1
|
Bentz PC, Leebens‐Mack J. Developing Asparagaceae1726: An Asparagaceae-specific probe set targeting 1726 loci for Hyb-Seq and phylogenomics in the family. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11597. [PMID: 39360194 PMCID: PMC11443443 DOI: 10.1002/aps3.11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 10/04/2024]
Abstract
Premise Target sequence capture (Hyb-Seq) is a cost-effective sequencing strategy that employs RNA probes to enrich for specific genomic sequences. By targeting conserved low-copy orthologs, Hyb-Seq enables efficient phylogenomic investigations. Here, we present Asparagaceae1726-a Hyb-Seq probe set targeting 1726 low-copy nuclear genes for phylogenomics in the angiosperm family Asparagaceae-which will aid the often-challenging delineation and resolution of evolutionary relationships within Asparagaceae. Methods Here we describe and validate the Asparagaceae1726 probe set (https://github.com/bentzpc/Asparagaceae1726) in six of the seven subfamilies of Asparagaceae. We perform phylogenomic analyses with these 1726 loci and evaluate how inclusion of paralogs and bycatch plastome sequences can enhance phylogenomic inference with target-enriched data sets. Results We recovered at least 82% of target orthologs from all sampled taxa, and phylogenomic analyses resulted in strong support for all subfamilial relationships. Additionally, topology and branch support were congruent between analyses with and without inclusion of target paralogs, suggesting that paralogs had limited effect on phylogenomic inference. Discussion Asparagaceae1726 is effective across the family and enables the generation of robust data sets for phylogenomics of any Asparagaceae taxon. Asparagaceae1726 establishes a standardized set of loci for phylogenomic analysis in Asparagaceae, which we hope will be widely used for extensible and reproducible investigations of diversification in the family.
Collapse
Affiliation(s)
- Philip C. Bentz
- Department of Plant BiologyUniversity of Georgia120 Carlton St.Athens30605GeorgiaUSA
| | - Jim Leebens‐Mack
- Department of Plant BiologyUniversity of Georgia120 Carlton St.Athens30605GeorgiaUSA
| |
Collapse
|
2
|
Yan Y, da Fonseca RR, Rahbek C, Borregaard MK, Davis CC. A new nuclear phylogeny of the tea family (Theaceae) unravels rapid radiations in genus Camellia. Mol Phylogenet Evol 2024; 196:108089. [PMID: 38679302 DOI: 10.1016/j.ympev.2024.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 03/08/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Molecular analyses of rapidly radiating groups often reveal incongruence between gene trees. This mainly results from incomplete lineage sorting, introgression, and gene tree estimation error, which complicate the estimation of phylogenetic relationships. In this study, we reconstruct the phylogeny of Theaceae using 348 nuclear loci from 68 individuals and two outgroup taxa. Sequence data were obtained by target enrichment using the recently released Angiosperm 353 universal probe set applied to herbarium specimens. The robustness of the topologies to variation in data quality was established under a range of different filtering schemes, using both coalescent and concatenation approaches. Our results confirmed most of the previously hypothesized relationships among tribes and genera, while clarifying additional interspecific relationships within the rapidly radiating genus Camellia. We recovered a remarkably high degree of gene tree heterogeneity indicative of rapid radiation in the group and observed cytonuclear conflicts, especially within Camellia. This was especially pronounced around short branches, which we primarily associate with gene tree estimation error. Our analysis also indicates that incomplete lineage sorting (ILS) contributed to gene-tree conflicts and accounted for approximately 14 % of the explained variation, whereas inferred introgression levels were low. Our study advances the understanding of the evolution of this important plant family and provides guidance on the application of target capture methods and the evaluation of key processes that influence phylogenetic discordances.
Collapse
Affiliation(s)
- Yujing Yan
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Ave, Cambridge, MA 02138, USA.
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Department of Life Sciences, Imperial College London, Silkwood Park campus, Ascot SL5 7PY, UK; Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense M, Denmark
| | - Michael K Borregaard
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Ave, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Oh KP, Van de Weyer N, Ruscoe WA, Henry S, Brown PR. From chip to SNP: Rapid development and evaluation of a targeted capture genotyping-by-sequencing approach to support research and management of a plaguing rodent. PLoS One 2023; 18:e0288701. [PMID: 37590245 PMCID: PMC10434965 DOI: 10.1371/journal.pone.0288701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
The management of invasive species has been greatly enhanced by population genetic analyses of multilocus single-nucleotide polymorphism (SNP) datasets that provide critical information regarding pest population structure, invasion pathways, and reproductive biology. For many applications there is a need for protocols that offer rapid, robust and efficient genotyping on the order of hundreds to thousands of SNPs, that can be tailored to specific study populations and that are scalable for long-term monitoring schemes. Despite its status as a model laboratory species, there are few existing resources for studying wild populations of house mice (Mus musculus spp.) that strike this balance between data density and laboratory efficiency. Here we evaluate the utility of a custom targeted capture genotyping-by-sequencing approach to support research on plaguing house mouse populations in Australia. This approach utilizes 3,651 hybridization capture probes targeting genome-wide SNPs identified from a sample of mice collected in grain-producing regions of southeastern Australia genotyped using a commercially available microarray platform. To assess performance of the custom panel, we genotyped wild caught mice (N = 320) from two adjoining farms and demonstrate the ability to correctly assign individuals to source populations with high confidence (mean >95%), as well as robust kinship inference within sites. We discuss these results in the context of proposed applications for future genetic monitoring of house mice in Australia.
Collapse
Affiliation(s)
- Kevin P. Oh
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| | - Nikki Van de Weyer
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| | | | - Steve Henry
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| | - Peter R. Brown
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| |
Collapse
|
4
|
Hao H, Li Y, Yang B, Lou S, Guo Z, Lu W. Simulation-Guided Rational Design of DNA Probe for Accurate Discrimination of Single-Nucleotide Variants Based on "Hill-Type" Cooperativity. Anal Chem 2023; 95:2893-2900. [PMID: 36695821 DOI: 10.1021/acs.analchem.2c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The accurate discrimination of single-nucleotide variants is of great interest for disease diagnosis and clinical treatments. In this work, a unique DNA probe with "Hill-type" cooperativity was first developed based on toehold-mediated strand displacement processes. Under simulation, this probe owns great thermodynamics advantage for specificity due to two mismatch bubbles formed in the presence of single-nucleotide variants. Besides, the strategies of ΔG' = 0 and more competitive strands are also beneficial to discriminate single-nucleotide variants. The feasibility of this probe was successfully demonstrated in consistent with simulation results. Due to "Hill-type" cooperativity, the probe allows a steeper dynamic range compared with previous probes. With simulation-guided rational design, the resulting probe can accurately discriminate single-nucleotide variants including nucleotide insertions, mutation, and deletions, which are arbitrarily distributed in target sequence. Two specificity parameters were calculated to quantitatively evaluate its good discrimination ability. Hence, "Hill-type" cooperativity can serve as a novel strategy in DNA probe's design for accurate discrimination of single-nucleotide variants.
Collapse
Affiliation(s)
- Huimin Hao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| | - Ye Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| | - Bin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| | - Shuyan Lou
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| | - Zihua Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| | - Weiyi Lu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| |
Collapse
|
5
|
Guo C, Luo Y, Gao LM, Yi TS, Li HT, Yang JB, Li DZ. Phylogenomics and the flowering plant tree of life. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:299-323. [PMID: 36416284 DOI: 10.1111/jipb.13415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The advances accelerated by next-generation sequencing and long-read sequencing technologies continue to provide an impetus for plant phylogenetic study. In the past decade, a large number of phylogenetic studies adopting hundreds to thousands of genes across a wealth of clades have emerged and ushered plant phylogenetics and evolution into a new era. In the meantime, a roadmap for researchers when making decisions across different approaches for their phylogenomic research design is imminent. This review focuses on the utility of genomic data (from organelle genomes, to both reduced representation sequencing and whole-genome sequencing) in phylogenetic and evolutionary investigations, describes the baseline methodology of experimental and analytical procedures, and summarizes recent progress in flowering plant phylogenomics at the ordinal, familial, tribal, and lower levels. We also discuss the challenges, such as the adverse impact on orthology inference and phylogenetic reconstruction raised from systematic errors, and underlying biological factors, such as whole-genome duplication, hybridization/introgression, and incomplete lineage sorting, together suggesting that a bifurcating tree may not be the best model for the tree of life. Finally, we discuss promising avenues for future plant phylogenomic studies.
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Diversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
6
|
Nunes R, Storer C, Doleck T, Kawahara AY, Pierce NE, Lohman DJ. Predictors of sequence capture in a large-scale anchored phylogenomics project. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.943361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Next-generation sequencing (NGS) technologies have revolutionized phylogenomics by decreasing the cost and time required to generate sequence data from multiple markers or whole genomes. Further, the fragmented DNA of biological specimens collected decades ago can be sequenced with NGS, reducing the need for collecting fresh specimens. Sequence capture, also known as anchored hybrid enrichment, is a method to produce reduced representation libraries for NGS sequencing. The technique uses single-stranded oligonucleotide probes that hybridize with pre-selected regions of the genome that are sequenced via NGS, culminating in a dataset of numerous orthologous loci from multiple taxa. Phylogenetic analyses using these sequences have the potential to resolve deep and shallow phylogenetic relationships. Identifying the factors that affect sequence capture success could save time, money, and valuable specimens that might be destructively sampled despite low likelihood of sequencing success. We investigated the impacts of specimen age, preservation method, and DNA concentration on sequence capture (number of captured sequences and sequence quality) while accounting for taxonomy and extracted tissue type in a large-scale butterfly phylogenomics project. This project used two probe sets to extract 391 loci or a subset of 13 loci from over 6,000 butterfly specimens. We found that sequence capture is a resilient method capable of amplifying loci in samples of varying age (0–111 years), preservation method (alcohol, papered, pinned), and DNA concentration (0.020 ng/μl - 316 ng/ul). Regression analyses demonstrate that sequence capture is positively correlated with DNA concentration. However, sequence capture and DNA concentration are negatively correlated with sample age and preservation method. Our findings suggest that sequence capture projects should prioritize the use of alcohol-preserved samples younger than 20 years old when available. In the absence of such specimens, dried samples of any age can yield sequence data, albeit with returns that diminish with increasing age.
Collapse
|
7
|
Demeulenaere E, Schils T, Burleigh JG, Ringelberg JJ, Koenen EJM, Ickert-Bond SM. Phylogenomic assessment prompts recognition of the Serianthes clade and confirms the monophyly of Serianthes and its relationship with Falcataria and Wallaceodendron in the wider ingoid clade (Leguminosae, Caesalpinioideae). PHYTOKEYS 2022; 205:335-361. [PMID: 36762011 PMCID: PMC9849021 DOI: 10.3897/phytokeys.205.79144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
The Indo-Pacific legume genus Serianthes was recently placed in the Archidendron clade (sensu Koenen et al. 2020), a subclade of the mimosoid clade in subfamily Caesalpinioideae, which also includes Acacia, Archidendron, Archidendropsis, Falcataria, Pararchidendron, Paraserianthes and Wallaceodendron. Serianthes comprises ca. 18 species, five subspecies and two varieties that are characterised by bipinnately compound leaves with alternate sessile leaflets, branched axillary corymbiform panicles and woody indehiscent pods. Generic relationships, as well as species relationships within genera in the Archidendron clade, remain uncertain. While the sister relationship between Serianthes and the genus Falcataria is strongly supported by molecular data, the distinction between Serianthes and the monotypic genus Wallaceodendron has been questioned, based on their similar flower and fruit morphologies. We combined three gene-enriched hybrid capture DNA sequence datasets (generated from the 964 mimobaits v1 probe set, the expanded 997 mimobaits v2 probe set and the GoFlag angiosperm 408 probe set) and used their overlapping markers (77 loci of the target exonic and flanking regions) to test the monophyly of Serianthes and to investigate generic relationships within the Archidendron clade using 55 ingoid plus two outgroup taxa. We show that Serianthes is monophyletic, confirm the Serianthes + Falcataria sister relationship to Wallaceodendron and recognise this combined clade as the Serianthes clade within the Archidendron clade. We also evaluated the use of overlapping loci across datasets in combination with concordance analyses to test generic relationships and further investigate previously unresolved relationships across the wider ingoid clade. Concordance analysis revealed limited gene tree conflicts near the tips of the Archidendron clade, but increased discordance at the base of the clade, which could be attributed to rapid lineage divergence (radiation) and/or incomplete lineage sorting.
Collapse
Affiliation(s)
- Else Demeulenaere
- Center for Island Sustainability, University of Guam, UOG Station, Mangilao, 96923, Guam
| | - Tom Schils
- Center for Island Sustainability, University of Guam, UOG Station, Mangilao, 96923, Guam
| | - J. Gordon Burleigh
- Marine Laboratory, University of Guam, UOG Station, Mangilao, 96923, Guam
| | - Jens J. Ringelberg
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL 32611-8525, USA
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Stefanie M. Ickert-Bond
- Evolutionary Biology & Ecology, Free University of Brussels, Av. F.D. Roosevelt, 50, CP 160/12 - B-1050 Brussels, Belgium
| |
Collapse
|
8
|
Jiménez‐Mena B, Flávio H, Henriques R, Manuzzi A, Ramos M, Meldrup D, Edson J, Pálsson S, Ásta Ólafsdóttir G, Ovenden JR, Nielsen EE. Fishing for DNA? Designing baits for population genetics in target enrichment experiments: Guidelines, considerations and the new tool supeRbaits. Mol Ecol Resour 2022; 22:2105-2119. [PMID: 35178874 PMCID: PMC9313901 DOI: 10.1111/1755-0998.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Targeted sequencing is an increasingly popular next-generation sequencing (NGS) approach for studying populations that involves focusing sequencing efforts on specific parts of the genome of a species of interest. Methodologies and tools for designing targeted baits are scarce but in high demand. Here, we present specific guidelines and considerations for designing capture sequencing experiments for population genetics for both neutral genomic regions and regions subject to selection. We describe the bait design process for three diverse fish species: Atlantic salmon, Atlantic cod and tiger shark, which was carried out in our research group, and provide an evaluation of the performance of our approach across both historical and modern samples. The workflow used for designing these three bait sets has been implemented in the R-package supeRbaits, which encompasses our considerations and guidelines for bait design for the benefit of researchers and practitioners. The supeRbaits R-package is user-friendly and versatile. It is written in C++ and implemented in R. supeRbaits and its manual are available from Github: https://github.com/BelenJM/supeRbaits.
Collapse
Affiliation(s)
- Belén Jiménez‐Mena
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Hugo Flávio
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Romina Henriques
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Alice Manuzzi
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | - Dorte Meldrup
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Janette Edson
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Snæbjörn Pálsson
- Faculty of Life and Environmental SciencesUniversity of IcelandReykjavíkIceland
| | | | - Jennifer R. Ovenden
- Molecular Fisheries Laboratory, School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Einar Eg Nielsen
- Section for Marine Living Resources, National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| |
Collapse
|
9
|
Target Enrichment Approaches for Next-Generation Sequencing Applications in Oncology. Diagnostics (Basel) 2022; 12:diagnostics12071539. [PMID: 35885445 PMCID: PMC9318977 DOI: 10.3390/diagnostics12071539] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Screening for genomic sequence variants in genes of predictive and prognostic significance is an integral part of precision medicine. Next-generation sequencing (NGS) technologies are progressively becoming platforms of choice to facilitate this, owing to their massively parallel sequencing capability, which can be used to simultaneously screen multiple markers in multiple samples for a variety of variants (single nucleotide and multi nucleotide variants, insertions and deletions, gene copy number variations, and fusions). A crucial step in the workflow of targeted NGS is the enrichment of the genomic regions of interest to be sequenced, against the whole genomic background. This ensures that the NGS effort is focused to predominantly screen target regions of interest with minimal off-target sequencing, making it more accurate and economical. Polymerase chain reaction-based (PCR, or amplicon-based) and hybridization capture-based methodologies are the two prominent approaches employed for target enrichment. This review summarizes the basic principles of target enrichment utilized by these methods, their multiple variations that have evolved over time, automation approaches, overall comparison of their advantages and drawbacks, and commercially available choices for these methodologies.
Collapse
|
10
|
Tang W, Zhang Y, Wang J, Zhao Y, Xu X, Liu C, Liu Y, Zhang X. High-Selectivity Single-Nucleotide Variant Capture Technology Based on the DNA Reaction Network. Anal Chem 2022; 94:5838-5845. [PMID: 35385254 DOI: 10.1021/acs.analchem.1c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extremely low abundance of circulating tumor DNA in blood samples has limited the development of liquid biopsy techniques for the early diagnosis of major diseases. In this study, we demonstrate a DRN-based screening technique, SCREEN, which achieves the specific capture and enrichment of low abundance SNV nucleic acid samples without selective amplification. The SCREEN technique achieved a 108-fold increase in the abundance of single-nucleotide variant (SNV) nucleic acids from highly homologous mixtures (from 0.01% to 1.08%) and has been shown to significantly increase the abundance of SNV nucleic acids from 0.1% to 51% further through two rounds of capture. As a highly effective pre-enrichment technique, SCREEN has demonstrated the ability to enhance NGS in detecting an ultralow abundance SNV nucleic acid powerfully and has high compatibility with existing molecular diagnostic methods.
Collapse
Affiliation(s)
- Weiyang Tang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060.,School of Chemistry Science and Engineering, Tongji University, Shanghai, China, 200092
| | - Yibin Zhang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Jiachun Wang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Yi Zhao
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Xiaoling Xu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Conghui Liu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Yizhen Liu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Xueji Zhang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| |
Collapse
|
11
|
Jarvis DE, Maughan PJ, DeTemple J, Mosquera V, Li Z, Barker MS, Johnson LA, Whipple CJ. Chromosome-Scale Genome Assembly of Gilia yorkii Enables Genetic Mapping of Floral Traits in an Interspecies Cross. Genome Biol Evol 2022; 14:evac017. [PMID: 35106544 PMCID: PMC8920513 DOI: 10.1093/gbe/evac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
Substantial morphological variation in land plants remains inaccessible to genetic analysis because current models lack variation in important ecological and agronomic traits. The genus Gilia was historically a model for biosystematics studies and includes variation in morphological traits that are poorly understood at the genetic level. We assembled a chromosome-scale reference genome of G. yorkii and used it to investigate genome evolution in the Polemoniaceae. We performed QTL (quantitative trait loci) mapping in a G. yorkii×G. capitata interspecific population for traits related to inflorescence architecture and flower color. The genome assembly spans 2.75 Gb of the estimated 2.80-Gb genome, with 96.7% of the sequence contained in the nine largest chromosome-scale scaffolds matching the haploid chromosome number. Gilia yorkii experienced at least one round of whole-genome duplication shared with other Polemoniaceae after the eudicot paleohexaploidization event. We identified QTL linked to variation in inflorescence architecture and petal color, including a candidate for the major flower color QTL-a tandem duplication of flavanol 3',5'-hydroxylase. Our results demonstrate the utility of Gilia as a forward genetic model for dissecting the evolution of development in plants including the causal loci underlying inflorescence architecture transitions.
Collapse
Affiliation(s)
- David E Jarvis
- Plant and Wildlife Sciences Department, Brigham Young University, USA
| | - Peter J Maughan
- Plant and Wildlife Sciences Department, Brigham Young University, USA
| | | | | | - Zheng Li
- Department of Integrative Biology, University of Texas, Austin, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, USA
| | | | | |
Collapse
|
12
|
Woudstra Y, Viruel J, Fritzsche M, Bleazard T, Mate R, Howard C, Rønsted N, Grace OM. A customised target capture sequencing tool for molecular identification of Aloe vera and relatives. Sci Rep 2021; 11:24347. [PMID: 34934068 PMCID: PMC8692607 DOI: 10.1038/s41598-021-03300-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Plant molecular identification studies have, until recently, been limited to the use of highly conserved markers from plastid and other organellar genomes, compromising resolution in highly diverse plant clades. Due to their higher evolutionary rates and reduced paralogy, low-copy nuclear genes overcome this limitation but are difficult to sequence with conventional methods and require high-quality input DNA. Aloe vera and its relatives in the Alooideae clade (Asphodelaceae, subfamily Asphodeloideae) are of economic interest for food and health products and have horticultural value. However, pressing conservation issues are increasing the need for a molecular identification tool to regulate the trade. With > 600 species and an origin of ± 15 million years ago, this predominantly African succulent plant clade is a diverse and taxonomically complex group for which low-copy nuclear genes would be desirable for accurate species discrimination. Unfortunately, with an average genome size of 16.76 pg, obtaining high coverage sequencing data for these genes would be prohibitively costly and computationally demanding. We used newly generated transcriptome data to design a customised RNA-bait panel targeting 189 low-copy nuclear genes in Alooideae. We demonstrate its efficacy in obtaining high-coverage sequence data for the target loci on Illumina sequencing platforms, including degraded DNA samples from museum specimens, with considerably improved phylogenetic resolution. This customised target capture sequencing protocol has the potential to confidently indicate phylogenetic relationships of Aloe vera and related species, as well as aid molecular identification applications.
Collapse
Affiliation(s)
- Yannick Woudstra
- Royal Botanic Gardens, Kew, Surrey, TW9 3AE, UK.
- Natural History Museum Denmark, University of Copenhagen, Gothersgade 130, 1153, Copenhagen, Denmark.
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Surrey, TW9 3AE, UK
| | - Martin Fritzsche
- National Institute of Biological Standards and Control, South Mimms, UK
| | - Thomas Bleazard
- National Institute of Biological Standards and Control, South Mimms, UK
| | - Ryan Mate
- National Institute of Biological Standards and Control, South Mimms, UK
| | - Caroline Howard
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden, CB10 1RQ, UK
| | - Nina Rønsted
- Natural History Museum Denmark, University of Copenhagen, Gothersgade 130, 1153, Copenhagen, Denmark
- National Tropical Botanical Garden, 3530 Papalina Road, Kalaheo, HI, 96741, USA
| | | |
Collapse
|
13
|
How challenging RADseq data turned out to favor coalescent-based species tree inference. A case study in Aichryson (Crassulaceae). Mol Phylogenet Evol 2021; 167:107342. [PMID: 34785384 DOI: 10.1016/j.ympev.2021.107342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/05/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
Analysing multiple genomic regions while incorporating detection and qualification of discordance among regions has become standard for understanding phylogenetic relationships. In plants, which usually have comparatively large genomes, this is feasible by the combination of reduced-representation library (RRL) methods and high-throughput sequencing enabling the cost effective acquisition of genomic data for thousands of loci from hundreds of samples. One popular RRL method is RADseq. A major disadvantage of established RADseq approaches is the rather short fragment and sequencing range, leading to loci of little individual phylogenetic information. This issue hampers the application of coalescent-based species tree inference. The modified RADseq protocol presented here targets ca. 5,000 loci of 300-600nt length, sequenced with the latest short-read-sequencing (SRS) technology, has the potential to overcome this drawback. To illustrate the advantages of this approach we use the study group Aichryson Webb & Berthelott (Crassulaceae), a plant genus that diversified on the Canary Islands. The data analysis approach used here aims at a careful quality control of the long loci dataset. It involves an informed selection of thresholds for accurate clustering, a thorough exploration of locus properties, such as locus length, coverage and variability, to identify potential biased data and a comparative phylogenetic inference of filtered datasets, accompanied by an evaluation of resulting BS support, gene and site concordance factor values, to improve overall resolution of the resulting phylogenetic trees. The final dataset contains variable loci with an average length of 373nt and facilitates species tree estimation using a coalescent-based summary approach. Additional improvements brought by the approach are critically discussed.
Collapse
|
14
|
Shen Y, Xia H, Tu Z, Zong Y, Yang L, Li H. Genetic divergence and local adaptation of Liriodendron driven by heterogeneous environments. Mol Ecol 2021; 31:916-933. [PMID: 34773328 DOI: 10.1111/mec.16271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Ecological adaptive differentiation alters both the species diversity and intraspecific genetic diversity in forests, thus affecting the stability of forest ecosystems. Therefore, knowledge of the genetic underpinnings of the ecological adaptive differentiation of forest species is critical for effective species conservation. In this study, single-nucleotide polymorphisms (SNPs) from population transcriptomes were used to investigate the spatial distribution of genetic variation in Liriodendron to assess whether environmental variables can explain genetic divergence. We examined the contributions of environmental variables to population divergence and explored the genetic underpinnings of local adaptation using a landscape genomic approach. Niche models and statistical analyses showed significant niche divergence between L. chinense and L. tulipifera, suggesting that ecological adaptation may play a crucial role in driving interspecific divergence. We detected a new fine-scale genetic structure in L. chinense, and divergence of the six groups occurred during the late Pliocene to early Pleistocene. Redundancy analysis (RDA) revealed significant associations between genetic variation and multiple environmental variables. Environmental association analyses identified 67 environmental association loci (EALs; nonsynonymous SNPs) that underwent interspecific or intraspecific differentiation, 28 of which were associated with adaptive genes. These 28 candidate adaptive loci provide substantial evidence for local adaptation in Liriodendron. Our findings reveal ecological adaptive divergence pattern between Liriodendron species and provide novel insight into the role of heterogeneous environments in shaping genetic structure and driving local adaptation among populations, informing future L. chinense conservation efforts.
Collapse
Affiliation(s)
- Yufang Shen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lichun Yang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
15
|
Wu Y, Yan Y, Zhao Y, Gu L, Wang S, Johnson DH. Genomic bases underlying the adaptive radiation of core landbirds. BMC Ecol Evol 2021; 21:162. [PMID: 34454438 PMCID: PMC8403425 DOI: 10.1186/s12862-021-01888-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Core landbirds undergo adaptive radiation with different ecological niches, but the genomic bases that underlie their ecological diversification remain unclear. RESULTS Here we used the genome-wide target enrichment sequencing of the genes related to vision, hearing, language, temperature sensation, beak shape, taste transduction, and carbohydrate, protein and fat digestion and absorption to examine the genomic bases underlying their ecological diversification. Our comparative molecular phyloecological analyses show that different core landbirds present adaptive enhancement in different aspects, and two general patterns emerge. First, all three raptorial birds (Accipitriformes, Strigiformes, and Falconiformes) show a convergent adaptive enhancement for fat digestion and absorption, while non-raptorial birds tend to exhibit a promoted capability for protein and carbohydrate digestion and absorption. Using this as a molecular marker, our results show relatively strong support for the raptorial lifestyle of the common ancestor of core landbirds, consequently suggesting a single origin of raptors, followed by two secondary losses of raptorial lifestyle within core landbirds. In addition to the dietary niche, we find at temporal niche that diurnal birds tend to exhibit an adaptive enhancement in bright-light vision, while nocturnal birds show an increased adaption in dim-light vision, in line with previous findings. CONCLUSIONS Our molecular phyloecological study reveals the genome-wide adaptive differentiations underlying the ecological diversification of core landbirds.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yi Yan
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yuanqin Zhao
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Li Gu
- School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Songbo Wang
- Bio-Intelligence Co. Ltd, Shenzhen, 518000, China
| | - David H Johnson
- Global Owl Project, 6504 Carriage Drive, Alexandria, VA, 22310, USA.
| |
Collapse
|
16
|
McLay TGB, Birch JL, Gunn BF, Ning W, Tate JA, Nauheimer L, Joyce EM, Simpson L, Schmidt‐Lebuhn AN, Baker WJ, Forest F, Jackson CJ. New targets acquired: Improving locus recovery from the Angiosperms353 probe set. APPLICATIONS IN PLANT SCIENCES 2021; 9:APS311420. [PMID: 34336399 PMCID: PMC8312740 DOI: 10.1002/aps3.11420] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/15/2021] [Indexed: 05/10/2023]
Abstract
PREMISE Universal target enrichment kits maximize utility across wide evolutionary breadth while minimizing the number of baits required to create a cost-efficient kit. The Angiosperms353 kit has been successfully used to capture loci throughout the angiosperms, but the default target reference file includes sequence information from only 6-18 taxa per locus. Consequently, reads sequenced from on-target DNA molecules may fail to map to references, resulting in fewer on-target reads for assembly, and reducing locus recovery. METHODS We expanded the Angiosperms353 target file, incorporating sequences from 566 transcriptomes to produce a 'mega353' target file, with each locus represented by 17-373 taxa. This mega353 file is a drop-in replacement for the original Angiosperms353 file in HybPiper analyses. We provide tools to subsample the file based on user-selected taxon groups, and to incorporate other transcriptome or protein-coding gene data sets. RESULTS Compared to the default Angiosperms353 file, the mega353 file increased the percentage of on-target reads by an average of 32%, increased locus recovery at 75% length by 49%, and increased the total length of the concatenated loci by 29%. DISCUSSION Increasing the phylogenetic density of the target reference file results in improved recovery of target capture loci. The mega353 file and associated scripts are available at: https://github.com/chrisjackson-pellicle/NewTargets.
Collapse
Affiliation(s)
- Todd G. B. McLay
- National Herbarium of VictoriaRoyal Botanic Gardens VictoriaMelbourneAustralia
- School of BiosciencesUniversity of MelbourneMelbourneAustralia
- Centre for Australian National Biodiversity ResearchCSIROCanberraAustralia
| | - Joanne L. Birch
- School of BiosciencesUniversity of MelbourneMelbourneAustralia
| | - Bee F. Gunn
- National Herbarium of VictoriaRoyal Botanic Gardens VictoriaMelbourneAustralia
- School of BiosciencesUniversity of MelbourneMelbourneAustralia
| | - Weixuan Ning
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Jennifer A. Tate
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Lars Nauheimer
- James Cook UniversityCairnsAustralia
- Australian Tropical HerbariumJames Cook UniversityCairnsAustralia
| | - Elizabeth M. Joyce
- James Cook UniversityCairnsAustralia
- Australian Tropical HerbariumJames Cook UniversityCairnsAustralia
| | - Lalita Simpson
- James Cook UniversityCairnsAustralia
- Australian Tropical HerbariumJames Cook UniversityCairnsAustralia
| | | | | | - Félix Forest
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
| | - Chris J. Jackson
- National Herbarium of VictoriaRoyal Botanic Gardens VictoriaMelbourneAustralia
| |
Collapse
|
17
|
Shah T, Schneider JV, Zizka G, Maurin O, Baker W, Forest F, Brewer GE, Savolainen V, Darbyshire I, Larridon I. Joining forces in Ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. AMERICAN JOURNAL OF BOTANY 2021; 108:1201-1216. [PMID: 34180046 DOI: 10.1002/ajb2.1682] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 05/10/2023]
Abstract
PREMISE Both universal and family-specific targeted sequencing probe kits are becoming widely used for reconstruction of phylogenetic relationships in angiosperms. Within the pantropical Ochnaceae, we show that with careful data filtering, universal kits are equally as capable in resolving intergeneric relationships as custom probe kits. Furthermore, we show the strength in combining data from both kits to mitigate bias and provide a more robust result to resolve evolutionary relationships. METHODS We sampled 23 Ochnaceae genera and used targeted sequencing with two probe kits, the universal Angiosperms353 kit and a family-specific kit. We used maximum likelihood inference with a concatenated matrix of loci and multispecies-coalescence approaches to infer relationships in the family. We explored phylogenetic informativeness and the impact of missing data on resolution and tree support. RESULTS For the Angiosperms353 data set, the concatenation approach provided results more congruent with those of the Ochnaceae-specific data set. Filtering missing data was most impactful on the Angiosperms353 data set, with a relaxed threshold being the optimum scenario. The Ochnaceae-specific data set resolved consistent topologies using both inference methods, and no major improvements were obtained after data filtering. Merging of data obtained with the two kits resulted in a well-supported phylogenetic tree. CONCLUSIONS The Angiosperms353 data set improved upon data filtering, and missing data played an important role in phylogenetic reconstruction. The Angiosperms353 data set resolved the phylogenetic backbone of Ochnaceae as equally well as the family specific data set. All analyses indicated that both Sauvagesia L. and Campylospermum Tiegh. as currently circumscribed are polyphyletic and require revised delimitation.
Collapse
Affiliation(s)
- Toral Shah
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Life Sciences, Imperial College, Silwood Park Campus, Ascot, Berks, SL5 7PY, UK
| | - Julio V Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
| | - Georg Zizka
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - William Baker
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Grace E Brewer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College, Silwood Park Campus, Ascot, Berks, SL5 7PY, UK
| | | | - Isabel Larridon
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L., Ledeganckstraat 35, Gent, 9000, Belgium
| |
Collapse
|
18
|
Peakall R, Wong DCJ, Phillips RD, Ruibal M, Eyles R, Rodriguez-Delgado C, Linde CC. A multitiered sequence capture strategy spanning broad evolutionary scales: Application for phylogenetic and phylogeographic studies of orchids. Mol Ecol Resour 2021; 21:1118-1140. [PMID: 33453072 DOI: 10.1111/1755-0998.13327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
With over 25,000 species, the drivers of diversity in the Orchidaceae remain to be fully understood. Here, we outline a multitiered sequence capture strategy aimed at capturing hundreds of loci to enable phylogenetic resolution from subtribe to subspecific levels in orchids of the tribe Diurideae. For the probe design, we mined subsets of 18 transcriptomes, to give five target sequence sets aimed at the tribe (Sets 1 & 2), subtribe (Set 3), and within subtribe levels (Sets 4 & 5). Analysis included alternative de novo and reference-guided assembly, before target sequence extraction, annotation and alignment, and application of a homology-aware k-mer block phylogenomic approach, prior to maximum likelihood and coalescence-based phylogenetic inference. Our evaluation considered 87 taxa in two test data sets: 67 samples spanning the tribe, and 72 samples involving 24 closely related Caladenia species. The tiered design achieved high target loci recovery (>89%), with the median number of recovered loci in Sets 1-5 as follows: 212, 219, 816, 1024, and 1009, respectively. Interestingly, as a first test of the homologous k-mer approach for targeted sequence capture data, our study revealed its potential for enabling robust phylogenetic species tree inferences. Specifically, we found matching, and in one case improved phylogenetic resolution within species complexes, compared to conventional phylogenetic analysis involving target gene extraction. Our findings indicate that a customized multitiered sequence capture strategy, in combination with promising yet underutilized phylogenomic approaches, will be effective for groups where interspecific divergence is recent, but information on deeper phylogenetic relationships is also required.
Collapse
Affiliation(s)
- Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ryan D Phillips
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Vic., Australia
| | - Monica Ruibal
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rodney Eyles
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Claudia Rodriguez-Delgado
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
19
|
Besse P. Guidelines for the Choice of Sequences for Molecular Plant Taxonomy. Methods Mol Biol 2021; 2222:39-55. [PMID: 33301086 DOI: 10.1007/978-1-0716-0997-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This chapter presents an overview of the major plant DNA sequences and molecular methods available for plant taxonomy. Guidelines are provided for the choice of sequences and methods to be used, based on the DNA compartment (nuclear, chloroplastic, mitochondrial), evolutionary mechanisms, and the level of taxonomic differentiation of the plants under survey.
Collapse
Affiliation(s)
- Pascale Besse
- UMR PVBMT, Universite de la Reunion, St Pierre, Réunion, France.
| |
Collapse
|
20
|
Reid BN, Moran RL, Kopack CJ, Fitzpatrick SW. Rapture-ready darters: Choice of reference genome and genotyping method (whole-genome or sequence capture) influence population genomic inference in Etheostoma. Mol Ecol Resour 2020; 21:404-420. [PMID: 33058399 DOI: 10.1111/1755-0998.13275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 11/26/2022]
Abstract
Researchers studying nonmodel organisms have an increasing number of methods available for generating genomic data. However, the applicability of different methods across species, as well as the effect of reference genome choice on population genomic inference, remain difficult to predict in many cases. We evaluated the impact of data type (whole-genome vs. reduced representation) and reference genome choice on data quality and on population genomic and phylogenomic inference across several species of darters (subfamily Etheostomatinae), a highly diverse radiation of freshwater fish. We generated a high-quality reference genome and developed a hybrid RADseq/sequence capture (Rapture) protocol for the Arkansas darter (Etheostoma cragini). Rapture data from 1,900 individuals spanning four darter species showed recovery of most loci across darter species at high depth and consistent estimates of heterozygosity regardless of reference genome choice. Loci with baits spanning both sides of the restriction enzyme cut site performed especially well across species. For low-coverage whole-genome data, choice of reference genome affected read depth and inferred heterozygosity. For similar amounts of sequence data, Rapture performed better at identifying fine-scale genetic structure compared to whole-genome sequencing. Rapture loci also recovered an accurate phylogeny for the study species and demonstrated high phylogenetic informativeness across the evolutionary history of the genus Etheostoma. Low cost and high cross-species effectiveness regardless of reference genome suggest that Rapture and similar sequence capture methods may be worthwhile choices for studies of diverse species radiations.
Collapse
Affiliation(s)
- Brendan N Reid
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Rachel L Moran
- Department of Evolution, Ecology, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | | | - Sarah W Fitzpatrick
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.,Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
21
|
Use of Targeted Amplicon Sequencing in Peanut to Generate Allele Information on Allotetraploid Sub-Genomes. Genes (Basel) 2020; 11:genes11101220. [PMID: 33080972 PMCID: PMC7650781 DOI: 10.3390/genes11101220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/18/2022] Open
Abstract
The use of molecular markers in plant breeding has become a routine practice, but the cost per accession can be a hindrance to the routine use of Quantitative Trait Loci (QTL) identification in breeding programs. In this study, we demonstrate the use of targeted re-sequencing as a proof of concept of a cost-effective approach to retrieve highly informative allele information, as well as develop a bioinformatics strategy to capture the genome-specific information of a polyploid species. SNPs were identified from alignment of raw transcriptome reads (2 × 50 bp) to a synthetic tetraploid genome using BWA followed by a GATK pipeline. Regions containing high polymorphic SNPs in both A genome and B genomes were selected as targets for the resequencing study. Targets were amplified using multiplex PCR followed by sequencing on an Illumina HiSeq. Eighty-one percent of the SNP calls in diploids and 68% of the SNP calls in tetraploids were confirmed. These results were also confirmed by KASP validation. Based on this study, we find that targeted resequencing technologies have potential for obtaining maximum allele information in allopolyploids at reduced cost.
Collapse
|
22
|
Sanderson BJ, DiFazio SP, Cronk QCB, Ma T, Olson MS. A targeted sequence capture array for phylogenetics and population genomics in the Salicaceae. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11394. [PMID: 33163293 PMCID: PMC7598885 DOI: 10.1002/aps3.11394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/12/2020] [Indexed: 05/03/2023]
Abstract
PREMISE The family Salicaceae has proved taxonomically challenging, especially in the genus Salix, which is speciose and features frequent hybridization and polyploidy. Past efforts to reconstruct the phylogeny with molecular barcodes have failed to resolve the species relationships of many sections of the genus. METHODS We used the wealth of sequence data in the family to design sequence capture probes to target regions of 300-1200 bp of exonic regions of 972 genes. RESULTS We recovered sequence data for nearly all of the targeted genes in three species of Populus and three species of Salix. We present a species tree, discuss concordance among gene trees, and present population genomic summary statistics for these loci. CONCLUSIONS Our sequence capture array has extremely high capture efficiency within the genera Populus and Salix, resulting in abundant phylogenetic information. Additionally, these loci show promise for population genomic studies.
Collapse
Affiliation(s)
- Brian J. Sanderson
- Department of Biological SciencesTexas Tech UniversityLubbockTexas79409‐3131USA
- Department of BiologyWest Virginia UniversityMorgantownWest Virginia26506USA
| | - Stephen P. DiFazio
- Department of BiologyWest Virginia UniversityMorgantownWest Virginia26506USA
| | - Quentin C. B. Cronk
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - Tao Ma
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengdu610065People’s Republic of China
| | - Matthew S. Olson
- Department of Biological SciencesTexas Tech UniversityLubbockTexas79409‐3131USA
| |
Collapse
|
23
|
Gauthier J, Mouden C, Suchan T, Alvarez N, Arrigo N, Riou C, Lemaitre C, Peterlongo P. DiscoSnp-RAD: de novo detection of small variants for RAD-Seq population genomics. PeerJ 2020; 8:e9291. [PMID: 32566401 PMCID: PMC7293188 DOI: 10.7717/peerj.9291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Restriction site Associated DNA Sequencing (RAD-Seq) is a technique characterized by the sequencing of specific loci along the genome that is widely employed in the field of evolutionary biology since it allows to exploit variants (mainly Single Nucleotide Polymorphism-SNPs) information from entire populations at a reduced cost. Common RAD dedicated tools, such as STACKS or IPyRAD, are based on all-vs-all read alignments, which require consequent time and computing resources. We present an original method, DiscoSnp-RAD, that avoids this pitfall since variants are detected by exploiting specific parts of the assembly graph built from the reads, hence preventing all-vs-all read alignments. We tested the implementation on simulated datasets of increasing size, up to 1,000 samples, and on real RAD-Seq data from 259 specimens of Chiastocheta flies, morphologically assigned to seven species. All individuals were successfully assigned to their species using both STRUCTURE and Maximum Likelihood phylogenetic reconstruction. Moreover, identified variants succeeded to reveal a within-species genetic structure linked to the geographic distribution. Furthermore, our results show that DiscoSnp-RAD is significantly faster than state-of-the-art tools. The overall results show that DiscoSnp-RAD is suitable to identify variants from RAD-Seq data, it does not require time-consuming parameterization steps and it stands out from other tools due to its completely different principle, making it substantially faster, in particular on large datasets.
Collapse
Affiliation(s)
| | | | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Nadir Alvarez
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Natural History Museum of Geneva, Geneva, Switzerland
| | - Nils Arrigo
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Chloé Riou
- Univ. Rennes, Inria, CNRS, IRISA, Rennes, France
| | | | | |
Collapse
|
24
|
Andermann T, Torres Jiménez MF, Matos-Maraví P, Batista R, Blanco-Pastor JL, Gustafsson ALS, Kistler L, Liberal IM, Oxelman B, Bacon CD, Antonelli A. A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project. Front Genet 2020; 10:1407. [PMID: 32153629 PMCID: PMC7047930 DOI: 10.3389/fgene.2019.01407] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies.
Collapse
Affiliation(s)
- Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Maria Fernanda Torres Jiménez
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Pável Matos-Maraví
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Romina Batista
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, PPG GCBEv–Instituto Nacional de Pesquisas da Amazônia—INPA Campus II, Manaus, Brazil
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
| | - José L. Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | | | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Isabel M. Liberal
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Christine D. Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond-Surrey, United Kingdom
| |
Collapse
|
25
|
Karimi N, Grover CE, Gallagher JP, Wendel JF, Ané C, Baum DA. Reticulate Evolution Helps Explain Apparent Homoplasy in Floral Biology and Pollination in Baobabs (Adansonia; Bombacoideae; Malvaceae). Syst Biol 2019; 69:462-478. [DOI: 10.1093/sysbio/syz073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
Baobabs (Adansonia) are a cohesive group of tropical trees with a disjunct distribution in Australia, Madagascar, and continental Africa, and diverse flowers associated with two pollination modes. We used custom-targeted sequence capture in conjunction with new and existing phylogenetic comparative methods to explore the evolution of floral traits and pollination systems while allowing for reticulate evolution. Our analyses suggest that relationships in Adansonia are confounded by reticulation, with network inference methods supporting at least one reticulation event. The best supported hypothesis involves introgression between Adansonia rubrostipa and core Longitubae, both of which are hawkmoth pollinated with yellow/red flowers, but there is also some support for introgression between the African lineage and Malagasy Brevitubae, which are both mammal-pollinated with white flowers. New comparative methods for phylogenetic networks were developed that allow maximum-likelihood inference of ancestral states and were applied to study the apparent homoplasy in floral biology and pollination mode seen in Adansonia. This analysis supports a role for introgressive hybridization in morphological evolution even in a clade with highly divergent and geographically widespread species. Our new comparative methods for discrete traits on species networks are implemented in the software PhyloNetworks. [Comparative methods; Hyb-Seq; introgression; network inference; population trees; reticulate evolution; species tree inference; targeted sequence capture.]
Collapse
Affiliation(s)
- Nisa Karimi
- Department of Botany, University of Wisconsin – Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 2200 Osborn Drive, Ames, IA 50011, USA
| | - Joseph P Gallagher
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 2200 Osborn Drive, Ames, IA 50011, USA
- Department of Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA 01003, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 2200 Osborn Drive, Ames, IA 50011, USA
| | - Cécile Ané
- Department of Botany, University of Wisconsin – Madison, 430 Lincoln Drive, Madison, WI 53706, USA
- Department of Statistics, University of Wisconsin – Madison, 1300 University Ave, WI, 53706, USA
| | - David A Baum
- Department of Botany, University of Wisconsin – Madison, 430 Lincoln Drive, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, 330 N Orchard Street, Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
26
|
Brewer GE, Clarkson JJ, Maurin O, Zuntini AR, Barber V, Bellot S, Biggs N, Cowan RS, Davies NMJ, Dodsworth S, Edwards SL, Eiserhardt WL, Epitawalage N, Frisby S, Grall A, Kersey PJ, Pokorny L, Leitch IJ, Forest F, Baker WJ. Factors Affecting Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens Spanning the Diversity of Angiosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:1102. [PMID: 31620145 PMCID: PMC6759688 DOI: 10.3389/fpls.2019.01102] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/12/2019] [Indexed: 05/03/2023]
Abstract
The world's herbaria collectively house millions of diverse plant specimens, including endangered or extinct species and type specimens. Unlocking genetic data from the typically highly degraded DNA obtained from herbarium specimens was difficult until the arrival of high-throughput sequencing approaches, which can be applied to low quantities of severely fragmented DNA. Target enrichment involves using short molecular probes that hybridise and capture genomic regions of interest for high-throughput sequencing. In this study on herbariomics, we used this targeted sequencing approach and the Angiosperms353 universal probe set to recover up to 351 nuclear genes from 435 herbarium specimens that are up to 204 years old and span the breadth of angiosperm diversity. We show that on average 207 genes were successfully retrieved from herbarium specimens, although the mean number of genes retrieved and target enrichment efficiency is significantly higher for silica gel-dried specimens. Forty-seven target nuclear genes were recovered from a herbarium specimen of the critically endangered St Helena boxwood, Mellissia begoniifolia, collected in 1815. Herbarium specimens yield significantly less high-molecular-weight DNA than silica gel-dried specimens, and genomic DNA quality declines with sample age, which is negatively correlated with target enrichment efficiency. Climate, taxon-specific traits, and collection strategies additionally impact target sequence recovery. We also detected taxonomic bias in targeted sequencing outcomes for the 10 most numerous angiosperm families that were investigated in depth. We recommend that (1) for species distributed in wet tropical climates, silica gel-dried specimens should be used preferentially; (2) for species distributed in seasonally dry tropical climates, herbarium and silica gel-dried specimens yield similar results, and either collection can be used; (3) taxon-specific traits should be explored and established for effective optimisation of taxon-specific studies using herbarium specimens; (4) all herbarium sheets should, in future, be annotated with details of the preservation method used; (5) long-term storage of herbarium specimens should be in stable, low-humidity, and low-temperature environments; and (6) targeted sequencing with universal probes, such as Angiosperms353, should be investigated closely as a new approach for DNA barcoding that will ensure better exploitation of herbarium specimens than traditional Sanger sequencing approaches.
Collapse
Affiliation(s)
- Grace E. Brewer
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - James J. Clarkson
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Olivier Maurin
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Vanessa Barber
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Sidonie Bellot
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Nicola Biggs
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Robyn S. Cowan
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Nina M. J. Davies
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, Luton, BedfordshireUnited Kingdom
| | - Sara L. Edwards
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Wolf L. Eiserhardt
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Bioscience, Aarhus University, Ny Munkegade Aarhus C, Denmark
| | | | - Sue Frisby
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Aurélie Grall
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Paul J. Kersey
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Lisa Pokorny
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Ilia J. Leitch
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Félix Forest
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - William J. Baker
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| |
Collapse
|
27
|
Marx HE, Richards M, Johnson GM, Tank DC. Increasing phylogenetic stochasticity at high elevations on summits across a remote North American wilderness. AMERICAN JOURNAL OF BOTANY 2019; 106:958-970. [PMID: 31291472 DOI: 10.1002/ajb2.1328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
PREMISE At the intersection of ecology and evolutionary biology, community phylogenetics can provide insights into overarching biodiversity patterns, particularly in remote and understudied ecosystems. To understand community assembly of the high alpine flora in the Sawtooth National Forest, USA, we analyzed phylogenetic structure within and between nine summit communities. METHODS We used high-throughput sequencing to supplement existing data and infer a nearly completely sampled community phylogeny of the alpine vascular flora. We calculated mean nearest taxon distance (MNTD) and mean pairwise distance (MPD) to quantify phylogenetic divergence within summits, and assessed whether maximum elevation explains phylogenetic structure. To evaluate similarities between summits, we quantified phylogenetic turnover, taking into consideration microhabitats (talus vs. meadows). RESULTS We found different patterns of community phylogenetic structure within the six most species-rich orders, but across all vascular plants phylogenetic structure was largely not different from random. There was a significant negative correlation between elevation and tree-wide phylogenetic diversity (MPD) within summits: overdispersion degraded as elevation increased. Between summits, we found high phylogenetic turnover driven by greater niche heterogeneity on summits with alpine meadows. CONCLUSIONS Our results provide further evidence that stochastic processes may also play an important role in the assembly of vascular plant communities in high alpine habitats at regional scales. However, order-specific patterns suggest that adaptations are still important for assembly of specific sectors of the plant tree of life. Further studies quantifying functional diversity will be important in disentangling the interplay of eco-evolutionary processes that likely shape broad community phylogenetic patterns in extreme environments.
Collapse
Affiliation(s)
- Hannah E Marx
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
| | - Melissa Richards
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
| | - Grahm M Johnson
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Dr. MS 3026, Moscow, Idaho, 83844-3026, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Dr. MS 3026, Moscow, Idaho, 83844-3026, USA
| |
Collapse
|
28
|
Dorant Y, Benestan L, Rougemont Q, Normandeau E, Boyle B, Rochette R, Bernatchez L. Comparing Pool-seq, Rapture, and GBS genotyping for inferring weak population structure: The American lobster ( Homarus americanus) as a case study. Ecol Evol 2019; 9:6606-6623. [PMID: 31236247 PMCID: PMC6580275 DOI: 10.1002/ece3.5240] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 01/02/2023] Open
Abstract
Unraveling genetic population structure is challenging in species potentially characterized by large population size and high dispersal rates, often resulting in weak genetic differentiation. Genotyping a large number of samples can improve the detection of subtle genetic structure, but this may substantially increase sequencing cost and downstream bioinformatics computational time. To overcome this challenge, alternative, cost-effective sequencing approaches, namely Pool-seq and Rapture, have been developed. We empirically measured the power of resolution and congruence of these two methods in documenting weak population structure in nonmodel species with high gene flow comparatively to a conventional genotyping-by-sequencing (GBS) approach. For this, we used the American lobster (Homarus americanus) as a case study. First, we found that GBS, Rapture, and Pool-seq approaches gave similar allele frequency estimates (i.e., correlation coefficient over 0.90) and all three revealed the same weak pattern of population structure. Yet, Pool-seq data showed F ST estimates three to five times higher than GBS and Rapture, while the latter two methods returned similar F ST estimates, indicating that individual-based approaches provided more congruent results than Pool-seq. We conclude that despite higher costs, GBS and Rapture are more convenient approaches to use in the case of species exhibiting very weak differentiation. While both GBS and Rapture approaches provided similar results with regard to estimates of population genetic parameters, GBS remains more cost-effective in project involving a relatively small numbers of genotyped individuals (e.g., <1,000). Overall, this study illustrates the complexity of estimating genetic differentiation and other summary statistics in complex biological systems characterized by large population size and migration rates.
Collapse
Affiliation(s)
- Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Laura Benestan
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Pêches et Océans CanadaInstitut Maurice‐LamontagneMont‐JoliCanada
| | - Quentin Rougemont
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
- Plateforme d'analyses génomiques, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Rémy Rochette
- Department of BiologyUniversity of New BrunswickSaint JohnCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| |
Collapse
|
29
|
Li J, Zeng Z, Wang Y, Liang D, Zhang P. Sequence capture using AFLP-generated baits: A cost-effective method for high-throughput phylogenetic and phylogeographic analysis. Ecol Evol 2019; 9:5925-5937. [PMID: 31161009 PMCID: PMC6540676 DOI: 10.1002/ece3.5176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 12/30/2022] Open
Abstract
Target sequence capture is an efficient technique to enrich specific genomic regions for high-throughput sequencing in ecological and evolutionary studies. In recent years, many sequence capture approaches have been proposed, but most of them rely on commercial synthetic baits which make the experiment expensive. Here, we present a novel sequence capture approach called AFLP-based genome sequence capture (AFLP Capture). This method uses the AFLP (amplified fragment length polymorphism) technique to generate homemade capture baits without the need for prior genome information, thus is applicable to any organisms. In this approach, biotinylated AFLP fragments representing a random fraction of the genome are used as baits to capture the homologous fragments from genomic shotgun sequencing libraries. In a trial study, by using AFLP Capture, we successfully obtained 511 orthologous loci (>700,000 bp in total length) from 11 Odorrana species and more than 100,000 single nucleotide polymorphisms (SNPs) in four analyzed individuals of an Odorrana species. This result shows that our method can be used to address questions of various evolutionary depths (from interspecies level to intraspecies level). We also discuss the flexibility in bait preparation and how the sequencing data are analyzed. In summary, AFLP Capture is a rapid and flexible tool and can significantly reduce the experimental cost for phylogenetic studies that require analyzing genome-scale data (hundreds or thousands of loci).
Collapse
Affiliation(s)
- Jia‐Xuan Li
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Zhao‐Chi Zeng
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Ying‐Yong Wang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
30
|
Couvreur TLP, Helmstetter AJ, Koenen EJM, Bethune K, Brandão RD, Little SA, Sauquet H, Erkens RHJ. Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes. FRONTIERS IN PLANT SCIENCE 2019; 9:1941. [PMID: 30687347 PMCID: PMC6334231 DOI: 10.3389/fpls.2018.01941] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/13/2018] [Indexed: 05/19/2023]
Abstract
Targeted enrichment and sequencing of hundreds of nuclear loci for phylogenetic reconstruction is becoming an important tool for plant systematics and evolution. Annonaceae is a major pantropical plant family with 110 genera and ca. 2,450 species, occurring across all major and minor tropical forests of the world. Baits were designed by sequencing the transcriptomes of five species from two of the largest Annonaceae subfamilies. Orthologous loci were identified. The resulting baiting kit was used to reconstruct phylogenetic relationships at two different levels using concatenated and gene tree approaches: a family wide Annonaceae analysis sampling 65 genera and a species level analysis of tribe Piptostigmateae sampling 29 species with multiple individuals per species. DNA extraction was undertaken mainly on silicagel dried leaves, with two samples from herbarium dried leaves. Our kit targets 469 exons (364,653 bp of sequence data), successfully capturing sequences from across Annonaceae. Silicagel dried and herbarium DNA worked equally well. We present for the first time a nuclear gene-based phylogenetic tree at the generic level based on 317 supercontigs. Results mainly confirm previous chloroplast based studies. However, several new relationships are found and discussed. We show significant differences in branch lengths between the two large subfamilies Annonoideae and Malmeoideae. A new tribe, Annickieae, is erected containing a single African genus Annickia. We also reconstructed a well-resolved species-level phylogenetic tree of the Piptostigmteae tribe. Our baiting kit is useful for reconstructing well-supported phylogenetic relationships within Annonaceae at different taxonomic levels. The nuclear genome is mainly concordant with plastome information with a few exceptions. Moreover, we find that substitution rate heterogeneity between the two subfamilies is also found within the nuclear compartment, and not just plastomes and ribosomal DNA as previously shown. Our results have implications for understanding the biogeography, molecular dating and evolution of Annonaceae.
Collapse
Affiliation(s)
| | | | - Erik J. M. Koenen
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | - Kevin Bethune
- IRD, UMR DIADE, Univ. Montpellier, Montpellier, France
| | - Rita D. Brandão
- Maastricht Science Programme, Maastricht University, Maastricht, Netherlands
| | - Stefan A. Little
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université-Paris Saclay, Orsay, France
| | - Hervé Sauquet
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université-Paris Saclay, Orsay, France
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, Australia
| | - Roy H. J. Erkens
- Maastricht Science Programme, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
31
|
Siniscalchi CM, Loeuille B, Funk VA, Mandel JR, Pirani JR. Phylogenomics Yields New Insight Into Relationships Within Vernonieae (Asteraceae). FRONTIERS IN PLANT SCIENCE 2019; 10:1224. [PMID: 31749813 PMCID: PMC6843069 DOI: 10.3389/fpls.2019.01224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/04/2019] [Indexed: 05/10/2023]
Abstract
Asteraceae, or the sunflower family, is the largest family of flowering plants and is usually considered difficult to work with, not only due to its size, but also because of the abundant cases of polyploidy and ancient whole-genome duplications. Traditional molecular systematics studies were often impaired by the low levels of variation found in chloroplast markers and the high paralogy of traditional nuclear markers like ITS. Next-generation sequencing and novel phylogenomics methods, such as target capture and Hyb-Seq, have provided new ways of studying the phylogeny of the family with great success. While the resolution of the backbone of the family is in progress with some results already published, smaller studies focusing on internal clades of the phylogeny are important to increase sampling and allow morphological, biogeography, and diversification analyses, as well as serving as basis to test the current infrafamilial classification. Vernonieae is one of the largest tribes in the family, accounting for approximately 1,500 species. From the 1970s to the 1990s, the tribe went through several reappraisals, mainly due to the splitting of the mega genus Vernonia into several smaller segregates. Only three phylogenetic studies focusing on the Vernonieae have been published to date, both using a few molecular markers, overall presenting low resolution and support in deepest nodes, and presenting conflicting topologies when compared. In this study, we present the first attempt at studying the phylogeny of Vernonieae using phylogenomics. Even though our sampling includes only around 4% of the diversity of the tribe, we achieved complete resolution of the phylogeny with high support recovering approximately 700 nuclear markers obtained through target capture. We also analyzed the effect of missing data using two different matrices with different number of markers and the difference between concatenated and gene tree analysis.
Collapse
Affiliation(s)
- Carolina M. Siniscalchi
- The Mandel Lab, Department of Biological Sciences, University of Memphis, Memphis, TN, United States
- Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Carolina M. Siniscalchi,
| | - Benoit Loeuille
- Departamento de Botânica - CCB, Universidade Federal de Pernambuco, Recife, Brazil
| | - Vicki A. Funk
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Jennifer R. Mandel
- The Mandel Lab, Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - José R. Pirani
- Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Hoff SNK, Baalsrud HT, Tooming-Klunderud A, Skage M, Richmond T, Obernosterer G, Shirzadi R, Tørresen OK, Jakobsen KS, Jentoft S. Long-read sequence capture of the haemoglobin gene clusters across codfish species. Mol Ecol Resour 2018; 19:245-259. [PMID: 30329222 PMCID: PMC7379720 DOI: 10.1111/1755-0998.12955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022]
Abstract
Combining high-throughput sequencing with targeted sequence capture has become an attractive tool to study specific genomic regions of interest. Most studies have so far focused on the exome using short-read technology. These approaches are not designed to capture intergenic regions needed to reconstruct genomic organization, including regulatory regions and gene synteny. Here, we demonstrate the power of combining targeted sequence capture with long-read sequencing technology for comparative genomic analyses of the haemoglobin (Hb) gene clusters across eight species separated by up to 70 million years. Guided by the reference genome assembly of the Atlantic cod (Gadus morhua) together with genome information from draft assemblies of selected codfishes, we designed probes covering the two Hb gene clusters. Use of custom-made barcodes combined with PacBio RSII sequencing led to highly continuous assemblies of the LA (~100 kb) and MN (~200 kb) clusters, which include syntenic regions of coding and intergenic sequences. Our results revealed an overall conserved genomic organization of the Hb genes within this lineage, yet with several, lineage-specific gene duplications. Moreover, for some of the species examined, we identified amino acid substitutions at two sites in the Hbb1 gene as well as length polymorphisms in its regulatory region, which has previously been linked to temperature adaptation in Atlantic cod populations. This study highlights the use of targeted long-read capture as a versatile approach for comparative genomic studies by generation of a cross-species genomic resource elucidating the evolutionary history of the Hb gene family across the highly divergent group of codfishes.
Collapse
Affiliation(s)
- Siv Nam Khang Hoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Helle T Baalsrud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ave Tooming-Klunderud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Morten Skage
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | - Ole Kristian Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Kozakiewicz CP, Burridge CP, Funk WC, VandeWoude S, Craft ME, Crooks KR, Ernest HB, Fountain‐Jones NM, Carver S. Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol Appl 2018; 11:1763-1778. [PMID: 30459828 PMCID: PMC6231466 DOI: 10.1111/eva.12678] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/24/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Landscape genetics has provided many insights into how heterogeneous landscape features drive processes influencing spatial genetic variation in free-living organisms. This rapidly developing field has focused heavily on vertebrates, and expansion of this scope to the study of infectious diseases holds great potential for landscape geneticists and disease ecologists alike. The potential application of landscape genetics to infectious agents has garnered attention at formative stages in the development of landscape genetics, but systematic examination is lacking. We comprehensively review how landscape genetics is being used to better understand pathogen dynamics. We characterize the field and evaluate the types of questions addressed, approaches used and systems studied. We also review the now established landscape genetic methods and their realized and potential applications to disease ecology. Lastly, we identify emerging frontiers in the landscape genetic study of infectious agents, including recent phylogeographic approaches and frameworks for studying complex multihost and host-vector systems. Our review emphasizes the expanding utility of landscape genetic methods available for elucidating key pathogen dynamics (particularly transmission and spread) and also how landscape genetic studies of pathogens can provide insight into host population dynamics. Through this review, we convey how increasing awareness of the complementarity of landscape genetics and disease ecology among practitioners of each field promises to drive important cross-disciplinary advances.
Collapse
Affiliation(s)
| | | | - W. Chris Funk
- Department of BiologyGraduate Degree Program in EcologyColorado State UniversityFort CollinsColorado
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColorado
| | - Meggan E. Craft
- Department of Veterinary Population MedicineUniversity of MinnesotaSt. PaulMinnesota
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColorado
| | - Holly B. Ernest
- Wildlife Genomics and Disease Ecology LaboratoryDepartment of Veterinary SciencesUniversity of WyomingLaramieWyoming
| | | | - Scott Carver
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
34
|
Givnish TJ, Zuluaga A, Spalink D, Soto Gomez M, Lam VKY, Saarela JM, Sass C, Iles WJD, de Sousa DJL, Leebens-Mack J, Chris Pires J, Zomlefer WB, Gandolfo MA, Davis JI, Stevenson DW, dePamphilis C, Specht CD, Graham SW, Barrett CF, Ané C. Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots. AMERICAN JOURNAL OF BOTANY 2018; 105:1888-1910. [PMID: 30368769 DOI: 10.1002/ajb2.1178] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/03/2018] [Indexed: 05/03/2023]
Abstract
PREMISE OF THE STUDY We present the first plastome phylogeny encompassing all 77 monocot families, estimate branch support, and infer monocot-wide divergence times and rates of species diversification. METHODS We conducted maximum likelihood analyses of phylogeny and BAMM studies of diversification rates based on 77 plastid genes across 545 monocots and 22 outgroups. We quantified how branch support and ascertainment vary with gene number, branch length, and branch depth. KEY RESULTS Phylogenomic analyses shift the placement of 16 families in relation to earlier studies based on four plastid genes, add seven families, date the divergence between monocots and eudicots+Ceratophyllum at 136 Mya, successfully place all mycoheterotrophic taxa examined, and support recognizing Taccaceae and Thismiaceae as separate families and Arecales and Dasypogonales as separate orders. Only 45% of interfamilial divergences occurred after the Cretaceous. Net species diversification underwent four large-scale accelerations in PACMAD-BOP Poaceae, Asparagales sister to Doryanthaceae, Orchidoideae-Epidendroideae, and Araceae sister to Lemnoideae, each associated with specific ecological/morphological shifts. Branch ascertainment and support across monocots increase with gene number and branch length, and decrease with relative branch depth. Analysis of entire plastomes in Zingiberales quantifies the importance of non-coding regions in identifying and supporting short, deep branches. CONCLUSIONS We provide the first resolved, well-supported monocot phylogeny and timeline spanning all families, and quantify the significant contribution of plastome-scale data to resolving short, deep branches. We outline a new functional model for the evolution of monocots and their diagnostic morphological traits from submersed aquatic ancestors, supported by convergent evolution of many of these traits in aquatic Hydatellaceae (Nymphaeales).
Collapse
Affiliation(s)
- Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | | | - Daniel Spalink
- Department of Ecosystem Science, Texas A&M University, College Station, Texas, 77840, USA
| | - Marybel Soto Gomez
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Vivienne K Y Lam
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | - Chodon Sass
- The University and Jepson Herbarium, University of California-Berkeley, Berkeley, California, 94720, USA
| | - William J D Iles
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Danilo José Lima de Sousa
- Departamento de Ciéncias Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, 44036-900, Brazil
| | - James Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, 65211, USA
| | - Wendy B Zomlefer
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Maria A Gandolfo
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | - Jerrold I Davis
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | | | - Claude dePamphilis
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Chelsea D Specht
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Craig F Barrett
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
35
|
Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl 2018; 11:1035-1052. [PMID: 30026796 PMCID: PMC6050180 DOI: 10.1111/eva.12569] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
Identifying and monitoring locally adaptive genetic variation can have direct utility for conserving species at risk, especially when management may include actions such as translocations for restoration, genetic rescue, or assisted gene flow. However, genomic studies of local adaptation require careful planning to be successful, and in some cases may not be a worthwhile use of resources. Here, we offer an adaptive management framework to help conservation biologists and managers decide when genomics is likely to be effective in detecting local adaptation, and how to plan assessment and monitoring of adaptive variation to address conservation objectives. Studies of adaptive variation using genomic tools will inform conservation actions in many cases, including applications such as assisted gene flow and identifying conservation units. In others, assessing genetic diversity, inbreeding, and demographics using selectively neutral genetic markers may be most useful. And in some cases, local adaptation may be assessed more efficiently using alternative approaches such as common garden experiments. Here, we identify key considerations of genomics studies of locally adaptive variation, provide a road map for successful collaborations with genomics experts including key issues for study design and data analysis, and offer guidelines for interpreting and using results from genomic assessments to inform monitoring programs and conservation actions.
Collapse
Affiliation(s)
- Sarah P. Flanagan
- National Institute for Mathematical and Biological SynthesisUniversity of TennesseeKnoxvilleTNUSA
| | - Brenna R. Forester
- Duke University, Nicholas School of the EnvironmentDurhamNCUSA
- Present address:
Department of BiologyColorado State UniversityFort CollinsCOUSA
| | - Emily K. Latch
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| | - Sally N. Aitken
- Faculty of ForestryUniversity of British ColumbiaVancouverBCCanada
| | | |
Collapse
|
36
|
Herrando-Moraira S. Exploring data processing strategies in NGS target enrichment to disentangle radiations in the tribe Cardueae (Compositae). Mol Phylogenet Evol 2018; 128:69-87. [PMID: 30036700 DOI: 10.1016/j.ympev.2018.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Target enrichment is a cost-effective sequencing technique that holds promise for elucidating evolutionary relationships in fast-evolving lineages. However, potential biases and impact of bioinformatic sequence treatments in phylogenetic inference have not been thoroughly explored yet. Here, we investigate this issue with an ultimate goal to shed light into a highly diversified group of Compositae (Asteraceae) constituted by four main genera: Arctium, Cousinia, Saussurea, and Jurinea. Specifically, we compared sequence data extraction methods implemented in two easy-to-use workflows, PHYLUCE and HybPiper, and assessed the impact of two filtering practices intended to reduce phylogenetic noise. In addition, we compared two phylogenetic inference methods: (1) the concatenation approach, in which all loci were concatenated in a supermatrix; and (2) the coalescence approach, in which gene trees were produced independently and then used to construct a species tree under coalescence assumptions. Here we confirm the usefulness of the set of 1061 COS targets (a nuclear conserved orthology loci set developed for the Compositae) across a variety of taxonomic levels. Intergeneric relationships were completely resolved: there are two sister groups, Arctium-Cousinia and Saussurea-Jurinea, which are in agreement with a morphological hypothesis. Intrageneric relationships among species of Arctium, Cousinia, and Saussurea are also well defined. Conversely, conflicting species relationships remain for Jurinea. Methodological choices significantly affected phylogenies in terms of topology, branch length, and support. Across all analyses, the phylogeny obtained using HybPiper and the strictest scheme of removing fast-evolving sites was estimated as the optimal. Regarding methodological choices, we conclude that: (1) trees obtained under the coalescence approach are topologically more congruent between them than those inferred using the concatenation approach; (2) refining treatments only improved support values under the concatenation approach; and (3) branch support values are maximized when fast-evolving sites are removed in the concatenation approach, and when a higher number of loci is analyzed in the coalescence approach.
Collapse
Affiliation(s)
- Sonia Herrando-Moraira
- Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain.
| | | |
Collapse
|
37
|
Mukrimin M, Kovalchuk A, Neves LG, Jaber EHA, Haapanen M, Kirst M, Asiegbu FO. Genome-Wide Exon-Capture Approach Identifies Genetic Variants of Norway Spruce Genes Associated With Susceptibility to Heterobasidion parviporum Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:793. [PMID: 29946332 PMCID: PMC6005875 DOI: 10.3389/fpls.2018.00793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/24/2018] [Indexed: 05/03/2023]
Abstract
Root and butt rot caused by members of the Heterobasidion annosum species complex is the most economically important disease of conifer trees in boreal forests. Wood decay in the infected trees dramatically decreases their value and causes considerable losses to forest owners. Trees vary in their susceptibility to Heterobasidion infection, but the genetic determinants underlying the variation in the susceptibility are not well-understood. We performed the identification of Norway spruce genes associated with the resistance to Heterobasidion parviporum infection using genome-wide exon-capture approach. Sixty-four clonal Norway spruce lines were phenotyped, and their responses to H. parviporum inoculation were determined by lesion length measurements. Afterwards, the spruce lines were genotyped by targeted resequencing and identification of genetic variants (SNPs). Genome-wide association analysis identified 10 SNPs located within 8 genes as significantly associated with the larger necrotic lesions in response to H. parviporum inoculation. The genetic variants identified in our analysis are potential marker candidates for future screening programs aiming at the differentiation of disease-susceptible and resistant trees.
Collapse
Affiliation(s)
- Mukrimin Mukrimin
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Department of Forestry, Faculty of Forestry, Hasanuddin University, Makassar, Indonesia
| | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | | | - Emad H. A. Jaber
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Matti Haapanen
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Haynsen MS, Vatanparast M, Mahadwar G, Zhu D, Moger-Reischer RZ, Doyle JJ, Crandall KA, Egan AN. De novo transcriptome assembly of Pueraria montana var. lobata and Neustanthus phaseoloides for the development of eSSR and SNP markers: narrowing the US origin(s) of the invasive kudzu. BMC Genomics 2018; 19:439. [PMID: 29871589 PMCID: PMC5989403 DOI: 10.1186/s12864-018-4798-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Kudzu, Pueraria montana var. lobata, is a woody vine native to Southeast Asia that has been introduced globally for cattle forage and erosion control. The vine is highly invasive in its introduced areas, including the southeastern US. Modern molecular marker resources are limited for the species, despite its importance. Transcriptomes for P. montana var. lobata and a second phaseoloid legume taxon previously ascribed to genus Pueraria, Neustanthus phaseoloides, were generated and mined for microsatellites and single nucleotide polymorphisms. RESULTS Roche 454 sequencing of P. montana var. lobata and N. phaseoloides transcriptomes produced read numbers ranging from ~ 280,000 to ~ 420,000. Trinity assemblies produced an average of 17,491 contigs with mean lengths ranging from 639 bp to 994 bp. Transcriptome completeness, according to BUSCO, ranged between 64 and 77%. After vetting for primer design, there were 1646 expressed simple sequence repeats (eSSRs) identified in P. montana var. lobata and 1459 in N. phaseoloides. From these eSSRs, 17 identical primer pairs, representing inter-generic phaseoloid eSSRs, were created. Additionally, 13 primer pairs specific to P. montana var. lobata were also created. From these 30 primer pairs, a final set of seven primer pairs were used on 68 individuals of P. montana var. lobata for characterization across the US, China, and Japan. The populations exhibited from 20 to 43 alleles across the seven loci. We also conducted pairwise tests for high-confidence SNP discovery from the kudzu transcriptomes we sequenced and two previously sequenced P. montana var. lobata transcriptomes. Pairwise comparisons between P. montana var. lobata ranged from 358 to 24,475 SNPs, while comparisons between P. montana var. lobata and N. phaseoloides ranged from 5185 to 30,143 SNPs. CONCLUSIONS The discovered molecular markers for kudzu provide a starting point for comparative genetic studies within phaseoloid legumes. This study both adds to the current genetic resources and presents the first available genomic resources for the invasive kudzu vine. Additionally, this study is the first to provide molecular evidence to support the hypothesis of Japan as a source of US kudzu and begins to narrow the origin of US kudzu to the central Japanese island of Honshu.
Collapse
Affiliation(s)
- Matthew S. Haynsen
- Department of Biology, George Washington University, Washington, DC USA
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC USA
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| | - Mohammad Vatanparast
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| | - Gouri Mahadwar
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Present address: College of Engineering, Oregon State University, Corvallis, OR USA
| | - Dennis Zhu
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Present address: Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Roy Z. Moger-Reischer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Present address: Department of Biology, Indiana University Bloomington, Bloomington, IN USA
| | - Jeff J. Doyle
- School of Integrated Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, NY USA
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| | - Ashley N. Egan
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC USA
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| |
Collapse
|
39
|
Unruh SA, McKain MR, Lee YI, Yukawa T, McCormick MK, Shefferson RP, Smithson A, Leebens-Mack JH, Pires JC. Phylotranscriptomic analysis and genome evolution of the Cypripedioideae (Orchidaceae). AMERICAN JOURNAL OF BOTANY 2018; 105:631-640. [PMID: 29608785 DOI: 10.1002/ajb2.1047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/20/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The slipper orchids (Cypripedioideae) are a morphologically distinct subfamily of Orchidaceae. They also have some of the largest genomes in the orchids, which may be due to polyploidy or some other mechanism of genome evolution. We generated 10 transcriptomes and incorporated existing RNA-seq data to infer a multilocus nuclear phylogeny of the Cypripedioideae and to determine whether a whole-genome duplication event (WGD) correlated with the large genome size of this subfamily. Knowing more about timing of ancient polyploidy events can help us understand the evolution of one of the most species-rich plant families. METHODS Transcriptome data were used to identify low-copy orthologous genes to infer a phylogeny of Orchidaceae and to identify paralogs to place any WGD events on the species tree. KEY RESULTS Our transcriptome phylogeny confirmed relationships published in previous studies that used fewer markers but incorporated more taxa. We did not find a WGD event at the base of the slipper orchids; however, we did identify one on the Orchidaceae stem lineage. We also confirmed the presence of a previously identified WGD event deeper in the monocot phylogeny. CONCLUSIONS Although WGD has played a role in the evolution of Orchidaceae, polyploidy does not appear to be responsible for the large genome size of slipper orchids. The conserved set of 775 largely single-copy nuclear genes identified in this study should prove useful in future studies of orchid evolution.
Collapse
Affiliation(s)
- Sarah A Unruh
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Michael R McKain
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Yung-I Lee
- Department of Biology, National Museum of Natural Science, Taichung 404, Taiwan
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Science Museum, Amakubo, Tsukuba, 305-0005, Japan
| | | | - Richard P Shefferson
- Organization for Programs on Environmental Sciences, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Ann Smithson
- Smithson Environmental Consultancy & DNALabs Environmental Genetics Testing, Bassendean, Western Australia, 6054
| | | | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
40
|
Saeidi S, McKain MR, Kellogg EA. Robust DNA Isolation and High-throughput Sequencing Library Construction for Herbarium Specimens. J Vis Exp 2018:56837. [PMID: 29578505 PMCID: PMC5946958 DOI: 10.3791/56837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Herbaria are an invaluable source of plant material that can be used in a variety of biological studies. The use of herbarium specimens is associated with a number of challenges including sample preservation quality, degraded DNA, and destructive sampling of rare specimens. In order to more effectively use herbarium material in large sequencing projects, a dependable and scalable method of DNA isolation and library preparation is needed. This paper demonstrates a robust, beginning-to-end protocol for DNA isolation and high-throughput library construction from herbarium specimens that does not require modification for individual samples. This protocol is tailored for low quality dried plant material and takes advantage of existing methods by optimizing tissue grinding, modifying library size selection, and introducing an optional reamplification step for low yield libraries. Reamplification of low yield DNA libraries can rescue samples derived from irreplaceable and potentially valuable herbarium specimens, negating the need for additional destructive sampling and without introducing discernible sequencing bias for common phylogenetic applications. The protocol has been tested on hundreds of grass species, but is expected to be adaptable for use in other plant lineages after verification. This protocol can be limited by extremely degraded DNA, where fragments do not exist in the desired size range, and by secondary metabolites present in some plant material that inhibit clean DNA isolation. Overall, this protocol introduces a fast and comprehensive method that allows for DNA isolation and library preparation of 24 samples in less than 13 h, with only 8 h of active hands-on time with minimal modifications.
Collapse
Affiliation(s)
| | - Michael R McKain
- Donald Danforth Plant Science Center; Department of Biological Sciences, The University of Alabama;
| | | |
Collapse
|
41
|
Chau JH, Rahfeldt WA, Olmstead RG. Comparison of taxon-specific versus general locus sets for targeted sequence capture in plant phylogenomics. APPLICATIONS IN PLANT SCIENCES 2018; 6:e1032. [PMID: 29732262 PMCID: PMC5895190 DOI: 10.1002/aps3.1032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/22/2017] [Indexed: 05/21/2023]
Abstract
PREMISE OF THE STUDY Targeted sequence capture can be used to efficiently gather sequence data for large numbers of loci, such as single-copy nuclear loci. Most published studies in plants have used taxon-specific locus sets developed individually for a clade using multiple genomic and transcriptomic resources. General locus sets can also be developed from loci that have been identified as single-copy and have orthologs in large clades of plants. METHODS We identify and compare a taxon-specific locus set and three general locus sets (conserved ortholog set [COSII], shared single-copy nuclear [APVO SSC] genes, and pentatricopeptide repeat [PPR] genes) for targeted sequence capture in Buddleja (Scrophulariaceae) and outgroups. We evaluate their performance in terms of assembly success, sequence variability, and resolution and support of inferred phylogenetic trees. RESULTS The taxon-specific locus set had the most target loci. Assembly success was high for all locus sets in Buddleja samples. For outgroups, general locus sets had greater assembly success. Taxon-specific and PPR loci had the highest average variability. The taxon-specific data set produced the best-supported tree, but all data sets showed improved resolution over previous non-sequence capture data sets. DISCUSSION General locus sets can be a useful source of sequence capture targets, especially if multiple genomic resources are not available for a taxon.
Collapse
Affiliation(s)
- John H. Chau
- Department of Biology and Burke MuseumUniversity of WashingtonBox 351800SeattleWashington98195USA
- Centre for Ecological Genomics and Wildlife ConservationDepartment of ZoologyUniversity of JohannesburgP.O. Box 524Auckland Park2006South Africa
| | - Wolfgang A. Rahfeldt
- Department of Biology and Burke MuseumUniversity of WashingtonBox 351800SeattleWashington98195USA
| | - Richard G. Olmstead
- Department of Biology and Burke MuseumUniversity of WashingtonBox 351800SeattleWashington98195USA
| |
Collapse
|
42
|
Kamvar ZN, Amaradasa BS, Jhala R, McCoy S, Steadman JR, Everhart SE. Population structure and phenotypic variation of Sclerotinia sclerotiorum from dry bean ( Phaseolus vulgaris) in the United States. PeerJ 2017; 5:e4152. [PMID: 29230376 PMCID: PMC5723432 DOI: 10.7717/peerj.4152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/20/2017] [Indexed: 02/03/2023] Open
Abstract
The ascomycete pathogen Sclerotinia sclerotiorum is a necrotrophic pathogen on over 400 known host plants, and is the causal agent of white mold on dry bean. Currently, there are no known cultivars of dry bean with complete resistance to white mold. For more than 20 years, bean breeders have been using white mold screening nurseries (wmn) with natural populations of S. sclerotiorum to screen new cultivars for resistance. It is thus important to know if the genetic diversity in populations of S. sclerotiorum within these nurseries (a) reflect the genetic diversity of the populations in the surrounding region and (b) are stable over time. Furthermore, previous studies have investigated the correlation between mycelial compatibility groups (MCG) and multilocus haplotypes (MLH), but none have formally tested these patterns. We genotyped 366 isolates of S. sclerotiorum from producer fields and wmn surveyed over 10 years in 2003-2012 representing 11 states in the United States of America, Australia, France, and Mexico at 11 microsatellite loci resulting in 165 MLHs. Populations were loosely structured over space and time based on analysis of molecular variance and discriminant analysis of principal components, but not by cultivar, aggressiveness, or field source. Of all the regions tested, only Mexico (n = 18) shared no MLHs with any other region. Using a bipartite network-based approach, we found no evidence that the MCGs accurately represent MLHs. Our study suggests that breeders should continue to test dry bean lines in several wmn across the United States to account for both the phenotypic and genotypic variation that exists across regions.
Collapse
Affiliation(s)
- Zhian N. Kamvar
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - B. Sajeewa Amaradasa
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
- Current affiliation: Plant Pathology Department, University of Florida, Gainsville, FL, USA
| | - Rachana Jhala
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
- Current affiliation: Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Serena McCoy
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - James R. Steadman
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | | |
Collapse
|
43
|
A pilot study applying the plant Anchored Hybrid Enrichment method to New World sages (Salvia subgenus Calosphace; Lamiaceae). Mol Phylogenet Evol 2017; 117:124-134. [DOI: 10.1016/j.ympev.2017.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
|
44
|
Tigano A, Sackton TB, Friesen VL. Assembly and RNA-free annotation of highly heterozygous genomes: The case of the thick-billed murre (Uria lomvia). Mol Ecol Resour 2017; 18:79-90. [PMID: 28815912 DOI: 10.1111/1755-0998.12712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Abstract
Thanks to a dramatic reduction in sequencing costs followed by a rapid development of bioinformatics tools, genome assembly and annotation have become accessible to many researchers in recent years. Among tetrapods, birds have genomes that display many features that facilitate their assembly and annotation, such as small genome size, low number of repeats and highly conserved genomic structure. However, we found that high genomic heterozygosity could have a great impact on the quality of the genome assembly of the thick-billed murre (Uria lomvia), an arctic colonial seabird. In this study, we tested the performance of three genome assemblers, ray/sscape, soapdenovo2 and platanus, in assembling the highly heterozygous genome of the thick-billed murre. Our results show that platanus, an assembler specifically designed for heterozygous genomes, outperforms the other two approaches and produces a highly contiguous (N50 = 15.8 Mb) and complete genome assembly (93% presence of genes from the Benchmarking Universal Single Copy Ortholog [BUSCO] gene set). Additionally, we annotated the thick-billed murre genome using a homology-based approach that takes advantage of the genomic resources available for birds and other taxa. Our study will be useful for those researchers who are approaching assembly and annotation of highly heterozygous genomes, or genomes of species of conservation concern, and/or who have limited financial resources.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Vicki L Friesen
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
45
|
Di Donato A, Andolfo G, Ferrarini A, Delledonne M, Ercolano MR. Investigation of orthologous pathogen recognition gene-rich regions in solanaceous species. Genome 2017; 60:850-859. [PMID: 28742982 DOI: 10.1139/gen-2016-0217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathogen receptor proteins such as receptor-like protein (RLP), receptor-like kinase (RLK), and nucleotide-binding leucine-rich repeat (NLR) play a leading role in plant immunity activation. The genome architecture of such genes has been extensively investigated in several plant species. However, we still know little about their elaborate reorganization that arose during the plant speciation process. Using recently released pepper and eggplant genome sequences, we were able to identify 1097 pathogen recognition genes (PRGs) in the cultivated pepper Zunla-1 and 775 in the eggplant line Nakate-Shinkuro. The retrieved genes were analysed for their tendency to cluster, using different methods to infer the means of grouping. Orthologous relationships among clustering loci were found, and interesting reshuffling within given loci was observed for each analysed species. The information obtained was integrated into a comparative map to highlight the evolutionary dynamics in which the PRG loci were involved. Diversification of 14 selected PRG-rich regions was also explored using a DNA target-enrichment approach. A large number of gene variants were found as well as rearrangements of sequences encoding single protein domain and changes in chromosome gene order among species. Gene duplication and transposition activity have clearly influenced plant genome R-gene architecture and diversification. Our findings contribute to addressing several biological questions concerning the parallel evolution that occurred between genomes of the family Solanaceae. Moreover, the integration of different methods proved a powerful approach to reconstruct the evolutionary history in plant families and to transfer important biology findings among plant genomes.
Collapse
Affiliation(s)
- A Di Donato
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - G Andolfo
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - A Ferrarini
- b Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - M Delledonne
- b Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - M R Ercolano
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| |
Collapse
|
46
|
Peng Z, Fan W, Wang L, Paudel D, Leventini D, Tillman BL, Wang J. Target enrichment sequencing in cultivated peanut (Arachis hypogaea L.) using probes designed from transcript sequences. Mol Genet Genomics 2017; 292:955-965. [PMID: 28492983 DOI: 10.1007/s00438-017-1327-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/07/2017] [Indexed: 11/29/2022]
Abstract
Enabled by the next generation sequencing, target enrichment sequencing (TES) is a powerful method to enrich genomic regions of interest and to identify sequence variations. The objective of this study was to explore the feasibility of probe design from transcript sequences for TES application in calling sequence variants in peanut, an important allotetraploid crop with a large genome size. In this study, we applied an in-solution hybridization method to enrich DNA sequences of seven peanut genotypes. Our results showed that it is feasible to apply TES with probes designed from transcript sequences in polyploid peanut. Using a set of 31,123 probes, a total of 5131 and 7521 genes were targeted in peanut A and B genomes, respectively. For each genotype used in this study, the probe target capture regions were efficiently covered with high depth. The average on-target rate of sequencing reads was 42.47%, with a significant amount of off-target reads coming from genomic regions homologous to target regions. In this study, when given predefined genomic regions of interest and the same amount of sequencing data, TES provided the highest coverage of target regions when compared to whole genome sequencing, RNA sequencing, and genotyping by sequencing. Single nucleotide polymorphism (SNP) calling and subsequent validation revealed a high validation rate (85.71%) of homozygous SNPs, providing valuable markers for peanut genotyping. This study demonstrated the success of applying TES for SNP identification in peanut, which shall provide valuable suggestions for TES application in other non-model species without a genome reference available.
Collapse
Affiliation(s)
- Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Wen Fan
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Liping Wang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Dev Paudel
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Dante Leventini
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Barry L Tillman
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA.
- Center for Genomics and Biotechnology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
47
|
Wit J, Gilleard JS. Resequencing Helminth Genomes for Population and Genetic Studies. Trends Parasitol 2017; 33:388-399. [DOI: 10.1016/j.pt.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
48
|
Vertacnik KL, Linnen CR. Evolutionary genetics of host shifts in herbivorous insects: insights from the age of genomics. Ann N Y Acad Sci 2017; 1389:186-212. [DOI: 10.1111/nyas.13311] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
|
49
|
Marine genomics: News and views. Mar Genomics 2017; 31:1-8. [DOI: 10.1016/j.margen.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 11/23/2022]
|
50
|
Schott RK, Panesar B, Card DC, Preston M, Castoe TA, Chang BS. Targeted Capture of Complete Coding Regions across Divergent Species. Genome Biol Evol 2017; 9:398-414. [PMID: 28137744 PMCID: PMC5381602 DOI: 10.1093/gbe/evx005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Despite continued advances in sequencing technologies, there is a need for methods that can efficiently sequence large numbers of genes from diverse species. One approach to accomplish this is targeted capture (hybrid enrichment). While these methods are well established for genome resequencing projects, cross-species capture strategies are still being developed and generally focus on the capture of conserved regions, rather than complete coding regions from specific genes of interest. The resulting data is thus useful for phylogenetic studies, but the wealth of comparative data that could be used for evolutionary and functional studies is lost. Here, we design and implement a targeted capture method that enables recovery of complete coding regions across broad taxonomic scales. Capture probes were designed from multiple reference species and extensively tiled in order to facilitate cross-species capture. Using novel bioinformatics pipelines we were able to recover nearly all of the targeted genes with high completeness from species that were up to 200 myr divergent. Increased probe diversity and tiling for a subset of genes had a large positive effect on both recovery and completeness. The resulting data produced an accurate species tree, but importantly this same data can also be applied to studies of molecular evolution and function that will allow researchers to ask larger questions in broader phylogenetic contexts. Our method demonstrates the utility of cross-species approaches for the capture of full length coding sequences, and will substantially improve the ability for researchers to conduct large-scale comparative studies of molecular evolution and function.
Collapse
Affiliation(s)
- Ryan K. Schott
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Bhawandeep Panesar
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Daren C. Card
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Matthew Preston
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Todd A. Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Belinda S.W. Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
- Centre for the Analysis of Genomes and Function, University of Toronto, Canada
| |
Collapse
|