1
|
Duckett JG, Pressel S, Kowal J. The biology of Marchantia polymorpha subsp . ruderalis Bischl. & Boissel. Dub in nature. FRONTIERS IN PLANT SCIENCE 2024; 15:1339832. [PMID: 38872896 PMCID: PMC11169808 DOI: 10.3389/fpls.2024.1339832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Introduction Though used as the model liverwort in culture for several decades, the biology of Marchantia polymorpha subsp. ruderalis in nature has never been documented in detail in a single account. Methods Here we synthesize routine field observations documented with hundreds of images of M. ruderalis colonies (or groups) showing sex differentiation over 3 years on two populations of M. ruderalis after major heathland fires in 2020. Results Initial post-fire establishment is from airborne spores rather than a spore bank but thereafter spread is via gemmae which have less exacting germination requirements. Young sporelings are highly gemmiferous but gemmae production becomes less frequent after sex organ formation. Over the course of a year there are up to three waves of carpocephalum production with the overwhelming majority of antheridiophores appearing 2-3 months ahead of the archegoniophores though no differences in growth rates were apparent between male and female thalli. Spermatozoids are produced almost continuously throughout the year, whilst sporophyte maturation is restricted to the summer months. Discussion Because of the asynchrony between antheridiophore and archegoniophore production a 1:1 sex ratio is only apparent over this period. The spring months see an excess of males with more females in the summer. An almost 100% fertilization rate, with fertilization distances of up to 19 m far exceeding those in all other bryophytes, is attributed to vast spermatozoid production for most of the year, dispersal on surface oil films between thalli and highly effective intra-thallus spermatozoid transport via the pegged-rhizoid water-conducting system. Archegoniophores do develop on female-only populations but have shorter stalks than those where fertilization has occurred. Eventual disappearance post fires is attributed to a fall in topsoil nutrient levels preventing new sporeling establishment and competition from Ceratodon purpureus and Polytrichum spp. A major drought in the summer of 2022 almost wiped out the heathland Marchantia populations but all the other bryophytes survived.
Collapse
Affiliation(s)
| | - Silvia Pressel
- Research, The Natural History Museum, London, United Kingdom
| | - Jill Kowal
- Department of Ecosystem Stewardship, Royal Botanic Gardens Kew, London, United Kingdom
| |
Collapse
|
2
|
Sandler G, Agrawal AF, Wright SI. Population Genomics of the Facultatively Sexual Liverwort Marchantia polymorpha. Genome Biol Evol 2023; 15:evad196. [PMID: 37883717 PMCID: PMC10667032 DOI: 10.1093/gbe/evad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The population genomics of facultatively sexual organisms are understudied compared with their abundance across the tree of life. We explore patterns of genetic diversity in two subspecies of the facultatively sexual liverwort Marchantia polymorpha using samples from across Southern Ontario, Canada. Despite the ease with which M. polymorpha should be able to propagate asexually, we find no evidence of strictly clonal descent among our samples and little to no signal of isolation by distance. Patterns of identity-by-descent tract sharing further showed evidence of recent recombination and close relatedness between geographically distant isolates, suggesting long distance gene flow and at least a modest frequency of sexual reproduction. However, the M. polymorpha genome contains overall very low levels of nucleotide diversity and signs of inefficient selection evidenced by a relatively high fraction of segregating deleterious variants. We interpret these patterns as possible evidence of the action of linked selection and a small effective population size due to past generations of asexual propagation. Overall, the M. polymorpha genome harbors signals of a complex history of both sexual and asexual reproduction.
Collapse
Affiliation(s)
- George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Center for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Moss establishment success is determined by the interaction between propagule size and species identity. Sci Rep 2022; 12:20777. [PMID: 36456649 PMCID: PMC9715719 DOI: 10.1038/s41598-022-24354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Colonization of new habitat patches is a key aspect of metacommunity dynamics, particularly for sessile organisms. Mosses can establish in new patches through fragmentation, with different vegetative structures acting as propagules. Despite the importance of these propagules for successful colonization the specific aspects that favour moss colonization by vegetative propagules remain poorly understood, including the effect of propagule size. We examine the intra- and interspecific variation of establishment and colonization success in culture of propagules of different sizes in six widespread soil moss species of contrasting growth form (Dicranum scoparium, Homalothecium aureum, Hypnum cupressiforme, Ptychostomum capillare, Syntrichia ruralis and Tortella squarrosa). We obtained three different size classes of propagules from artificially fragmented vegetative material, and assessed their establishment under controlled light and temperature conditions. We characterize the size, shape, apparent viability, morphological type and size changes due to hydration states of the propagules, all of them traits with potentially significant influence in their dispersal pattern and establishment. Then we assess the effect of these traits on moss establishment, using indicators of surface establishment (number of established shoots and colonized surface) and biomass production (viable biomass) as proxies of colonization success. The establishment indicators related to colonization surface and biomass production differ among species and propagule sizes. The magnitude of the interspecific differences of all indicators of establishment success was larger at the smaller propagule size class. T. squarrosa was the most successful species, and D. scoparium showed the lowest performance. We also found interspecific differences in the hydration dynamics of the propagules. The process of establishment by vegetative fragments operates differently among moss species. Besides, differences between hydration states in propagules of some species could be part of syndromes for both dispersal and establishment. This study unveils several functional traits relevant for moss colonization, such as wet versus dry area and length of fragments, which may improve our understanding of their spatial dynamics.
Collapse
|
4
|
Sex Differences in Desiccation Tolerance Varies by Colony in the Mesic Liverwort Plagiochila porelloides. PLANTS 2022; 11:plants11040478. [PMID: 35214811 PMCID: PMC8877780 DOI: 10.3390/plants11040478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
Water scarcity, a common stress factor, negatively impacts plant performance. Strategies to cope with it, such as desiccation tolerance, are becoming increasingly important to investigate. However, phenomena, such as intraspecific variation in stress responses have not received much attention. Knowledge of this variability and the environmental drivers can be leveraged to further investigate the mechanisms of desiccation tolerance. Here we tested for variation in desiccation tolerance in Plagiochila porelloides among colonies and sexes within the same riparian zone. Field-collected dehardened plants were subjected to a desiccation event, under controlled conditions and then rehydrated. Plant water status, photosynthetic rates, net carbon gain, and efficiency of photosystem II (PSII) were assayed to evaluate tissue desiccation, basic metabolic processes and plant recovery. To establish a linkage between plant response and environmental factors, field light conditions were measured. We detected intraspecific variation, where a more exposed colony (high percentage of open sky, large temporal range of light quantity, and high red/far-red ratio) showed sex differences in desiccation tolerance and recovery. Overall, PSII recovery occurred by 72 h after rehydration, with a positive carbon gain occurring by day 30. This within species variation suggests plastic or genetic effects, and likely association with light conditions.
Collapse
|
5
|
Marks RA, Farrant JM, Nicholas McLetchie D, VanBuren R. Unexplored dimensions of variability in vegetative desiccation tolerance. AMERICAN JOURNAL OF BOTANY 2021; 108:346-358. [PMID: 33421106 DOI: 10.1002/ajb2.1588] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/03/2020] [Indexed: 06/12/2023]
Abstract
Desiccation tolerance has evolved recurrently across diverse land plant lineages as an adaptation for survival in regions where seasonal rainfall drives periodic drying of vegetative tissues. Growing interest in this phenomenon has fueled recent physiological, biochemical, and genomic insights into the mechanistic basis of desiccation tolerance. Although, desiccation tolerance is often viewed as binary and monolithic, substantial variation exists in the phenotype and underlying mechanisms across diverse lineages, heterogeneous populations, and throughout the development of individual plants. Most studies have focused on conserved responses in a subset desiccation-tolerant plants under laboratory conditions. Consequently, the variability and natural diversity of desiccation-tolerant phenotypes remains largely uncharacterized. Here, we discuss the natural variation in desiccation tolerance and argue that leveraging this diversity can improve our mechanistic understanding of desiccation tolerance. We summarize information collected from ~600 desiccation-tolerant land plants and discuss the taxonomic distribution and physiology of desiccation responses. We point out the need to quantify natural diversity of desiccation tolerance on three scales: variation across divergent lineages, intraspecific variation across populations, and variation across tissues and life stages of an individual plant. We conclude that this variability should be accounted for in experimental designs and can be leveraged for deeper insights into the intricacies of desiccation tolerance.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | | | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
6
|
Marks RA, Smith JJ, VanBuren R, McLetchie DN. Expression dynamics of dehydration tolerance in the tropical plant Marchantia inflexa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:209-222. [PMID: 33119914 DOI: 10.1111/tpj.15052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Tolerance to prolonged water deficit occurs along a continuum in plants, with dehydration tolerance (DhT) and desiccation tolerance (DT) representing some of the most extreme adaptations to water scarcity. Although DhT and DT presumably vary among individuals of a single species, this variability remains largely unstudied. Here, we characterized expression dynamics throughout a dehydration-rehydration time-course in six diverse genotypes of the dioecious liverwort Marchantia inflexa. We identified classical signatures of stress response in M. inflexa, including major changes in transcripts related to metabolism, expression of LEA and ELIP genes, and evidence of cell wall remodeling. However, we detected very little temporal synchronization of these responses across different genotypes of M. inflexa, which may be related to genotypic variation among samples, constitutive expression of dehydration-associated transcripts, the sequestration of mRNAs in ribonucleoprotein partials prior to drying, or the lower tolerance of M. inflexa relative to most bryophytes studied to date. Our characterization of intraspecific variation in expression dynamics suggests that differences in the timing of transcriptional adjustments contribute to variation among genotypes, and that developmental differences impact the relative tolerance of meristematic and differentiated tissues. This work highlights the complexity and variability of water stress tolerance, and underscores the need for comparative studies that seek to characterize variation in DT and DhT.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
7
|
Gao Y, Zheng J, Lin X, Du F. Distribution patterns of clonal plants in the subnival belt of the Hengduan Mountains, SW China. PLANT DIVERSITY 2020; 42:386-392. [PMID: 33134623 PMCID: PMC7584785 DOI: 10.1016/j.pld.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Clonal reproduction (i.e., production of potentially independent offspring by vegetative growth) is thought to provide plants with reproductive assurance. Thus, studying the evolution of clonal reproduction in local floras is crucial for our understanding of the adaptive mechanisms plants deploy in stressful environments such as alpine regions. In this study, we characterized clonal plant species in the subnival belt of the Hengduan Mountains (a global biodiversity hotspot with extreme environmental conditions in southwest China), in order to determine the effects of sex system, growth form, and elevational distribution on clonality. We compiled clonality data of angiosperm species belonging to 41 families in the subnival belt of the Hengduan Mountains using published information. Of the 793 species recorded in the region, 47.92% (380 species) are clonal species. Both sex system and growth form had significant effects on the occurrence of clonal reproduction: unisexual species (79.79%) were more likely to be clonal than bisexual species (43.63%), and herbaceous species (51.04%) were more likely to be clonal than woody species (16.67%). Compared with non-alpine-endemic species (44.60%), alpine-endemic species (58.33%) showed a significantly higher proportion of clonal reproduction. Further logistic regression analysis showed a positive association between incidence of clonality and elevational range, indicating that species distributed at high elevations are more likely to be clonal. Furthermore, the elevational gradients in clonality were contingent on sex system or growth form. This study reveals that plants in the subnival belt of the Hengduan Mountains might optimize their probability of reproduction through clonal reproduction, a finding that adds to our growing understanding of plant's adaptations to harsh alpine environments.
Collapse
Affiliation(s)
- Yongqian Gao
- Faculty of Forestry, Southwest Forestry University, 300 Bailong Road, Kunming, 650224, Yunnan, PR China
- Yunnan Forestry Technological College, 1 Jindian, Kunming, 650224, Yunnan, PR China
| | - Jinxuan Zheng
- Forest Inventory and Planning Institute of Yunnan Province, Kunming, 650051, Yunnan, China
| | - Xiangqun Lin
- Yunnan Forestry Technological College, 1 Jindian, Kunming, 650224, Yunnan, PR China
| | - Fan Du
- Faculty of Forestry, Southwest Forestry University, 300 Bailong Road, Kunming, 650224, Yunnan, PR China
| |
Collapse
|
8
|
Diop SI, Subotic O, Giraldo-Fonseca A, Waller M, Kirbis A, Neubauer A, Potente G, Murray-Watson R, Boskovic F, Bont Z, Hock Z, Payton AC, Duijsings D, Pirovano W, Conti E, Grossniklaus U, McDaniel SF, Szövényi P. A pseudomolecule-scale genome assembly of the liverwort Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1378-1396. [PMID: 31692190 DOI: 10.1111/tpj.14602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/28/2019] [Indexed: 05/07/2023]
Abstract
Marchantia polymorpha has recently become a prime model for cellular, evo-devo, synthetic biological, and evolutionary investigations. We present a pseudomolecule-scale assembly of the M. polymorpha genome, making comparative genome structure analysis and classical genetic mapping approaches feasible. We anchored 88% of the M. polymorpha draft genome to a high-density linkage map resulting in eight pseudomolecules. We found that the overall genome structure of M. polymorpha is in some respects different from that of the model moss Physcomitrella patens. Specifically, genome collinearity between the two bryophyte genomes and vascular plants is limited, suggesting extensive rearrangements since divergence. Furthermore, recombination rates are greatest in the middle of the chromosome arms in M. polymorpha like in most vascular plant genomes, which is in contrast with P. patens where recombination rates are evenly distributed along the chromosomes. Nevertheless, some other properties of the genome are shared with P. patens. As in P. patens, DNA methylation in M. polymorpha is spread evenly along the chromosomes, which is in stark contrast with the angiosperm model Arabidopsis thaliana, where DNA methylation is strongly enriched at the centromeres. Nevertheless, DNA methylation and recombination rate are anticorrelated in all three species. Finally, M. polymorpha and P. patens centromeres are of similar structure and marked by high abundance of retroelements unlike in vascular plants. Taken together, the highly contiguous genome assembly we present opens unexplored avenues for M. polymorpha research by linking the physical and genetic maps, making novel genomic and genetic analyses, including map-based cloning, feasible.
Collapse
Affiliation(s)
- Seydina I Diop
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Oliver Subotic
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Alejandro Giraldo-Fonseca
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Alexander Kirbis
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Rachel Murray-Watson
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Filip Boskovic
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, CB3 0HE, Cambridge, UK
| | - Zoe Bont
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Zsofia Hock
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Adam C Payton
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL, 32611, USA
| | | | - Walter Pirovano
- BaseClear B.V., Sylviusweg 74, 2333 BE, Leiden, the Netherlands
| | - Elena Conti
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Stuart F McDaniel
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL, 32611, USA
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| |
Collapse
|
9
|
Marks RA, Pike BD, Nicholas McLetchie D. Water stress tolerance tracks environmental exposure and exhibits a fluctuating sexual dimorphism in a tropical liverwort. Oecologia 2019; 191:791-802. [DOI: 10.1007/s00442-019-04538-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/19/2019] [Indexed: 01/01/2023]
|
10
|
Marks RA, Smith JJ, Cronk Q, Grassa CJ, McLetchie DN. Genome of the tropical plant Marchantia inflexa: implications for sex chromosome evolution and dehydration tolerance. Sci Rep 2019; 9:8722. [PMID: 31217536 PMCID: PMC6584576 DOI: 10.1038/s41598-019-45039-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/29/2019] [Indexed: 01/29/2023] Open
Abstract
We present a draft genome assembly for the tropical liverwort, Marchantia inflexa, which adds to a growing body of genomic resources for bryophytes and provides an important perspective on the evolution and diversification of land plants. We specifically address questions related to sex chromosome evolution, sexual dimorphisms, and the genomic underpinnings of dehydration tolerance. This assembly leveraged the recently published genome of related liverwort, M. polymorpha, to improve scaffolding and annotation, aid in the identification of sex-linked sequences, and quantify patterns of sequence differentiation within Marchantia. We find that genes on sex chromosomes are under greater diversifying selection than autosomal and organellar genes. Interestingly, this is driven primarily by divergence of male-specific genes, while divergence of other sex-linked genes is similar to autosomal genes. Through analysis of sex-specific read coverage, we identify and validate genetic sex markers for M. inflexa, which will enable diagnosis of sex for non-reproductive individuals. To investigate dehydration tolerance, we capitalized on a difference between genetic lines, which allowed us to identify multiple dehydration associated genes two of which were sex-linked, suggesting that dehydration tolerance may be impacted by sex-specific genes.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA.
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA
| | - Quentin Cronk
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher J Grassa
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA, 02138, USA
| | - D Nicholas McLetchie
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA
| |
Collapse
|
11
|
Brzyski JR, Stieha CR, Nicholas McLetchie D. The impact of asexual and sexual reproduction in spatial genetic structure within and between populations of the dioecious plant Marchantia inflexa (Marchantiaceae). ANNALS OF BOTANY 2018; 122:993-1003. [PMID: 29924293 PMCID: PMC6266107 DOI: 10.1093/aob/mcy106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Background and Aims In dioecious plants, sexual reproduction requires close proximity to potential mates, but clonal growth can increase this distance and, therefore, reduce the probability of mating. Reduction in sexual propagules can lead to decreased dispersal and gene flow between populations. Gene flow and clonal growth may be further influenced by the size of the habitat patch. The effects of habitat size and reproductive mode (sexual or asexual reproduction) on spatial genetic structure and segregation of the sexes were tested by quantifying the distributions of genotypes and the sexes using the dioecious liverwort Marchantia inflexa. Methods Plants were sampled from five pairs of small-large habitat patches to identify within- and among-population spatial genetic structure using 12 microsatellite markers. Spatial distributions were calculated as the likelihood that pairs of individuals were the same sex or genotype, and it was determined how that likelihood was affected by habitat patch size (small/large). Key Results Asexual reproduction dominates within populations, and asexual dispersal also occurred across populations. Spatial segregation of the sexes was observed within populations; males were more likely to be near individuals of the same sex than were females. Although the likelihood of both sexes being near members of the same sex was similarly greater on small habitat patches, on large habitat patches male genotypes were almost 15 % more likely to be near clonemates than were female genotypes. Conclusions The results show a sex difference in clonal clumping that was dependent upon habitat size, suggesting differential colonization and/or survival between males and females. The sexes and genotypes being structured differently within and among populations have implications for the persistence of populations and the interactions between them. This study demonstrates that studying only the sexes and not their genotypes (or vice versa) can limit our understanding of the extent to which reproductive modes (sexual or asexual) influence genetic structure both within and between populations.
Collapse
|
12
|
Chen Y, Jia HR, Niu S, Zhang X, Wang HL, Ye YZ, Chen QS, Yuan ZL. Effects of Topographical Heterogeneity and Dispersal Limitation on Species Turnover in a Temperate Mountane Ecosystem: a Case Study in the Henan Province, China. RUSS J ECOL+ 2018. [DOI: 10.1134/s1067413618010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Reproductive strategy of the alien moss Campylopus introflexus (Leucobryaceae, Bryophyta) in areas of mining enterprises in Lviv Region. UKRAINIAN BOTANICAL JOURNAL 2017. [DOI: 10.15407/ukrbotj74.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Marks RA, Burton JF, McLetchie DN. Sex differences and plasticity in dehydration tolerance: insight from a tropical liverwort. ANNALS OF BOTANY 2016; 118:347-56. [PMID: 27325895 PMCID: PMC4970365 DOI: 10.1093/aob/mcw102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/09/2016] [Accepted: 04/25/2016] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Adaptations allowing plants to cope with drying are particularly relevant in the light of predicted climate change. Dehydration tolerance (DhT, also dehydration-tolerant) is one such adaptation enabling tissue to survive substantial drying. A great deal of work has been conducted on highly DhT species. However, bryophytes showing less intense and variable DhT are understudied, despite the potential for these species to provide an informative link between highly tolerant and sensitive species. In this study, we tested the degree to which DhT varies across populations and the sexes of a species expected to exhibit a moderate DhT phenotype. METHODS To test predicted patterns of tolerance we assessed DhT in males and females of Marchantia inflexa from two distinct habitat types that differ in water availability. Both common garden and field-collected tissue was subjected to drying assays at multiple intensities and recovery was monitored by chlorophyll florescence. Verification studies were conducted to confirm the level of dehydration, the rate of drying and the associated changes in photosynthetic physiology. KEY RESULTS We confirmed our expectation that M. inflexa is able to tolerate moderate dehydration. We also found that females exhibited higher DhT than males, but populations did not differ in DhT when cultured in a common garden. However, field-collected samples exhibited differences in DhT corresponding to environmental dryness, suggesting plasticity in DhT. CONCLUSIONS By studying a less extreme DhT phenotype we gained insight into how more sensitive (yet still tolerant) organisms cope with dehydration. Additionally, the identified sex-specific variation in DhT may explain ecological patterns such as female-biased sex ratios. Furthermore, plasticity in DhT has the potential to inform management practices aimed at increasing tolerance to drought conditions.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY 40506, USA
| | - James F Burton
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY 40506, USA
| | - D Nicholas McLetchie
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY 40506, USA
| |
Collapse
|
15
|
Stieha C, García-Ramos G, Nicholas McLetchie D, Crowley P. Maintenance of the sexes and persistence of a clonal organism in spatially complex metapopulations. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9841-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Bisang I, Ehrlén J, Korpelainen H, Hedenäs L. No evidence of sexual niche partitioning in a dioecious moss with rare sexual reproduction. ANNALS OF BOTANY 2015; 116:771-9. [PMID: 26359424 PMCID: PMC4590334 DOI: 10.1093/aob/mcv133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/08/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND AIMS Roughly half of the species of bryophytes have separate sexes (dioecious) and half are hermaphroditic (monoecious). This variation has major consequences for the ecology and evolution of the different species. In some sexually reproducing dioecious bryophytes, sex ratio has been shown to vary with environmental conditions. This study focuses on the dioecious wetland moss Drepanocladus trifarius, which rarely produces sexual branches or sporophytes and lacks apparent secondary sex characteristics, and examines whether genetic sexes exhibit different habitat preferences, i.e. whether sexual niche partitioning occurs. METHODS A total of 277 shoots of D. trifarius were randomly sampled at 214 locations and 12 environmental factors were quantified at each site. Sex was assigned to the individual shoots collected in the natural environments, regardless of their reproductive status, using a specifically designed molecular marker associated with female sex. KEY RESULTS Male and female shoots did not differ in shoot biomass, the sexes were randomly distributed with respect to each other, and environmental conditions at male and female sampling locations did not differ. Collectively, this demonstrates a lack of sexual niche segregation. Adult genetic sex ratio was female-biased, with 2·8 females for every male individual. CONCLUSIONS The results show that although the sexes of D. trifarius did not differ with regard to annual growth, spatial distribution or habitat requirements, the genetic sex ratio was nevertheless significantly female-biased. This supports the notion that factors other than sex-related differences in reproductive costs and sexual dimorphism can also drive the evolution of biased sex ratios in plants.
Collapse
Affiliation(s)
- Irene Bisang
- Swedish Museum of Natural History, Department of Botany, Box 50007, SE-104 05 Stockholm, Sweden,
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden and
| | - Helena Korpelainen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014 Helsinki, Finland
| | - Lars Hedenäs
- Swedish Museum of Natural History, Department of Botany, Box 50007, SE-104 05 Stockholm, Sweden
| |
Collapse
|