1
|
Castro N, Vilela B, Mata-Sucre Y, Marques A, Gagnon E, Lewis GP, Costa L, Souza G. Repeatome evolution across space and time: Unravelling repeats dynamics in the plant genus Erythrostemon Klotzsch (Leguminosae Juss). Mol Ecol 2024:e17510. [PMID: 39248108 DOI: 10.1111/mec.17510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024]
Abstract
Fluctuations in genomic repetitive fractions (repeatome) are known to impact several facets of evolution, such as ecological adaptation and speciation processes. Therefore, investigating the divergence of repetitive elements can provide insights into an important evolutionary force. However, it is not clear how the different repetitive element clades are impacted by the different factors such as ecological changes and/or phylogeny. To discuss this, we used the Neotropical legume genus Erythrostemon (Caesalpinioideae) as a model, given its ancient origin (~33 Mya), lineage-specific niche conservatism, macroecological heterogeneity, and disjunct distribution in Meso- and South American (MA and SA respectively) lineages. We performed a comparative repeatomic analysis of 18 Erythrostemon species to test the impact of environmental variables over repeats diversification. Overall, repeatome composition was diverse, with high abundances of satDNAs and Ty3/gypsy-Tekay transposable elements, predominantly in the MA and SA lineages respectively. However, unexpected repeatome profiles unrelated to the phylogeny/biogeography were found in a few MA (E. coccineus, E. pannosus and E. placidus) and SA (E. calycinus) species, related to reticulate evolution and incongruence between nuclear and plastid topology, suggesting ancient hybridizations. The plesiomorphic Tekay and satDNA pattern was altered in the MA-sensu stricto subclade with a striking genomic differentiation (expansion of satDNA and retraction of Tekay) associated with the colonization of a new environment in Central America around 20 Mya. Our data reveal that the current species-specific Tekay pool was the result of two bursts of amplification probably in the Miocene, with distinct patterns for the MA and SA repeatomes. This suggests a strong role of the Tekay elements as modulators of the genome-environment interaction in Erythrostemon, providing macroevolutionary insights about mechanisms of repeatome differentiation and plant diversification across space and time.
Collapse
Affiliation(s)
- Natália Castro
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Bruno Vilela
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Yennifer Mata-Sucre
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Gwilym P Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
2
|
Hörandl E. Geographical Parthenogenesis in Alpine and Arctic Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:844. [PMID: 36840192 PMCID: PMC9959270 DOI: 10.3390/plants12040844] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The term "Geographical parthenogenesis" describes the phenomenon that asexual organisms usually occupy larger and more northern distribution areas than their sexual relatives, and tend to colonize previously glaciated areas. Several case studies on alpine and arctic plants confirm the geographical pattern, but the causal factors behind the phenomenon are still unclear. Research of the last decade in several plant families has shed light on the question and evaluated some of the classical evolutionary theories. Results confirmed, in general, that the advantages of uniparental reproduction enable apomictic plants to re-colonize faster in larger and more northern distribution areas. Associated factors like polyploidy seem to contribute mainly to the spatial separation of sexual and asexual cytotypes. Ecological studies suggest a better tolerance of apomicts to colder climates and temperate extremes, whereby epigenetic flexibility and phenotypic plasticity play an important role in occupying ecological niches under harsh conditions. Genotypic diversity appears to be of lesser importance for the distributional success of asexual plants. Classical evolutionary theories like a reduced pressure of biotic interactions in colder climates and hence an advantage to asexuals (Red Queen hypothesis) did not gain support from studies on plants. However, it is also still enigmatic why sexual outcrossing remains the predominant mode of reproduction also in alpine floras. Constraints for the origin of apomixis might play a role. Interestingly, some studies suggest an association of sexuality with abiotic stresses. Light stress in high elevations might explain why most alpine plants retain sexual reproduction despite other environmental factors that would favor apomixis. Directions for future research will be given.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
3
|
