1
|
Brown MR, Abbott RJ, Twyford AD. The emerging importance of cross-ploidy hybridisation and introgression. Mol Ecol 2024; 33:e17315. [PMID: 38501394 DOI: 10.1111/mec.17315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Natural hybridisation is now recognised as pervasive in its occurrence across the Tree of Life. Resurgent interest in natural hybridisation fuelled by developments in genomics has led to an improved understanding of the genetic factors that promote or prevent species cross-mating. Despite this body of work overturning many widely held assumptions about the genetic barriers to hybridisation, it is still widely thought that ploidy differences between species will be an absolute barrier to hybridisation and introgression. Here, we revisit this assumption, reviewing findings from surveys of polyploidy and hybridisation in the wild. In a case study in the British flora, 203 hybrids representing 35% of hybrids with suitable data have formed via cross-ploidy matings, while a wider literature search revealed 59 studies (56 in plants and 3 in animals) in which cross-ploidy hybridisation has been confirmed with genetic data. These results show cross-ploidy hybridisation is readily overlooked, and potentially common in some groups. General findings from these studies include strong directionality of hybridisation, with introgression usually towards the higher ploidy parent, and cross-ploidy hybridisation being more likely to involve allopolyploids than autopolyploids. Evidence for adaptive introgression across a ploidy barrier and cases of cross-ploidy hybrid speciation shows the potential for important evolutionary outcomes.
Collapse
Affiliation(s)
- Max R Brown
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Alex D Twyford
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- Royal Botanical Garden Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Fiorini CF, de Camargo Smidt E, Lacey Knowles L, Leite Borba E. Hybridization boosters diversification in a Neotropical Bulbophyllum (Orchidaceae) group. Mol Phylogenet Evol 2023:107858. [PMID: 37329930 DOI: 10.1016/j.ympev.2023.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Genetic data shows that cryptic hybrids are more common than previously thought and that hybridization and introgression are widespread processes. Regardless, studies on hybridization are scarce for the highly speciose Bulbophyllum. The genus presents more than 2,200 species and many examples of recent radiations, in which hybridization is expected to be frequent. Currently, only four natural Bulbophyllum hybrids are recognized, all of them recently described based on morphological evidence. Here we test whether genomic evidence supports the hybrid status of two Neotropical Bulbophyllum species, while also evaluating the impact of this phenomenon on the genomes of the putative parental species. We also assess if there is evidence of hybridization among B. involutum and B. exaltatum, sister species that diverged recently. We leverage the power of next-generation sequence data, associated with model-based analysis for three systems putatively constituted by two parental species and one hybrid. All taxa belong to the Neotropical B. sect. Didactyle clade. We found evidence of hybridization in all studied systems. Despite the occurrence of hybridization, there are no signs of backcrossing. Because of the high propensity of hybridization across many taxa, the common occurrence of hybridization during the evolutionary history of B. sect. Didactyle means it is time to account for and examine its evolutionary role in these orchids.
Collapse
Affiliation(s)
- Cecilia F Fiorini
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil; Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Eric de Camargo Smidt
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Paraná, 81531-990, Brazil.
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109-1085, USA.
| | - Eduardo Leite Borba
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
3
|
Sawangproh W, Hedenäs L, Lang AS, Hansson B, Cronberg N. Gene transfer across species boundaries in bryophytes: evidence from major life cycle stages in Homalothecium lutescens and H. sericeum. ANNALS OF BOTANY 2020; 125:565-579. [PMID: 31872857 PMCID: PMC7102947 DOI: 10.1093/aob/mcz209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/20/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS The mosses Homalothecium lutescens and H. sericeum are genetically, morphologically and ecologically differentiated; mixed populations sometimes occur. In sympatric populations, intermediate character states among gametophytes and sporophytes have been observed, suggesting hybridization and introgression in such populations. METHODS We determined genotypes using bi-allelic co-dominant single nucleotide polymorphism (SNP) markers, specific to either H. lutescens or H. sericeum, to estimate the degree of genetic mixing in 449 moss samples collected from seven sympatric and five allopatric populations on the island of Öland, south Sweden. The samples represented three generations: haploid maternal gametophytes; diploid sporophytes; and haploid sporelings. KEY RESULTS Admixture analyses of SNP genotypes identified a majority as pure H. lutescens or H. sericeum, but 76 samples were identified as mildly admixed (17 %) and 17 samples (3.8 %) as strongly admixed. Admixed samples were represented in all three generations in several populations. Hybridization and introgression were bidirectional. CONCLUSIONS Our results demonstrate that admixed genomes are transferred between the generations, so that the populations behave as true hybrid zones. Earlier studies of sympatric bryophyte populations with admixed individuals have not been able to show that admixed alleles are transferred beyond the first generation. The presence of true hybrid zones has strong evolutionary implications because genetic material transferred across species boundaries can be directly exposed to selection in the long-lived haploid generation of the bryophyte life cycle, and contribute to local adaptation, long-term survival and speciation.
Collapse
Affiliation(s)
- W Sawangproh
- Biodiversity, Department of Biology, Lund University, Lund, Sweden
- Division of Conservation Biology, School of Interdisciplinary Studies, Mahidol University (Kanchanaburi Campus), Kanchanaburi Province, Thailand
| | - L Hedenäs
- Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden
| | - A S Lang
- Biodiversity, Department of Biology, Lund University, Lund, Sweden
| | - B Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - N Cronberg
- Biodiversity, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Nikishina TV, Kozlova ON, Levitskaya GE, Vysotskaya ON. Study of Dactylorhiza Seeds (D. baltica and D. maculata) from the Orchid Collection of the Cryobank at Timiryazev Institute of Plant Physiology, Russian Academy of Sciences. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019030063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Jacquemyn H, van der Meer S, Brys R. The impact of hybridization on long-term persistence of polyploid Dactylorhiza species. AMERICAN JOURNAL OF BOTANY 2016; 103:1829-1837. [PMID: 27793859 DOI: 10.3732/ajb.1600274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Hybridization may pose severe threats to the long-term survival of the parental taxa through introgression and the formation of hybrid swarms. However, when the resulting hybrids show strong male and female sterility, backcrossing and introgression are unlikely to occur, but the parental species may suffer from reduced male and female fitness. METHODS We assessed the impact of hybridization on the long-term persistence of two food-deceptive orchids in the genus Dactylorhiza (the common Dactylorhiza maculata and the rare D. sphagnicola). The extent of hybridization was investigated using both molecular markers and morphometric measurements. To determine the strength of postmating reproductive isolation, hand pollinations were conducted between pure and hybrid individuals. Finally, fruit set and seed viability of open-pollinated plants were determined in sympatric and allopatric populations to investigate the impact of hybridization on the reproductive output of the pure parental species. KEY RESULTS Our results showed that postmating reproductive isolation was weak and that hybridization occurred frequently within the studied sympatric population. Although hybrids were characterized by very low female fitness, mainly because of strongly reduced seed viability, backcrossing appeared to occur and was asymmetric toward the rare D. sphagnicola. Fruit set and seed viability of open-pollinated plants were also significantly lower in the sympatric population than in the allopatric populations, indicating that hybridization and ongoing introgression incurred fitness costs in the pure parental species. CONCLUSIONS Overall, our results suggest that extensive hybridization can affect the long-term viability of the parental species through the combined effect of introgression following interspecific hybrid fertilization and reduced fitness of the parental species.
Collapse
Affiliation(s)
- Hans Jacquemyn
- KU Leuven, Biology Department, Plant Population and Conservation Biology, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium
| | - Sascha van der Meer
- KU Leuven, Biology Department, Plant Population and Conservation Biology, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium
| | - Rein Brys
- Research Institute for Nature and Forest, Kliniekstraat 25, B-1070 Brussels, Belgium
| |
Collapse
|
6
|
Pinheiro F, Zanfra de Melo E Gouveia TM, Cozzolino S, Cafasso D, Cardoso-Gustavson P, Suzuki RM, Palma-Silva C. Strong but permeable barriers to gene exchange between sister species of Epidendrum. AMERICAN JOURNAL OF BOTANY 2016; 103:1472-1482. [PMID: 27519428 DOI: 10.3732/ajb.1600064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY The investigation of reproductive barriers between sister species can provide insights into how new lineages arise, and how species integrity is maintained in the face of interspecific gene flow. Different pre- and postzygotic barriers can limit interspecific gene exchange in sympatric populations, and different sources of evidence are often required to investigate the role of multiple reproductive isolation (RI) mechanisms. METHODS We tested the hypothesis of hybridization and potential introgression between Epidendrum secundum and Epidendrum xanthinum, two Neotropical food-deceptive orchid species, using nuclear and plastid microsatellites, experimental crosses, pollen tube growth observations, and genome size estimates. KEY RESULTS A large number of hybrids between E. secundum and E. xanthinum were detected, suggesting weak premating barriers. The low fertility of hybrid plants and the absence of haplotype sharing between parental species indicated strong postmating barriers, reducing interspecific gene exchange and the development of advanced generation hybrids. Despite the strength of reproductive barriers, fertile seeds were produced in some backcrossing experiments, and the existence of interspecific gene exchange could not be excluded. CONCLUSIONS Strong but permeable barriers were found between E. secundum and E. xanthinum. Indeed, haplotype sharing was not detected between parental species, suggesting that introgression is limited by a combination of genic incompatibilities, including negative cytonuclear interactions. Most taxonomic uncertainties in this group were potentially influenced by incomplete RI barriers between species, which mainly occurred sympatrically.
Collapse
Affiliation(s)
- Fábio Pinheiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas 13083-862, Campinas, SP, Brazil Instituto de Botânica, Núcleo de Pesquisa do Orquidário do Estado04301-902, São Paulo, SP, Brazil
| | | | - Salvatore Cozzolino
- Dipartimento di Biologia, Complesso Universitario di Monte S. Ângelo, Università degli Studidi Napoli Federico II 80100 Napoli, Italy Institute for Sustenible Plant Protection, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (FI), Italy
| | - Donata Cafasso
- Dipartimento di Biologia, Complesso Universitario di Monte S. Ângelo, Università degli Studidi Napoli Federico II 80100 Napoli, Italy
| | | | - Rogério Mamoru Suzuki
- Instituto de Botânica, Núcleo de Pesquisa do Orquidário do Estado04301-902, São Paulo, SP, Brazil
| | - Clarisse Palma-Silva
- Departamento de Ecologia, Universidade Estadual Paulista 13506-900, Rio Claro, SP, Brazil
| |
Collapse
|
7
|
Balao F, Tannhäuser M, Lorenzo MT, Hedrén M, Paun O. Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex. Heredity (Edinb) 2016; 116:351-61. [PMID: 26604189 PMCID: PMC4787024 DOI: 10.1038/hdy.2015.98] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/24/2022] Open
Abstract
Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.
Collapse
Affiliation(s)
- F Balao
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - M Tannhäuser
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - M T Lorenzo
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - M Hedrén
- Department of Biology, Lund University, Lund, Sweden
| | - O Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Kim HM, Oh SH, Bhandari GS, Kim CS, Park CW. DNA barcoding of Orchidaceae in Korea. Mol Ecol Resour 2013; 14:499-507. [PMID: 24267156 DOI: 10.1111/1755-0998.12207] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/12/2013] [Accepted: 11/18/2013] [Indexed: 11/26/2022]
Abstract
Species of Orchidaceae are under severe threat of extinction mainly due to overcollection and habitat destruction; accurate identification of orchid species is critical in conservation biology and sustainable utilization of orchids as plant resources. We examined 647 sequences of the cpDNA regions rbcL, matK, atpF-atpH IGS, psbK-psbI IGS and trnH-psbA IGS from 89 orchid species (95 taxa) and four outgroup taxa to develop an efficient DNA barcode for Orchidaceae in Korea. The five cpDNA barcode regions were successfully amplified and sequenced for all chlorophyllous taxa, but the amplification and sequencing of the same regions in achlorophyllous taxa produced variable results. psbK-psbI IGS showed the highest mean interspecific K2P distance (0.1192), followed by matK (0.0803), atpF-atpH IGS (0.0648), trnH-psbA IGS (0.0460) and rbcL (0.0248). The degree of species resolution for individual barcode regions ranged from 60.5% (rbcL) to 83.5% (trnH-psbA IGS). The degree of species resolution was significantly enhanced in multiregion combinations of the five barcode regions. Of the 26 possible combinations of the five regions, six provided the highest degree of species resolution (98.8%). Among these, a combination of atpF-atpH IGS, psbK-psbI IGS and trnH-psbA IGS, which comprises the least number of DNA regions, is the best option for barcoding of the Korean orchid species.
Collapse
Affiliation(s)
- Hye Min Kim
- School of Biological Sciences, Seoul National University, Seoul, 151-747, Korea
| | | | | | | | | |
Collapse
|
9
|
Moraes AP, Chinaglia M, Palma-Silva C, Pinheiro F. Interploidy hybridization in sympatric zones: the formation of Epidendrum fulgens × E. puniceoluteum hybrids (Epidendroideae, Orchidaceae). Ecol Evol 2013; 3:3824-37. [PMID: 24198942 PMCID: PMC3810877 DOI: 10.1002/ece3.752] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 11/11/2022] Open
Abstract
Interspecific hybridization is a primary cause of extensive morphological and chromosomal variation and plays an important role in plant species diversification. However, the role of interploidal hybridization in the formation of hybrid swarms is less clear. Epidendrum encompasses wide variation in chromosome number and lacks strong premating barriers, making the genus a good model for clarifying the role of chromosomes in postzygotic barriers in interploidal hybrids. In this sense, hybrids from the interploidal sympatric zone between E. fulgens (2n = 2x = 24) and E. puniceoluteum (2n = 4x = 56) were analyzed using cytogenetic techniques to elucidate the formation and establishment of interploidal hybrids. Hybrids were not a uniform group: two chromosome numbers were observed, with the variation being a consequence of severe hybrid meiotic abnormalities and backcrossing with E. puniceoluteum. The hybrids were triploids (2n = 3x = 38 and 40) and despite the occurrence of enormous meiotic problems associated with triploidy, the hybrids were able to backcross, producing successful hybrid individuals with broad ecological distributions. In spite of the nonpolyploidization of the hybrid, its formation is a long-term evolutionary process rather than a product of a recent disturbance, and considering other sympatric zones in Epidendrum, these events could be recurrent.
Collapse
Affiliation(s)
- Ana P Moraes
- Laboratório de Biossistemática e Evolução de Plantas, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas/UNICAMP Campinas, São Paulo, Brasil ; Programa de Pós Graduação em Evolução e Diversidade, Universidade Federal do ABC/UFABC Santo André, São Paulo, Brasil
| | | | | | | |
Collapse
|
10
|
Walter A, Studer B, Kölliker R. Advanced phenotyping offers opportunities for improved breeding of forage and turf species. ANNALS OF BOTANY 2012; 110:1271-9. [PMID: 22362662 PMCID: PMC3478040 DOI: 10.1093/aob/mcs026] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/05/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Advanced phenotyping, i.e. the application of automated, high-throughput methods to characterize plant architecture and performance, has the potential to accelerate breeding progress but is far from being routinely used in current breeding approaches. In forage and turf improvement programmes, in particular, where breeding populations and cultivars are characterized by high genetic diversity and substantial genotype × environment interactions, precise and efficient phenotyping is essential to meet future challenges imposed by climate change, growing demand and declining resources. SCOPE This review highlights recent achievements in the establishment of phenotyping tools and platforms. Some of these tools have originally been established in remote sensing, some in precision agriculture, while others are laboratory-based imaging procedures. They quantify plant colour, spectral reflection, chlorophyll-fluorescence, temperature and other properties, from which traits such as biomass, architecture, photosynthetic efficiency, stomatal aperture or stress resistance can be derived. Applications of these methods in the context of forage and turf breeding are discussed. CONCLUSIONS Progress in cutting-edge molecular breeding tools is beginning to be matched by progress in automated non-destructive imaging methods. Joint application of precise phenotyping machinery and molecular tools in optimized breeding schemes will improve forage and turf breeding in the near future and will thereby contribute to amended performance of managed grassland agroecosystems.
Collapse
Affiliation(s)
- Achim Walter
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland.
| | | | | |
Collapse
|
11
|
De Hert K, Honnay O, Jacquemyn H. Germination failure is not a critical stage of reproductive isolation between three congeneric orchid species. AMERICAN JOURNAL OF BOTANY 2012; 99:1884-1890. [PMID: 23132617 DOI: 10.3732/ajb.1200381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PREMISE OF THE STUDY In food-deceptive orchid species, postmating reproductive barriers (fruit set and embryo mortality) have been shown to be more important for reproductive isolation than premating barriers (pollinator isolation). However, currently there is very little knowledge about whether germination failure acts as a reproductive barrier in hybridizing orchid species. METHODS In this study, we investigated germination and protocorm development of pure and hybrid seeds of three species of the orchid genus Dactylorhiza. To test the hypothesis that germination failure contributed to total reproductive isolation, reproductive barriers based on germination were combined with already available data on early acting barriers (fruit set and embryo mortality) to calculate the relative and absolute contributions of these barriers to reproductive isolation. KEY RESULTS Protocorms were formed in all crosses, indicating that both hybrid and pure seeds were able to germinate and grow into protocorms. Also, the number of protocorms per seed packet was not significantly different between hybrid and pure seeds. High fruit set, high seed viability, and substantial seed germination resulted in very low reproductive isolation (average RI = 0.05). In two of six interspecific crosses, hybrids performed even better than the intraspecific crosses. CONCLUSIONS Very weak postmating reproductive barriers were observed between our study species and may explain the frequent occurrence of first-generation hybrids in mixed Dactylorhiza populations. Germination failure, which is regarded as one of the most important bottlenecks in the orchid life cycle, was not important for reproductive isolation.
Collapse
Affiliation(s)
- Koen De Hert
- Biology Department, Laboratory of Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium.
| | | | | |
Collapse
|
12
|
VANDEPITTE K, GRISTINA AS, DE HERT K, MEEKERS T, ROLDÁN-RUIZ I, HONNAY O. Recolonization after habitat restoration leads to decreased genetic variation in populations of a terrestrial orchid. Mol Ecol 2012; 21:4206-15. [DOI: 10.1111/j.1365-294x.2012.05698.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
De hert K, Jacquemyn H, Van Glabeke S, Roldán-Ruiz I, Vandepitte K, Leus L, Honnay O. Reproductive isolation and hybridization in sympatric populations of three Dactylorhiza species (Orchidaceae) with different ploidy levels. ANNALS OF BOTANY 2012; 109:709-20. [PMID: 22186278 PMCID: PMC3286275 DOI: 10.1093/aob/mcr305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 11/11/2011] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS The potential for gene exchange between species with different ploidy levels has long been recognized, but only a few studies have tested this hypothesis in situ and most of them focused on not more than two co-occurring species. In this study, we examined hybridization patterns in two sites containing three species of the genus Dactylorhiza (diploid D. incarnata and D. fuchsii and their allotetraploid derivative D. praetermissa). METHODS To compare the strength of reproductive barriers between diploid species, and between diploid and tetraploid species, crossing experiments were combined with morphometric and molecular analyses using amplified fragment length polymorphism markers, whereas flow cytometric analyses were used to verify the hybrid origin of putative hybrids. KEY RESULTS In both sites, extensive hybridization was observed, indicating that gene flow between species is possible within the investigated populations. Bayesian assignment analyses indicated that the majority of hybrids were F(1) hybrids, but in some cases triple hybrids (hybrids with three species as parents) were observed, suggesting secondary gene flow. Crossing experiments showed that only crosses between pure species yielded a high percentage of viable seeds. When hybrids were involved as either pollen-receptor or pollen-donor, almost no viable seeds were formed, indicating strong post-zygotic reproductive isolation and high sterility. CONCLUSIONS Strong post-mating reproductive barriers prevent local breakdown of species boundaries in Dactylorhiza despite frequent hybridization between parental species. However, the presence of triple hybrids indicates that in some cases hybridization may extend the F(1) generation.
Collapse
Affiliation(s)
- Koen De hert
- Biology Department, Laboratory of Plant Ecology, University of Leuven, Heverlee, Belgium.
| | | | | | | | | | | | | |
Collapse
|