1
|
Li S, Fan J, Xue C, Shan H, Kong H. Spur development and evolution: An update. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102573. [PMID: 38896925 DOI: 10.1016/j.pbi.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Floral spurs, widely recognized as a classic example of key morphological and functional innovation and thought to have promoted the origin and adaptive evolution of many flowering plant lineages, have attracted the attention of researchers for centuries. Despite this, the mechanisms underlying the development and evolution of these structures remain poorly understood. Recent studies have discovered the phytohormones and transcription factor genes that play key roles in regulating patterns of cell division and cell expansion during spur morphogenesis. Spur morphogenesis was also found to be tightly linked with the programs specifying floral zygomorphy, floral organ identity determination, and nectary development. Independent origins and losses of spurs in different flowering plant lineages, therefore, may be attributed to changes in the spur program and/or its upstream ones.
Collapse
Affiliation(s)
- Shuixian Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannan Fan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Xue
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Hongyan Shan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongzhi Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Pokorny L, Pellicer J, Woudstra Y, Christenhusz MJM, Garnatje T, Palazzesi L, Johnson MG, Maurin O, Françoso E, Roy S, Leitch IJ, Forest F, Baker WJ, Hidalgo O. Genomic incongruence accompanies the evolution of flower symmetry in Eudicots: a case study in the poppy family (Papaveraceae, Ranunculales). FRONTIERS IN PLANT SCIENCE 2024; 15:1340056. [PMID: 38947944 PMCID: PMC11212465 DOI: 10.3389/fpls.2024.1340056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 07/02/2024]
Abstract
Reconstructing evolutionary trajectories and transitions that have shaped floral diversity relies heavily on the phylogenetic framework on which traits are modelled. In this study, we focus on the angiosperm order Ranunculales, sister to all other eudicots, to unravel higher-level relationships, especially those tied to evolutionary transitions in flower symmetry within the family Papaveraceae. This family presents an astonishing array of floral diversity, with actinomorphic, disymmetric (two perpendicular symmetry axes), and zygomorphic flowers. We generated nuclear and plastid datasets using the Angiosperms353 universal probe set for target capture sequencing (of 353 single-copy nuclear ortholog genes), together with publicly available transcriptome and plastome data mined from open-access online repositories. We relied on the fossil record of the order Ranunculales to date our phylogenies and to establish a timeline of events. Our phylogenomic workflow shows that nuclear-plastid incongruence accompanies topological uncertainties in Ranunculales. A cocktail of incomplete lineage sorting, post-hybridization introgression, and extinction following rapid speciation most likely explain the observed knots in the topology. These knots coincide with major floral symmetry transitions and thus obscure the order of evolutionary events.
Collapse
Affiliation(s)
- Lisa Pokorny
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| | - Yannick Woudstra
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Maarten J. M. Christenhusz
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
- Jardí Botànic Marimurtra, Fundació Carl Faust, Blanes, Spain
| | - Luis Palazzesi
- División Paleobotánica, Museo Argentino de Ciencias Naturales, CONICET, Buenos Aires, Argentina
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | | | | | - Shyamali Roy
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| |
Collapse
|
3
|
Maio KA, Moubayidin L. 'Organ'ising Floral Organ Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1595. [PMID: 38931027 PMCID: PMC11207604 DOI: 10.3390/plants13121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Flowers are plant structures characteristic of the phylum Angiosperms composed of organs thought to have emerged from homologous structures to leaves in order to specialize in a distinctive function: reproduction. Symmetric shapes, colours, and scents all play important functional roles in flower biology. The evolution of flower symmetry and the morphology of individual flower parts (sepals, petals, stamens, and carpels) has significantly contributed to the diversity of reproductive strategies across flowering plant species. This diversity facilitates attractiveness for pollination, protection of gametes, efficient fertilization, and seed production. Symmetry, the establishment of body axes, and fate determination are tightly linked. The complex genetic networks underlying the establishment of organ, tissue, and cellular identity, as well as the growth regulators acting across the body axes, are steadily being elucidated in the field. In this review, we summarise the wealth of research already at our fingertips to begin weaving together how separate processes involved in specifying organ identity within the flower may interact, providing a functional perspective on how identity determination and axial regulation may be coordinated to inform symmetrical floral organ structures.
Collapse
Affiliation(s)
| | - Laila Moubayidin
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK;
| |
Collapse
|
4
|
Lv X, Wang Y, Wang X, Zhang M, Zhang Y, Zhao L, Zhang X. Development and anatomy of petals with specialized nectar holder and pollen container in Fumarioideae (Papaveraceae). PLANTA 2024; 260:21. [PMID: 38847829 DOI: 10.1007/s00425-024-04453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/28/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Petal developmental characteristics in Fumarioideae were similar at early stages, and the specialized nectar holder/pollen container formed by the outer/inner petals. The micro-morphology of these two structures, however, shows diversity in seven species. Elaborate petals have been modified to form different types, including petal lobes, ridges, protuberances, and spurs, each with specialized functions. Nectar holder and pollen container presumably have a function in plant-pollinator interactions. In Fumarioideae, four elaborate petals of the disymmetric/zygomorphic flower present architecture forming the "nectar holder" and "pollen container" structure at the bottom and top separately. In the present study, the petals of seven species in Fumarioideae were investigated by scanning electron microscopy, light microscope, and transmission electron microscopes. The results show that petal development could divided into six stages: initiation, enlargement, adaxial/abaxial differentiation, elaborate specializations (sacs, spurs, and lobes formed), extension, and maturation, while the specialized "nectar holder" and "pollen container" structures mainly formed in stage 4. "Nectar holder" is developed from the shallow sac/spur differentiated at the base of the outer petal, eventually forming a multi-organized complex structure, together with staminal nectaries (1-2) with individual sizes. A semi-closed ellipsoidal "pollen container" is developed from the apical part of the 3-lobed inner petals fused by middle lobes and attain different sizes. The adaxial epidermis cells are specialized, with more distinct punctate/dense columnar protrusions or wavy cuticles presented on obviously thickening cell walls. In addition, a large and well-developed cavity appears between the inner and outer epidermis of the petals. As an exception, Hypecoum erectum middle lobes present stamen mimicry. Elaborate petal structure is crucial for comprehending the petal diversity in Fumarioideae and provides more evidence for further exploration of the reproductive study in Papaveraceae.
Collapse
Affiliation(s)
- Xuqian Lv
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yaxi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xiaojia Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Mingyue Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuqu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Xianyang, China
| | - Liang Zhao
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiaohui Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
5
|
Becker A, Bachelier JB, Carrive L, Conde E Silva N, Damerval C, Del Rio C, Deveaux Y, Di Stilio VS, Gong Y, Jabbour F, Kramer EM, Nadot S, Pabón-Mora N, Wang W. A cornucopia of diversity-Ranunculales as a model lineage. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1800-1822. [PMID: 38109712 DOI: 10.1093/jxb/erad492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike.
Collapse
Affiliation(s)
- Annette Becker
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Giessen, Germany
| | - Julien B Bachelier
- Institute of Biology/Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Laetitia Carrive
- Université de Rennes, UMR CNRS 6553, Ecosystèmes-Biodiversité-Evolution, Campus de Beaulieu, 35042 Rennes cedex, France
| | - Natalia Conde E Silva
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Catherine Damerval
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Cédric Del Rio
- CR2P - Centre de Recherche en Paléontologie - Paris, MNHN - Sorbonne Université - CNRS, 43 Rue Buffon, 75005 Paris, France
| | - Yves Deveaux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190 Gif-sur-Yvette, France
| | | | - Yan Gong
- Department of Organismic and Evolutionary Biology, Harvard University, MA, 02138, USA
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, Paris, 75005, France
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, MA, 02138, USA
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie, Systématique et Evolution, Gif-sur-Yvette, France
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China and University of Chinese Academy of Sciences, Beijing, 100049China
| |
Collapse
|
6
|
Wang XJ, Lv XQ, Zhu QQ, Zhang XH. Diversity of staminal nectariferous appendages in disymmetric and zygomorphic flowers of Fumarioideae (Papaveraceae). PROTOPLASMA 2023; 260:1453-1467. [PMID: 37156937 DOI: 10.1007/s00709-023-01861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Staminal nectaries show diversity in their position, size, shape, color, and number in Ranunculales. In Papaveraceae, nectaries only appear at the base of stamen in these lineages with disymmetric and zygomorphic flowers. However, the diversity of the staminal nectaries' developmental characteristics and structure is unknown. The diversity of staminal nectaries of Hypecoum erectum, Ichtyoselmis macrantha, Adlumia asiatica, Dactylicapnos torulosa, Corydalis edulis, and Fumaria officinalis (six species belonging to six genera, respectively) in the Fumarioideae was investigated under scanning electron microscopy, light microscopy, and transmission electron microscopy. In all species studied, according to the developmental characteristics of the nectaries, four developmental stages can be divided into initiation, enlargement, differentiation, and maturation, and the number of nectaries can be determined at the stage of initiation (stage 1), and morphological differentiation occurs at the developmental stage 3. The staminal nectaries consist of secretory epidermis, parenchyma tissue, and phloem with some sieve tube elements reaching the secretory parenchyma cells; however, the number of cell layers of parenchyma can vary from 30 to 40 in I. macrantha and D. torulosa, to only 5 to 10 like in F. officinalis. Secretory epidermis cells are larger than secretory parenchyma cells with abundant microchannels on the outer cell wall. There were abundant mitochondria, Golgi bodies, rough endoplasmic reticulum, and plastids in secretory parenchyma cells. Nectar is stored in the intercellular space and exuded to the exterior via microchannels. In A. asiatica, according to the evidence of small secretory cell characteristics such as dense cytoplasm, and numerous mitochondria, together with the filamentous secretions present on the surface of epidermal cells on groove, it can be inferred that the U-shaped sulcate which is located in the white projection formed at the filament of triplets in A. asiatica is nectariferous.
Collapse
Affiliation(s)
- Xiao-Jia Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Xu-Qian Lv
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Qing-Qing Zhu
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiao-Hui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
7
|
Li Y, Wei CM, Li XY, Meng DC, Gu ZJ, Qu SP, Huang MJ, Huang HQ. De novo transcriptome sequencing of Impatiens uliginosa and the analysis of candidate genes related to spur development. BMC PLANT BIOLOGY 2022; 22:553. [PMID: 36456926 PMCID: PMC9713998 DOI: 10.1186/s12870-022-03894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Spur, a structure capable of producing and storing nectar, not only plays a vital role in the pollination process but also promotes the rapid diversification of some plant lineages, which is considered a key innovation in plants. Spur is the focus of many studies, such as evolution and ecological hypothesis, but the current understanding of spur development is limited. High-throughput sequencing of Impatiens uliginosa was carried out to study the molecular mechanism of its spur development, which is believed to provide some insights into the spur development of Impatiens. RESULTS Transcriptomic sequencing and analysis were performed on spurs and limbs of I. uliginosa at three developmental stages. A total of 47.83 Gb of clean data were obtained, and 49,716 unigene genes were assembled. After comparison with NR, Swiss-Prot, Pfam, COG, GO and KEGG databases, a total of 27,686 genes were annotated successfully. Through comparative analysis, 19,356 differentially expressed genes were found and enriched into 208 GO terms and 146 KEGG pathways, among which plant hormone signal transduction was the most significantly enriched pathway. One thousand thirty-two transcription factors were identified, which belonged to 33 TF families such as MYB, bHLH and TCP. Twenty candidate genes that may be involved in spur development were screened and verified by qPCR, such as SBP, IAA and ABP. CONCLUSIONS Transcriptome data of different developmental stages of spurs were obtained, and a series of candidate genes related to spur development were identified. The importance of genes related to cell cycle, cell division, cell elongation and hormones in spur development was clarified. This study provided valuable information and resources for understanding the molecular mechanism of spur development in Impatiens.
Collapse
Affiliation(s)
- Yang Li
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Chun-Mei Wei
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Xin-Yi Li
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Dan-Chen Meng
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Zhi-Jia Gu
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Su-Ping Qu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Mei-Juan Huang
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Hai-Quan Huang
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| |
Collapse
|
8
|
Damerval C, Claudot C, Le Guilloux M, Conde e Silva N, Brunaud V, Soubigou-Taconnat L, Caius J, Delannoy E, Nadot S, Jabbour F, Deveaux Y. Evolutionary analyses and expression patterns of TCP genes in Ranunculales. FRONTIERS IN PLANT SCIENCE 2022; 13:1055196. [PMID: 36531353 PMCID: PMC9752903 DOI: 10.3389/fpls.2022.1055196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
TCP transcription factors play a role in a large number of developmental processes and are at the crossroads of numerous hormonal biosynthetic and signaling pathways. The complete repertoire of TCP genes has already been characterized in several plant species, but not in any species of early diverging eudicots. We focused on the order Ranunculales because of its phylogenetic position as sister group to all other eudicots and its important morphological diversity. Results show that all the TCP genes expressed in the floral transcriptome of Nigella damascena (Ranunculaceae) are the orthologs of the TCP genes previously identified from the fully sequenced genome of Aquilegia coerulea. Phylogenetic analyses combined with the identification of conserved amino acid motifs suggest that six paralogous genes of class I TCP transcription factors were present in the common ancestor of angiosperms. We highlight independent duplications in core eudicots and Ranunculales within the class I and class II subfamilies, resulting in different numbers of paralogs within the main subclasses of TCP genes. This has most probably major consequences on the functional diversification of these genes in different plant clades. The expression patterns of TCP genes in Nigella damascena were consistent with the general suggestion that CIN and class I TCP genes may have redundant roles or take part in same pathways, while CYC/TB1 genes have more specific actions. Our findings open the way for future studies at the tissue level, and for investigating redundancy and subfunctionalisation in TCP genes and their role in the evolution of morphological novelties.