Kolarčik V, Mirková M, Mikoláš V. Reproduction Modes and Conservation Implications in Three Polyploid Sorbus Stenoendemics in Eastern Slovakia (Central Europe). PLANTS (BASEL, SWITZERLAND) 2023; 12:373. [PMID: 36679086 PMCID: PMC9863969 DOI: 10.3390/plants12020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The remarkable species diversity of the genus Sorbus is a result of polyploidization and frequent hybridization between interacting species of different cytotypes. Moreover, hybridization is possible between several parental taxa. Gametophytic apomixis, which is common among polyploid Sorbus taxa, indicates the role of clonal reproduction in the evolutionary stabilization of hybridogeneous genotypes. The precise determination of the origin of seeds and their quantitative evaluation may elucidate inter-cytotype interactions, the potential role of mixed-cytotype populations in evolutionary success, and the long-term survival of some hybrid species. We investigated the reproduction modes of selected species of Sorbus in mixed-cytotype populations in eastern Slovakia, Central Europe. We determined the pollen quality, seed production rate, and the ploidy level of mature trees, as well as the origin of the embryo and endosperm in seeds of the stenoendemics S. amici-petri, S. dolomiticola, and S. hornadensis. The tetraploids S. amici-petri and S. hornadensis are characterized by regular and highly stainable pollen grains and reproduce predominantly via pseudogamous apomixis. In contrast, triploid S. dolomiticola usually has oval, heterogenous, and weakly stainable pollen grains, suggesting male meiotic irregularities. Although seeds originate via pseudogamous apomixis in S. dolomiticola as well, the ploidy level of sperm cells participating in the fertilization of central cells is usually determined by co-occurring species of different cytotypes. This suggests that maintaining mating partners is necessary for the long-term survival of a triploid species. We documented rare BIII hybrids and the residual sexuality in tetraploids. The distribution of seeds of meiotic and apomeiotic origins in S. amici-petri shows bimodal characteristics; however, genotypes with predominantly sexual seed types are rare. Reproduction modes documented in polyploid stenoendemics of Sorbus and inferred microevolutionary intercytotype relationships highlight the mixed-cytotype populations as the source of biodiversity in apomictic plant complexes. We suggest that conservation efforts should focus on maintaining the species and cytotypic diversity of Sorbus populations, especially when it comes to the conservation of triploid species.
Collapse
Affiliation(s)
- Vladislav Kolarčik
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovakia
| | - Mária Mirková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovakia
| | | |
Collapse
|
4
|
Kolarčik V, Kocová V, Mikoláš V, Mártonfiová L, Hajdučeková N, Mártonfi P. Variability of Reproduction Pathways in the Central-European Populations of Hawthorns with Emphasis on Triploids. PLANTS (BASEL, SWITZERLAND) 2022; 11:3497. [PMID: 36559608 PMCID: PMC9786806 DOI: 10.3390/plants11243497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The role of apomeiosis, parthenogenesis, and pseudogamy in the asexual reproduction of some plant groups has not been fully elucidated in relation to species diversification. Quantitative analyses of seed origin may help in gaining better understanding of intercytotypic interactions. Asexual reproduction associated with polyploidy and frequent hybridization plays a crucial role in the evolutionary history of the genus Crataegus in North America. In Europe, the genus represents a taxonomically complex and very difficult species group not often studied using a modern biosystematic approach. We investigated the reproduction pathways in mixed-cytotype populations of selected taxa of Crataegus in eastern Slovakia, Central Europe. The investigated accessions were characterized by seed production data and the ploidy level of mature plants as well as the embryo and endosperm tissues of their seeds determined via flow cytometry. Diploid and polyploid hawthorns reproduce successfully; they also produce high numbers of seeds. An exception is represented by an almost sterile triploid. Diploids reproduce sexually. Polyploids shift to asexual reproduction, but pseudogamy seems to be essential for regular seed development. In rare cases, fertilization of unreduced gametes occurs, which offers opportunity for the establishment of new polyploid cytotypes between diploid sexuals and polyploid asexuals. Opposite to sexual diploids, triploids are obligate, and tetraploids almost obligate apomicts. Apomixis is considered to help stabilize individual weakly differentiated polyploid microspecies. Pseudogamy is a common feature and usually leads to unbalanced maternal to paternal contribution in the endosperm of triploid accessions. Parental contribution to endosperm gene dosage is somehow relaxed in triploids. Our Crataegus plant system resembles reproduction in the diploids and polyploids of North American hawthorns. Our data provide support for the hypothesis that polyploidization, shifts in reproduction modes, and hybridization shape the genus diversity also in Central Europe.
Collapse
Affiliation(s)
- Vladislav Kolarčik
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovakia
| | - Valéria Kocová
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovakia
| | | | - Lenka Mártonfiová
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovakia
| | | | - Pavol Mártonfi
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Mánesova 23, SK-041 54 Košice, Slovakia
- Botanical Garden, Pavol Jozef Šafárik University, Mánesova 23, SK-043 52 Košice, Slovakia
| |
Collapse
|
5
|
Karbstein K, Tomasello S, Hodač L, Wagner N, Marinček P, Barke BH, Paetzold C, Hörandl E. Untying Gordian knots: unraveling reticulate polyploid plant evolution by genomic data using the large Ranunculus auricomus species complex. THE NEW PHYTOLOGIST 2022; 235:2081-2098. [PMID: 35633497 DOI: 10.1111/nph.18284] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Speciation via hybridization and polyploidization is a major evolutionary force in plant evolution but is still poorly understood for neopolyploid groups. Challenges are attributed to high heterozygosity, low genetic divergence, and missing information on progenitors, ploidy, and reproduction. We study the large Eurasian Ranunculus auricomus species complex and use a comprehensive workflow integrating reduced-representation sequencing (RRS) genomic data to unravel reticulate evolution, genome diversity and composition of polyploids. We rely on 97 312 restriction site-associated DNA sequencing (RAD-Seq) loci, 576 targeted nuclear genes (48 phased), and 71 plastid regions derived from 78 polyploid apomictic taxa and four diploid and one tetraploid putative sexual progenitor species. We applied (phylo)genomic structure, network, and single nucleotide polymorphism (SNP)-origin analyses. Results consistently showed only 3-5 supported and geographically structured polyploid genetic groups, each containing extant sexual and one unknown progenitor species. Combined analyses demonstrated predominantly allopolyploid origins, each involving 2-3 different diploid sexual progenitor species. Young allotetraploids were characterized by subgenome dominance and nonhybrid SNPs, suggesting substantial post-origin but little lineage-specific evolution. The biodiversity of neopolyploid complexes can result from multiple hybrid origins involving different progenitors and substantial post-origin evolution (e.g. homoeologous exchanges, hybrid segregation, gene flow). Reduced-representation sequencing genomic data including multi-approach information is efficient to delimit shallow reticulate relationships.
Collapse
Affiliation(s)
- Kevin Karbstein
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
- Georg-August University School of Science (GAUSS), University of Göttingen, 37073, Göttingen, Germany
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Natascha Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Pia Marinček
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Birthe Hilkka Barke
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Claudia Paetzold
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute, 60325, Frankfurt (Main), Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| |
Collapse
|
6
|
Xu S, Hou H, Wu Z, Zhao J, Zhang F, Teng R, Chen F, Teng N. Chrysanthemum embryo development is negatively affected by a novel ERF transcription factor, CmERF12. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:197-212. [PMID: 34453430 DOI: 10.1093/jxb/erab398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Embryo abortion often occurs during distant hybridization events. Apetala 2/ethylene-responsive factor (AP2/ERF) proteins are key transcription factor (TF) regulators of plant development and stress resistance, but their roles in hybrid embryo development are poorly understood. In this study, we isolated a novel AP2/ERF TF, CmERF12, from chrysanthemum and show that it adversely affects embryo development during distant hybridization. Transcriptome and real-time quantitative PCR demonstrate that CmERF12 is expressed at significantly higher levels in aborted ovaries compared with normal ones. CmERF12 localizes to the cell nucleus and contains a conserved EAR motif that mediates its transcription repressor function in yeast and plant cells. We generated artificial microRNA (amiR) CmERF12 transgenic lines of Chrysanthemum morifolium var. 'Yuhualuoying' and conducted distant hybridization with the wild-type tetraploid, Chrysanthemum nankingense, and found that CmERF12-knock down significantly promoted embryo development and increased the seed-setting rates during hybridization. The expression of various genes related to embryo development was up-regulated in developing ovaries from the cross between female amiR-CmERF12 C. morifolium var. 'Yuhualuoying'× male C. nankingense. Furthermore, CmERF12 directly interacted with CmSUF4, which is known to affect flower development and embryogenesis, and significantly reduced its ability to activate its target gene CmEC1 (EGG CELL1). Our study provides a novel method to overcome barriers to distant hybridization in plants and reveals the mechanism by which CmERF12 negatively affects chrysanthemum embryo development.
Collapse
Affiliation(s)
- Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Jiangsu Graduate Workstation/Nanjing Agricultural University, