmi Oklu
- Division of Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Rodríguez Sánchez DN, de Lima Resende LA, Boff Araujo Pinto G, de Carvalho Bovolato AL, Possebon FS, Deffune E, Amorim RM. Canine Adipose-Derived Mesenchymal Stromal Cells Enhance Neuroregeneration in a Rat Model of Sciatic Nerve Crush Injury. Cell Transplant 2019; 28:47-54. [PMID: 30369261 PMCID: PMC6322136 DOI: 10.1177/0963689718809045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022] Open
Abstract
Crush injuries in peripheral nerves are frequent and induce long-term disability with motor and sensory deficits. Due to axonal and myelin sheath disruptions, strategies for optimized axonal regeneration are needed. Multipotent mesenchymal stromal cells (MSC) are promising because of their anti-inflammatory properties and secretion of neurotrophins. The present study investigated the effect of canine adipose tissue MSC (Ad-MSC) transplantation in an experimental sciatic nerve crush injury. Wistar rats were divided into three groups: sham ( n = 8); Crush+PBS ( n = 8); Crush+MSC ( n = 8). Measurements of sciatic nerve functional index (SFI), muscle mass, and electromyography (EMG) were performed. Canine Ad-MSC showed mesodermal characteristics (CD34-, CD45-, CD44+, CD90+ and CD105+) and multipotentiality due to chondrogenic, adipogenic, and osteogenic differentiation. SFI during weeks 3 and 4 was significantly higher in the Crush+MSC group ( p < 0.001). During week 4, the EMG latency in the Crush+MSC groups had better near normality ( p < 0.05). The EMG amplitude showed results close to normality during week 4 in the Crush+MSC group ( p < 0.04). There were no statistical differences in muscle weight between the groups ( p > 0.05), but there was a tendency toward weight gain in the Crush+MSC groups. Better motor functional recovery after crush and perineural canine Ad-MSC transplantation was observed during week 2. This was maintained till week 4. In conclusion, the canine Ad-MSC transplantation showed early pro-regenerative effects between 2-4 weeks in the rat model of sciatic nerve crush injury.
Collapse
Affiliation(s)
- Diego Noé Rodríguez Sánchez
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), São Paulo, Brazil
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University (UNESP), São Paulo, Brazil
| | - Luiz Antonio de Lima Resende
- Department of Neurology and Psychiatry, Botucatu Medical School, São Paulo State University (UNESP), São Paulo, Brazil
| | - Giovana Boff Araujo Pinto
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), São Paulo, Brazil
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University (UNESP), São Paulo, Brazil
| | - Ana Lívia de Carvalho Bovolato
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University (UNESP), São Paulo, Brazil
| | - Fábio Sossai Possebon
- Department of Veterinary Hygiene and Public Health, College of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), São Paulo, Brazil
| | - Elenice Deffune
- Blood Transfusion Center, Cell Engineering Laboratory, Botucatu Medical School, São Paulo State University (UNESP), São Paulo, Brazil
| | - Rogério Martins Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
31
|
Zhang Z, Wang F, Song M. The cell repair research of spinal cord injury: a review of cell transplantation to treat spinal cord injury. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Through retrospective analysis of the literature on the cell repair of spinal cord injury worldwide, it is found that the mechanism of cell transplantation repairing spinal cord injury is mainly to replace damaged neurons, protect host neurons, prevent apoptosis, promote axonal regeneration and synapse formation, promote myelination, and secrete trophic factors or growth factors to improve microenvironment. A variety of cells are used to repair spinal cord injury. Stem cells include multipotent stem cells, embryonic stem cells, and induced pluripotent stem cells. The multipotent stem cells are mainly various types of mesenchymal stem cells and neural stem cells. Non-stem cells include olfactory ensheathing cells and Schwann cells. Transplantation of inhibitory interneurons to alleviate neuropathic pain in patients is receiving widespread attention. Different types of cell transplantation have their own advantages and disadvantages, and multiple cell transplantation may be more helpful to the patient’s functional recovery. These cells have certain effects on the recovery of neurological function and the improvement of complications, but further exploration is needed in clinical application. The application of a variety of cell transplantation, gene technology, bioengineering and other technologies has made the prospect of cell transplantation more extensive. There is a need to find a safe and effective comprehensive treatment to maximize and restore the patient’s performance.
Collapse
|
32
|
Muniswami DM, Tharion G. Functional Recovery Following the Transplantation of Olfactory Ensheathing Cells in Rat Spinal Cord Injury Model. Asian Spine J 2018; 12:998-1009. [PMID: 30322257 PMCID: PMC6284116 DOI: 10.31616/asj.2018.12.6.998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/17/2018] [Indexed: 01/25/2023] Open
Abstract
Study Design Olfactory ensheathing cells (OECs) from rat olfactory mucosa were cultured, characterized, and transplanted into a rat model of spinal cord injury (SCI). Purpose To evaluate different doses of OECs in a rat model of SCI. Overview of Literature SCI causes permanent functional deficit because the central nervous system lacks the ability to perform spontaneous repair. Cell therapy strategies are being explored globally. The clinical use of human embryonic stem cell is hampered by ethical controversies. Alternatively, OECs are a promising cell source for neurotransplantation. This study aimed to evaluate the efficacy of different doses of allogenic OEC transplantation in a rat model of SCI. Methods OECs were cultured from the olfactory mucosa of Albino Wistar rats; these cells were characterized using immunohistochemistry and flow cytometry. Rats were divided into five groups (n=6 rats each). In each group, different dosage (2×105, 5×105, 10×105, and >10×105) of cultured cells were transplanted into experimentally injured spinal cords of rat models. However, in the SCI group, only DMEM (Dulbecco’s modified Eagle's medium) was injected. Rats were followed up upto 8 weeks post-transplantation. The outcome of transplantation was assessed using the Basso, Beattie, Bresnahan (BBB) scale; motor-evoked potential studies; and histological examination. Results Cultured cells expressed 41% of p75NTR, a marker for OEC, and 35% of anti-fibronectin, a marker for olfactory nerve fibroblast. These cells also expressed S100β and glial fibrillary acid protein of approximately 75% and 83%, respectively. All the transplanted groups showed promising BBB scores for hind-limb motor recovery compared with the SCI group (p<0.05). A motor-evoked potential study showed increased amplitude in all the treated groups compared with the SCI. Green fluorescent protein-labeled cells survived in the injured cord, suggesting their role in the transplantation-mediated repair. Transplantation of 5×105 cells showed the best motor outcomes among all the doses. Conclusions OECs demonstrated a therapeutic effect in rat models with the potential for future clinical applications.
Collapse
Affiliation(s)
- Durai Murugan Muniswami
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| | - George Tharion
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| |
Collapse
|
33
|
Lai B, Feng B, Che M, Wang L, Cai S, Huang M, Gu H, Jiang B, Ling E, Li M, Zeng X, Zeng Y. A Modular Assembly of Spinal Cord-Like Tissue Allows Targeted Tissue Repair in the Transected Spinal Cord. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800261. [PMID: 30250785 PMCID: PMC6145267 DOI: 10.1002/advs.201800261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/08/2018] [Indexed: 05/02/2023]
Abstract
Tissue engineering-based neural construction holds promise in providing organoids with defined differentiation and therapeutic potentials. Here, a bioengineered transplantable spinal cord-like tissue (SCLT) is assembled in vitro by simulating the white matter and gray matter composition of the spinal cord using neural stem cell-based tissue engineering technique. Whether the organoid would execute targeted repair in injured spinal cord is evaluated. The integrated SCLT, assembled by white matter-like tissue (WMLT) module and gray matter-like tissue (GMLT) module, shares architectural, phenotypic, and functional similarities to the adult rat spinal cord. Organotypic coculturing with the dorsal root ganglion or muscle cells shows that the SCLT embraces spinal cord organogenesis potentials to establish connections with the targets, respectively. Transplantation of the SCLT into the transected spinal cord results in a significant motor function recovery of the paralyzed hind limbs in rats. Additionally, targeted spinal cord tissue repair is achieved by the modular design of SCLT, as evidenced by an increased remyelination in the WMLT area and an enlarged innervation in the GMLT area. More importantly, the pro-regeneration milieu facilitates the formation of a neuronal relay by the donor neurons, allowing the conduction of descending and ascending neural inputs.
Collapse
Affiliation(s)
- Bi‐Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Ming‐Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Lai‐Jian Wang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Song Cai
- Department of Human AnatomyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Meng‐Yao Huang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Huai‐Yu Gu
- Department of Human AnatomyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Bing Jiang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Eng‐Ang Ling
- Department of AnatomyYong Loo Lin School of MedicineNational University of SingaporeSingapore117594Singapore
| | - Meng Li
- Neuroscience and Mental Health Research InstituteSchool of MedicineCardiff UniversityCardiffCF24 4HQUK
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Yuan‐Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| |
Collapse
|
34
|
Wu Q, Wang Q, Li Z, Li X, Zang J, Wang Z, Xu C, Gong Y, Cheng J, Li H, Shen G, Dong C. Human menstrual blood-derived stem cells promote functional recovery in a rat spinal cord hemisection model. Cell Death Dis 2018; 9:882. [PMID: 30158539 PMCID: PMC6115341 DOI: 10.1038/s41419-018-0847-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Abstract
Spinal cord injury (SCI) is associated with a dismal prognosis including severe voluntary motor and sensory deficits in the presence of the current therapies, thus new and efficient treatment strategies are desperately required. Along with several advantages, such as easy accessibility, high-yield, potential of enormous proliferation, menstrual blood-derived mesenchymal stem cells (MenSCs) have been proposed as a promising strategy in regeneration medicine. In this study, the MenSCs were transplanted into incomplete thoracic (T10) spinal cord injury (SCI) rats, all rats were sacrificed at 7, 14, and 28 days after surgery. Based on the results, we found that MenSCs transplantation improved the hind limb motor function. Besides, H&E staining showed that MenSCs treatment markedly reduced cavity formation in the lesion site. Furthermore, treatment by MenSCs showed more MAP2-positive mature neurons, as well as axonal regeneration manifested by NF-200 and less expression of chondroitin sulfate proteoglycans (CSPGs) than the non-treatment in the lesion site. Additionally, immunofluorescence, Western blot, and qRT-PCR methods showed that levels of brain-derived neurotrophic factor (BDNF) were significantly higher in the injured spinal cord after implantation of MenSCs. Results of qRT-PCR indicated that inflammatory factors, including TNF-α and IL-1β were inhibited after MenSCs transplantation. The improved motor function of hind limb and the increased cell body area of motor neurons were suppressed by blocking of the BDNF-TrkB signaling. It was eventually revealed that MenSCs implantation had beneficial therapeutic effects on the rehabilitation of the rat spinal cord hemisection model, mainly by enhancing the expression of BDNF. MenSCs transplantation may provide a novel therapeutic strategy for patients with SCI in the future.
Collapse
Affiliation(s)
- Qinfeng Wu
- Department of Anatomy, Medical School of Nantong University, Laboratory Animal Center of Nantong University, Nantong, Jiangsu Province, 226001, China.,Department of Rehabilitation Medicine, Suzhou Hospital affiliated to Nanjing Medical University, Suzhou Science & Technology Town Hospital, 215153, Suzhou, Jiangsu Province, China
| | - Qinghua Wang
- Department of Anatomy, Medical School of Nantong University, Laboratory Animal Center of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Zhangjie Li
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu Province, China.,Department of Rehabilitation Medicine, Zhangjiagang First People's Hospital, 215600, Zhangjiagang, Jiangsu Province, China
| | - Xiangzhe Li
- Department of Rehabilitation Medicine, Suzhou Hospital affiliated to Nanjing Medical University, Suzhou Science & Technology Town Hospital, 215153, Suzhou, Jiangsu Province, China
| | - Jing Zang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu Province, China
| | - Zhangwei Wang
- Department of Anatomy, Medical School of Nantong University, Laboratory Animal Center of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Chen Xu
- Department of Anatomy, Medical School of Nantong University, Laboratory Animal Center of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yujia Gong
- Department of Anatomy, Medical School of Nantong University, Laboratory Animal Center of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Jiaqi Cheng
- Department of Anatomy, Medical School of Nantong University, Laboratory Animal Center of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Haoming Li
- Department of Anatomy, Medical School of Nantong University, Laboratory Animal Center of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Guangyu Shen
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu Province, China
| | - Chuanming Dong
- Department of Anatomy, Medical School of Nantong University, Laboratory Animal Center of Nantong University, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
35
|
Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X, Zhou H, Ning G, Kong X, Feng S. Microenvironment Imbalance of Spinal Cord Injury. Cell Transplant 2018; 27:853-866. [PMID: 29871522 PMCID: PMC6050904 DOI: 10.1177/0963689718755778] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI), for which there currently is no cure, is a heavy burden on
patient physiology and psychology. The microenvironment of the injured spinal cord is
complicated. According to our previous work and the advancements in SCI research,
‘microenvironment imbalance’ is the main cause of the poor regeneration and recovery of
SCI. Microenvironment imbalance is defined as an increase in inhibitory factors and
decrease in promoting factors for tissues, cells and molecules at different times and
spaces. There are imbalance of hemorrhage and ischemia, glial scar formation,
demyelination and re-myelination at the tissue’s level. The cellular level imbalance
involves an imbalance in the differentiation of endogenous stem cells and the
transformation phenotypes of microglia and macrophages. The molecular level includes an
imbalance of neurotrophic factors and their pro-peptides, cytokines, and chemokines. The
imbalanced microenvironment of the spinal cord impairs regeneration and functional
recovery. This review will aid in the understanding of the pathological processes involved
in and the development of comprehensive treatments for SCI.
Collapse
Affiliation(s)
- Baoyou Fan
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijian Wei
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Yao
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guidong Shi
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Cheng
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianhu Zhou
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengxing Zhou
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangzhi Ning
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Kong
- 2 Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
| | - Shiqing Feng
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
36
|
Wang L, Shi Q, Dai J, Gu Y, Feng Y, Chen L. Increased vascularization promotes functional recovery in the transected spinal cord rats by implanted vascular endothelial growth factor-targeting collagen scaffold. J Orthop Res 2018; 36:1024-1034. [PMID: 28786500 DOI: 10.1002/jor.23678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/01/2017] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) is global health concern. The effective strategies for SCI are relevant to the improvement on nerve regeneration microenvironment. Vascular endothelial growth factor (VEGF) is an important cytokine for inducing angiogenesis and accelerating nerve system function recovery from injury. We proposed that VEGF could improve nerve regeneration in SCI. However, an uncontrolled delivery system target to injury site not only decreases the therapeutic efficacy but also increases the risk of tumor information. We implanted collagen scaffold (CS) targeted with a constructed protein, collagen-binding VEGF (CBD-VEGF), to bridge transected spine cord gap in a rat transected SCI model. Functional and histological examinations were conducted to assess the repair capacity of the delivery system CS/CBD-VEGF. The results indicated that the implantation of CS/CBD-VEGF into the model rats improved the survival rate and exerted beneficial effect on functional recovery. The controlled intervention improved the microenvironment, guided axon growth, and promoted neovascularization at the injury site. Therefore, the delivery system with stable binding of VEGF potentially provides a better therapeutic option for SCI. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1024-1034, 2018.
Collapse
Affiliation(s)
- Lingjun Wang
- Department of Orthopedic, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Qin Shi
- Department of Orthopedic, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Institute of Genetics and Developmental Biology, Beijing, 100000, P.R. China
| | - Yong Gu
- Department of Orthopedic, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Yu Feng
- Department of Orthopedic, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Liang Chen
- Department of Orthopedic, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| |
Collapse
|
37
|
Liu S, Schackel T, Weidner N, Puttagunta R. Biomaterial-Supported Cell Transplantation Treatments for Spinal Cord Injury: Challenges and Perspectives. Front Cell Neurosci 2018; 11:430. [PMID: 29375316 PMCID: PMC5768640 DOI: 10.3389/fncel.2017.00430] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI), resulting in para- and tetraplegia caused by the partial or complete disruption of descending motor and ascending sensory neurons, represents a complex neurological condition that remains incurable. Following SCI, numerous obstacles comprising of the loss of neural tissue (neurons, astrocytes, and oligodendrocytes), formation of a cavity, inflammation, loss of neuronal circuitry and function must be overcome. Given the multifaceted primary and secondary injury events that occur with SCI treatment options are likely to require combinatorial therapies. While several methods have been explored, only the intersection of two, cell transplantation and biomaterial implantation, will be addressed in detail here. Owing to the constant advance of cell culture technologies, cell-based transplantation has come to the forefront of SCI treatment in order to replace/protect damaged tissue and provide physical as well as trophic support for axonal regrowth. Biomaterial scaffolds provide cells with a protected environment from the surrounding lesion, in addition to bridging extensive damage and providing physical and directional support for axonal regrowth. Moreover, in this combinatorial approach cell transplantation improves scaffold integration and therefore regenerative growth potential. Here, we review the advances in combinatorial therapies of Schwann cells (SCs), astrocytes, olfactory ensheathing cells (OECs), mesenchymal stem cells, as well as neural stem and progenitor cells (NSPCs) with various biomaterial scaffolds.
Collapse
Affiliation(s)
- Shengwen Liu
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Thomas Schackel
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Radhika Puttagunta
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
38
|
Vismara I, Papa S, Rossi F, Forloni G, Veglianese P. Current Options for Cell Therapy in Spinal Cord Injury. Trends Mol Med 2017; 23:831-849. [PMID: 28811172 DOI: 10.1016/j.molmed.2017.07.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a complex pathology that evolves after primary acute mechanical injury, causing further damage to the spinal cord tissue that exacerbates clinical outcomes. Based on encouraging results from preclinical experiments, some cell treatments being translated into clinical practice demonstrate promising and effective improvement in sensory/motor function. Combinatorial treatments of cell and drug/biological factors have been demonstrated to be more effective than cell treatments alone. Recent advances have led to the development of biomaterials aiming to promote in situ cell delivery for SCI, together with combinatorial strategies using drugs/biomolecules to achieve a maximized multitarget approach. This review provides an overview of single and combinatorial regenerative cell treatments as well as potential delivery options to treat SCI.
Collapse
Affiliation(s)
- Irma Vismara
- Dipartimento di Neuroscienze, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milano, Italy; These authors contributed equally to this work
| | - Simonetta Papa
- Dipartimento di Neuroscienze, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milano, Italy; These authors contributed equally to this work
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica 'Giulio Natta', Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Gianluigi Forloni
- Dipartimento di Neuroscienze, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milano, Italy
| | - Pietro Veglianese
- Dipartimento di Neuroscienze, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156 Milano, Italy.
| |
Collapse
|
39
|
Abstract
Spinal cord injury (SCI) represents one of the most complicated and heterogeneous pathological processes of central nervous system (CNS) impairments, which is still beyond functional regeneration. Transplantation of mesenchymal stem cells (MSCs) has been shown to promote the repair of the injured spinal cord tissues in animal models, and therefore, there is much interest in the clinical use of these cells. However, many questions which are essential to improve the therapy effects remain unanswered. For instance, the functional roles and related molecular regulatory mechanisms of MSCs in vivo are not yet completely determined. It is important for transplanted cells to migrate into the injured tissue, to survive and undergo neural differentiation, or to play neural protection roles by various mechanisms after SCI. In this review, we will focus on some of the recent knowledge about the biological behavior and function of MSCs in SCI. Meanwhile, we highlight the function of biomaterials to direct the behavior of MSCs based on our series of work on silk fibroin biomaterials and attempt to emphasize combinational strategies such as tissue engineering for functional improvement of SCI.
Collapse
|
40
|
Kim DK, Kweon KJ, Kim P, Kim HJ, Kim SS, Sohn NW, Maeng S, Shin JW. Ginsenoside Rg3 Improves Recovery from Spinal Cord Injury in Rats via Suppression of Neuronal Apoptosis, Pro-Inflammatory Mediators, and Microglial Activation. Molecules 2017; 22:molecules22010122. [PMID: 28085110 PMCID: PMC6155773 DOI: 10.3390/molecules22010122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/04/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most devastating medical conditions; however, currently, there are no effective pharmacological interventions for SCI. Ginsenoside Rg3 (GRg3) is one of the protopanaxadiols that show anti-inflammatory, anti-oxidant, and neuroprotective effects. The present study investigated the neuroprotective effect of GRg3 following SCI in rats. SCI was induced using a static compression model at vertebral thoracic level 10 for 5 min. GRg3 was administrated orally at a dose of 10 or 30 mg/kg/day for 14 days after the SCI. GRg3 (30 mg/kg) treatment markedly improved behavioral motor functions, restored lesion size, preserved motor neurons in the spinal tissue, reduced Bax expression and number of TUNEL-positive cells, and suppressed mRNA expression of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. GRg3 also attenuated the over-production of cyclooxygenase-2 and inducible nitric oxide synthase after SCI. Moreover, GRg3 markedly suppressed microglial activation in the spinal tissue. In conclusion, GRg3 treatment led to a remarkable recovery of motor function and a reduction in spinal tissue damage by suppressing neuronal apoptosis and inflammatory responses after SCI. These results suggest that GRg3 may be a potential therapeutic agent for the treatment of SCI.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Ki-Jung Kweon
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Pyungsoo Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Hee-Jung Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Sung-Soo Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Nak-Won Sohn
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Sungho Maeng
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Jung-Won Shin
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| |
Collapse
|