Collapse
Affiliation(s)
- Catherine Damerval
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Carmine Claudot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Martine Le Guilloux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Natalia Conde e Silva
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Ludivine Soubigou-Taconnat
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - José Caius
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Yves Deveaux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Pabón-Mora N, Madrigal Y, Alzate JF, Ambrose BA, Ferrándiz C, Wanke S, Neinhuis C, González F. Evolution of Class II TCP genes in perianth bearing Piperales and their contribution to the bilateral calyx in Aristolochia. THE NEW PHYTOLOGIST 2020; 228:752-769. [PMID: 32491205 DOI: 10.1111/nph.16719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/20/2020] [Indexed: 05/21/2023]
Abstract
Controlled spatiotemporal cell division and expansion are responsible for floral bilateral symmetry. Genetic studies have pointed to class II TCP genes as major regulators of cell division and floral patterning in model core eudicots. Here we study their evolution in perianth-bearing Piperales and their expression in Aristolochia, a rare occurrence of bilateral perianth outside eudicots and monocots. The evolution of class II TCP genes reveals single-copy CYCLOIDEA-like genes and three paralogs of CINCINNATA (CIN) in early diverging angiosperms. All class II TCP genes have independently duplicated in Aristolochia subgenus Siphisia. Also CIN2 genes duplicated before the diversification of Saruma and Asarum. Sequence analysis shows that CIN1 and CIN3 share motifs with Cyclin proteins and CIN2 genes have lost the miRNA319a binding site. Expression analyses of all paralogs of class II TCP genes in Aristolochia fimbriata point to a role of CYC and CIN genes in maintaining differential perianth expansion during mid- and late flower developmental stages by promoting cell division in the distal and ventral portion of the limb. It is likely that class II TCP genes also contribute to cell division in the leaf, the gynoecium and the ovules in A. fimbriata.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
- Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany
| | - Yesenia Madrigal
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Juan F Alzate
- Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia
| | | | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Valencia, 46022, Spain
| | - Stefan Wanke
- Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany
| | - Christoph Neinhuis
- Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany
| | - Favio González
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| |
Collapse
|
10
|
Zhao Y, Pfannebecker K, Dommes AB, Hidalgo O, Becker A, Elomaa P. Evolutionary diversification of CYC/TB1-like TCP homologs and their recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots). THE NEW PHYTOLOGIST 2018; 220:317-331. [PMID: 29949661 DOI: 10.1111/nph.15289] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Angiosperms possess enormous morphological variation in plant architectures and floral forms. Previous studies in Pentapetalae and monocots have demonstrated the involvement of TCP domain CYCLOIDEA/TEOSINTE BRANCHED1-like (CYC/TB1) genes in the control of floral symmetry and shoot branching. However, how TCP/CYC-like (CYL) genes originated, evolved and functionally diversified remain unclear. We conducted a comparative functional study in Ranunculales, the sister lineage to all other eudicots, between Eschscholzia californica and Cysticapnos vesicaria, two species of Papaveraceae with actinomorphic and zygomorphic flowers, respectively. Phylogenetic analysis indicates that CYL genes in Papaveraceae form two paralogous lineages, PapaCYL1 and PapaCYL2. Papaveraceae CYL genes show highly diversified expression patterns as well as functions. Enhanced branching by silencing of EscaCYL1 suggests that the role of CYC/TB1-like genes in branching control is conserved in Papaveraceae. In contrast to the arrest of stamen development in Pentapetalae, PapaCYL genes promote stamen initiation and growth. In addition, we demonstrate that CyveCYLs are involved in perianth development, specifying sepal and petal identity in Cysticapnos by regulating the B-class floral organ identity genes. Our data also suggest the involvement of CyveCYL genes in the regulation of flower symmetry in Cysticapnos. Our work provides evidence of the importance of TCP/CYC-like genes in the promotion of morphological diversity across angiosperms.
Collapse
Affiliation(s)
- Yafei Zhao
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Kai Pfannebecker
- Institute of Botany, University of Giessen, Giessen, 35392, Germany
| | | | - Oriane Hidalgo
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3AB, UK
| | - Annette Becker
- Institute of Botany, University of Giessen, Giessen, 35392, Germany
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
11
|
Hsu HJ, He CW, Kuo WH, Hsin KT, Lu JY, Pan ZJ, Wang CN. Genetic Analysis of Floral Symmetry Transition in African Violet Suggests the Involvement of Trans-acting Factor for CYCLOIDEA Expression Shifts. FRONTIERS IN PLANT SCIENCE 2018; 9:1008. [PMID: 30158940 PMCID: PMC6104639 DOI: 10.3389/fpls.2018.01008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/21/2018] [Indexed: 05/29/2023]
Abstract
With the growing demand for its ornamental uses, the African violet (Saintpaulia ionantha) has been popular owing to its variations in color, shape and its rapid responses to artificial selection. Wild type African violet (WT) is characterized by flowers with bilateral symmetry yet reversals showing radially symmetrical flowers such as dorsalized actinomorphic (DA) and ventralized actinomorphic (VA) peloria are common. Genetic crosses among WT, DA, and VA revealed that these floral symmetry transitions are likely to be controlled by three alleles at a single locus in which the levels of dominance are in a hierarchical fashion. To investigate whether the floral symmetry gene was responsible for these reversals, orthologs of CYCLOIDEA (CYC) were isolated and their expressions correlated to floral symmetry transitions. Quantitative RT-PCR and in situ results indicated that dorsal-specific CYCs expression in WT S. ionantha (SiCYC and SiCYC1B) shifted in DA with a heterotopically extended expression to all petals, but in VA, SiCYC1s' dorsally specific expressions were greatly reduced. Selection signature analysis revealed that the major high-expressed copy of SiCYC had been constrained under purifying selection, whereas the low-expressed helper SiCYC1B appeared to be relaxed under purifying selection after the duplication into SiCYC and SiCYC1B. Heterologous expression of SiCYC in Arabdiopsis showed petal growth retardation which was attributed to limited cell proliferation. While expression shifts of SiCYC and SiCYC1B correlate perfectly to the resulting symmetry phenotype transitions in F1s of WT and DA, there is no certain allelic combination of inherited SiCYC1s associated with specific symmetry phenotypes. This floral transition indicates that although the expression shifts of SiCYC/1B are responsible for the two contrasting actinomorphic reversals in African violet, they are likely to be controlled by upstream trans-acting factors or epigenetic regulations.
Collapse
Affiliation(s)
- Hui-Ju Hsu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Wen He
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsi Kuo
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Ting Hsin
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Jing-Yi Lu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Zhao-Jun Pan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chun-Neng Wang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Spencer V, Kim M. Re“CYC”ling molecular regulators in the evolution and development of flower symmetry. Semin Cell Dev Biol 2018; 79:16-26. [DOI: 10.1016/j.semcdb.2017.08.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/28/2017] [Indexed: 11/27/2022]
|
13
|
Sengupta A, Hileman LC. Novel Traits, Flower Symmetry, and Transcriptional Autoregulation: New Hypotheses From Bioinformatic and Experimental Data. FRONTIERS IN PLANT SCIENCE 2018; 9:1561. [PMID: 30416508 PMCID: PMC6212560 DOI: 10.3389/fpls.2018.01561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/05/2018] [Indexed: 05/18/2023]
Abstract
A common feature in developmental networks is the autoregulation of transcription factors which, in turn, positively or negatively regulate additional genes critical for developmental patterning. When a transcription factor regulates its own expression by binding to cis-regulatory sites in its gene, the regulation is direct transcriptional autoregulation (DTA). Indirect transcriptional autoregulation (ITA) involves regulation by proteins expressed downstream of the target transcription factor. We review evidence for a hypothesized role of DTA in the evolution and development of novel flowering plant phenotypes. We additionally provide new bioinformatic and experimental analyses that support a role for transcriptional autoregulation in the evolution of flower symmetry. We find that 5' upstream non-coding regions are significantly enriched for predicted autoregulatory sites in Lamiales CYCLOIDEA genes-an upstream regulator of flower monosymmetry. This suggests a possible correlation between autoregulation of CYCLOIDEA and the origin of monosymmetric flowers near the base of Lamiales, a pattern that may be correlated with independently derived monosymmetry across eudicot lineages. We find additional evidence for transcriptional autoregulation in the flower symmetry program, and report that Antirrhinum DRIF2 may undergo ITA. In light of existing data and new data presented here, we hypothesize how cis-acting autoregulatory sites originate, and find evidence that such sites (and DTA) can arise subsequent to the evolution of a novel phenotype.
Collapse
|
14
|
Damerval C, Becker A. Genetics of flower development in Ranunculales - a new, basal eudicot model order for studying flower evolution. THE NEW PHYTOLOGIST 2017; 216:361-366. [PMID: 28052360 DOI: 10.1111/nph.14401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/20/2016] [Indexed: 05/20/2023]
Abstract
Contents 361 I. 361 II. 362 III. 363 IV. 364 V. 364 Acknowledgements 365 References 365 SUMMARY: Ranunculales, the sister group to all other eudicots, encompasses species with a remarkable floral diversity, which are currently emerging as new model organisms to address questions relating to the genetic architecture of flower morphology and its evolution. These questions concern either traits only found in members of the Ranunculales or traits that have convergently evolved in other large clades of flowering plants. We present recent results obtained on floral organ identity and number, symmetry evolution and spur formation in Ranunculales species. We discuss benefits and future prospects of evo-devo studies in Ranunculales, which can provide the opportunity to decipher the genetic architecture of novel floral traits and also to appraise the degree of conservation of genetic mechanisms involved in homoplasious traits.
Collapse
Affiliation(s)
- Catherine Damerval
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Annette Becker
- Justus-Liebig-Universität Gießen, Institut für Botanik, Heinrich-Buff-Ring 38, Gießen, 35392, Germany
| |
Collapse
|
15
|
Citerne HL, Reyes E, Le Guilloux M, Delannoy E, Simonnet F, Sauquet H, Weston PH, Nadot S, Damerval C. Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry. ANNALS OF BOTANY 2017; 119:367-378. [PMID: 28025288 PMCID: PMC5314643 DOI: 10.1093/aob/mcw219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/17/2016] [Accepted: 09/14/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS The basal eudicot family Proteaceae (approx. 1700 species) shows considerable variation in floral symmetry but has received little attention in studies of evolutionary development at the genetic level. A framework for understanding the shifts in floral symmetry in Proteaceae is provided by reconstructing ancestral states on an upated phylogeny of the family, and homologues of CYCLOIDEA (CYC), a key gene for the control of floral symmetry in both monocots and eudicots, are characterized. METHODS Perianth symmetry transitions were reconstructed on a new species-level tree using parsimony and maximum likelihood. CYC-like genes in 35 species (31 genera) of Proteaceae were sequenced and their phylogeny was reconstructed. Shifts in selection pressure following gene duplication were investigated using nested branch-site models of sequence evolution. Expression patterns of CYC homologues were characterized in three species of Grevillea with different types of floral symmetry. KEY RESULTS Zygomorphy has evolved 10-18 times independently in Proteaceae from actinomorphic ancestors, with at least four reversals to actinomorphy. A single duplication of CYC-like genes occurred prior to the diversification of Proteaceae, with putative loss or divergence of the ProtCYC1 paralogue in more than half of the species sampled. No shifts in selection pressure were detected in the branches subtending the two ProtCYC paralogues. However, the amino acid sequence preceding the TCP domain is strongly divergent in Grevillea ProtCYC1 compared with other species. ProtCYC genes were expressed in developing flowers of both actinomorphic and zygomorphic Grevillea species, with late asymmetric expression in the perianth of the latter. CONCLUSION Proteaceae is a remarkable family in terms of the number of transitions in floral symmetry. Furthermore, although CYC-like genes in Grevillea have unusual sequence characteristics, they display patterns of expression that make them good candidates for playing a role in the establishment of floral symmetry.
Collapse
Affiliation(s)
- Hélène L Citerne
- Génétique Quantitative et Evolution-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Elisabeth Reyes
- Laboratoire Ecologie, Systématique et Evolution, UMR 8079 Université Paris-Sud, CNRS, AgroParisTech, 91405 Orsay, France
| | - Martine Le Guilloux
- Génétique Quantitative et Evolution-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Franck Simonnet
- Génétique Quantitative et Evolution-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Hervé Sauquet
- Laboratoire Ecologie, Systématique et Evolution, UMR 8079 Université Paris-Sud, CNRS, AgroParisTech, 91405 Orsay, France
| | - Peter H Weston
- National Herbarium of New South Wales, The Royal Botanic Garden Sydney, Australia
| | - Sophie Nadot
- Laboratoire Ecologie, Systématique et Evolution, UMR 8079 Université Paris-Sud, CNRS, AgroParisTech, 91405 Orsay, France
| | - Catherine Damerval
- Génétique Quantitative et Evolution-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
16
|
Madrigal Y, Alzate JF, Pabón-Mora N. Evolution and Expression Patterns of TCP Genes in Asparagales. FRONTIERS IN PLANT SCIENCE 2017; 8:9. [PMID: 28144250 PMCID: PMC5239819 DOI: 10.3389/fpls.2017.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/03/2017] [Indexed: 05/09/2023]
Abstract
CYCLOIDEA-like genes are involved in the symmetry gene network, limiting cell proliferation in the dorsal regions of bilateral flowers in core eudicots. CYC-like and closely related TCP genes (acronym for TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATION CELL FACTOR) have been poorly studied in Asparagales, the largest order of monocots that includes both bilateral flowers in Orchidaceae (ca. 25.000 spp) and radially symmetrical flowers in Hypoxidaceae (ca. 200 spp). With the aim of assessing TCP gene evolution in the Asparagales, we isolated TCP-like genes from publicly available databases and our own transcriptomes of Cattleya trianae (Orchidaceae) and Hypoxis decumbens (Hypoxidaceae). Our matrix contains 452 sequences representing the three major clades of TCP genes. Besides the previously identified CYC specific core eudicot duplications, our ML phylogenetic analyses recovered an early CIN-like duplication predating all angiosperms, two CIN-like Asparagales-specific duplications and a duplication prior to the diversification of Orchidoideae and Epidendroideae. In addition, we provide evidence of at least three duplications of PCF-like genes in Asparagales. While CIN-like and PCF-like genes have multiplied in Asparagales, likely enhancing the genetic network for cell proliferation, CYC-like genes remain as single, shorter copies with low expression. Homogeneous expression of CYC-like genes in the labellum as well as the lateral petals suggests little contribution to the bilateral perianth in C. trianae. CIN-like and PCF-like gene expression suggests conserved roles in cell proliferation in leaves, sepals and petals, carpels, ovules and fruits in Asparagales by comparison with previously reported functions in core eudicots and monocots. This is the first large scale analysis of TCP-like genes in Asparagales that will serve as a platform for in-depth functional studies in emerging model monocots.
Collapse
Affiliation(s)
- Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Facultad de Medicina, Universidad de AntioquiaMedellín, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
| |
Collapse
|
17
|
Sauquet H, Carrive L, Poullain N, Sannier J, Damerval C, Nadot S. Zygomorphy evolved from disymmetry in Fumarioideae (Papaveraceae, Ranunculales): new evidence from an expanded molecular phylogenetic framework. ANNALS OF BOTANY 2015; 115:895-914. [PMID: 25814061 PMCID: PMC4407061 DOI: 10.1093/aob/mcv020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/23/2014] [Accepted: 01/22/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Fumarioideae (20 genera, 593 species) is a clade of Papaveraceae (Ranunculales) characterized by flowers that are either disymmetric (i.e. two perpendicular planes of bilateral symmetry) or zygomorphic (i.e. one plane of bilateral symmetry). In contrast, the other subfamily of Papaveraceae, Papaveroideae (23 genera, 230 species), has actinomorphic flowers (i.e. more than two planes of symmetry). Understanding of the evolution of floral symmetry in this clade has so far been limited by the lack of a reliable phylogenetic framework. Pteridophyllum (one species) shares similarities with Fumarioideae but has actinomorphic flowers, and the relationships among Pteridophyllum, Papaveroideae and Fumarioideae have remained unclear. This study reassesses the evolution of floral symmetry in Papaveraceae based on new molecular phylogenetic analyses of the family. METHODS Maximum likelihood, Bayesian and maximum parsimony phylogenetic analyses of Papaveraceae were conducted using six plastid markers and one nuclear marker, sampling Pteridophyllum, 18 (90 %) genera and 73 species of Fumarioideae, 11 (48 %) genera and 11 species of Papaveroideae, and a wide selection of outgroup taxa. Floral characters recorded from the literature were then optimized onto phylogenetic trees to reconstruct ancestral states using parsimony, maximum likelihood and reversible-jump Bayesian approaches. KEY RESULTS Pteridophyllum is not nested in Fumarioideae. Fumarioideae are monophyletic and Hypecoum (18 species) is the sister group of the remaining genera. Relationships within the core Fumarioideae are well resolved and supported. Dactylicapnos and all zygomorphic genera form a well-supported clade nested among disymmetric taxa. CONCLUSIONS Disymmetry of the corolla is a synapomorphy of Fumarioideae and is strongly correlated with changes in the androecium and differentiation of middle and inner tepal shape (basal spurs on middle tepals). Zygomorphy subsequently evolved from disymmetry either once (with a reversal in Dactylicapnos) or twice (Capnoides, other zygomorphic Fumarioideae) and appears to be correlated with the loss of one nectar spur.
Collapse
Affiliation(s)
- Hervé Sauquet
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Laetitia Carrive
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Noëlie Poullain
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Julie Sannier
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Catherine Damerval
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Sophie Nadot
- Université Paris-Sud, Laboratoire Écologie, Systématique, Évolution, CNRS UMR 8079, 91405 Orsay, France and CNRS, UMR 0320/UMR 8120 Génétique Quantitative et Evolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| |
Collapse
|
18
|
Hileman LC. Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0348. [PMID: 24958922 DOI: 10.1098/rstb.2013.0348] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instances of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular phylogenetic research and studies of character evolution as well as detailed flower developmental genetic studies in a few model species (e.g. Antirrhinum majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better understanding of where during flowering plant diversification transitions from radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme largely dependent on the functional action of the CYCLOIDEA gene is necessary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both the parallel recruitment of a CYC-dependent developmental programme during independent transitions to bilateral flower symmetry, and the modifications to this programme in transitions back to radial flower symmetry, during flowering plant evolution.
Collapse
Affiliation(s)
- Lena C Hileman
- Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
19
|
Horn S, Pabón-Mora N, Theuß VS, Busch A, Zachgo S. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:559-71. [PMID: 25557238 DOI: 10.1111/tpj.12750] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 05/08/2023]
Abstract
Flower monosymmetry contributes to specialized interactions between plants and their insect pollinators. In the magnoliids, flower monosymmetry is exhibited only in the Aristolochiaceae (Piperales). Aristolochia flowers develop a calyx-derived monosymmetric perianth that enhances pollination success by a flytrap mechanism. Aristolochia arborea forms additionally a special perianth outgrowth that mimics a mushroom to attract flies, the mushroom mimicry structure (MMS). In core eudicots, members of the CYC2 clade of TCP transcription factors are key regulators of corolla monosymmetry establishment. The CYC2 clade arose via core eudicot-specific duplications from ancestral CYC/TB1 genes. CYC/TB1 genes are also thought to affect monosymmetry formation in early diverging eudicot and monocot species. Here, we demonstrate that CYC/TB1 genes, named CYC-like genes (CYCL) are present in basal angiosperms and magnoliids. Expression analyses in A. arborea indicate that CYCL genes participate in perianth and MMS differentiation processes and do not support a CYCL gene function in initial flower monosymmetry formation. Heterologous CYCL and CYC2 gene overexpression studies in Arabidopsis show that Aristolochia CYCL proteins only perform a CYC2-like function when the CYCL TCP domain is replaced by a CYC2 domain. Comparative TCP domain analyses revealed that an LxxLL motif, known to mediate protein-protein interactions, evolved in the second helix of the TCP domain in the CYC2 lineage and contributes to CYC2-related functions. Our data imply that divergent evolution of the CYC/TB1 lineages caused significant changes in their coding regions, which together with cis-regulatory changes established the key CYC2 function in regulating eudicot flower monosymmetry.
Collapse
Affiliation(s)
- Stefanie Horn
- Botany Department, Osnabrück University, 49076, Osnabrück, Germany
| | | | | | | | | |
Collapse
|
20
|
Jabbour F, Cossard G, Le Guilloux M, Sannier J, Nadot S, Damerval C. Specific duplication and dorsoventrally asymmetric expression patterns of Cycloidea-like genes in zygomorphic species of Ranunculaceae. PLoS One 2014; 9:e95727. [PMID: 24752428 PMCID: PMC3994137 DOI: 10.1371/journal.pone.0095727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/28/2014] [Indexed: 11/23/2022] Open
Abstract
Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture.
Collapse
Affiliation(s)
- Florian Jabbour
- Université Paris-Sud, UMR 0320/UMR 8120, Génétique Végétale, Gif-sur-Yvette, France
- Université Paris-Sud, Laboratoire Ecologie, Systématique, Evolution, CNRS UMR 8079, AgroParisTech, Orsay, France
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany
- Muséum National d'Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, UMR 7205 ISYEB MNHN-CNRS-UPMC-EPHE, Paris, France
| | - Guillaume Cossard
- Université Paris-Sud, Laboratoire Ecologie, Systématique, Evolution, CNRS UMR 8079, AgroParisTech, Orsay, France
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | | | - Julie Sannier
- Université Paris-Sud, Laboratoire Ecologie, Systématique, Evolution, CNRS UMR 8079, AgroParisTech, Orsay, France
| | - Sophie Nadot
- Université Paris-Sud, Laboratoire Ecologie, Systématique, Evolution, CNRS UMR 8079, AgroParisTech, Orsay, France
| | - Catherine Damerval
- CNRS, UMR 0320/UMR 8120, Génétique Végétale, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
21
|
Moyle LC, Jewell CP, Kostyun JL. Fertile approaches to dissecting mechanisms of premating and postmating prezygotic reproductive isolation. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:16-23. [PMID: 24457825 DOI: 10.1016/j.pbi.2013.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/13/2013] [Accepted: 12/20/2013] [Indexed: 05/11/2023]
Abstract
In sexually reproducing organisms, speciation involves the evolution of mechanisms that confer reproductive isolation between diverging lineages. Here we discuss recent research on the molecular basis of traits that mediate these barriers during premating and postmating, prezygotic stages of reproduction. In some cases, the specific loci underlying the expression of reproductive barriers are known, most notably when premating isolation is due to flower color or scent differences, and when postmating isolation is due to divergent gamete signaling. In addition, emerging work in molecular biology and genomics is revealing the mechanistic basis of prezygotic reproductive traits within species, and therefore establishing clear candidates for future work examining their potential role in reproductive isolation between species.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Cathleen P Jewell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jamie L Kostyun
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
22
|
Hileman LC. Bilateral flower symmetry--how, when and why? CURRENT OPINION IN PLANT BIOLOGY 2014; 17:146-52. [PMID: 24507506 DOI: 10.1016/j.pbi.2013.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 05/20/2023]
Abstract
Bilateral flower symmetry has evolved multiple times during flowering plant diversification, is associated with specialized pollination, and is hypothesized to have contributed to flowering plant species richness. The genes and genetic interactions that control bilateral symmetry are well understood in the model species Snapdragon (Antirrhinum majus). I review recent insights into the genetic control of symmetry in Snapdragon. I summarize how this foundational genetic work has been integrated with mathematical modeling approaches, which together provided new insights into the control of quantitative aspects of petal shape. Lastly, I review how evolutionary studies, stemming from knowledge of the genetic control of symmetry in Snapdragon flowers, have revealed extensive parallel recruitment of a similar genetic program during repeated evolution of bilateral symmetry.
Collapse
Affiliation(s)
- Lena C Hileman
- University of Kansas, Ecology and Evolutionary Biology, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA.
| |
Collapse
|
23
|
Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots. PLoS One 2013; 8:e74803. [PMID: 24019982 PMCID: PMC3760840 DOI: 10.1371/journal.pone.0074803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/05/2013] [Indexed: 11/24/2022] Open
Abstract
TCP ECE genes encode transcription factors which have received much attention for their repeated recruitment in the control of floral symmetry in core eudicots, and more recently in monocots. Major duplications of TCP ECE genes have been described in core eudicots, but the evolutionary history of this gene family is unknown in basal eudicots. Reconstructing the phylogeny of ECE genes in basal eudicots will help set a framework for understanding the functional evolution of these genes. TCP ECE genes were sequenced in all major lineages of basal eudicots and Gunnera which belongs to the sister clade to all other core eudicots. We show that in these lineages they have a complex evolutionary history with repeated duplications. We estimate the timing of the two major duplications already identified in the core eudicots within a timeframe before the divergence of Gunnera and after the divergence of Proteales. We also use a synteny-based approach to examine the extent to which the expansion of TCP ECE genes in diverse eudicot lineages may be due to genome-wide duplications. The three major core-eudicot specific clades share a number of collinear genes, and their common evolutionary history may have originated at the γ event. Genomic comparisons in Arabidopsis thaliana and Solanumlycopersicum highlight their separate polyploid origin, with syntenic fragments with and without TCP ECE genes showing differential gene loss and genomic rearrangements. Comparison between recently available genomes from two basal eudicots Aquilegiacoerulea and Nelumbonucifera suggests that the two TCP ECE paralogs in these species are also derived from large-scale duplications. TCP ECE loci from basal eudicots share many features with the three main core eudicot loci, and allow us to infer the makeup of the ancestral eudicot locus.
Collapse
|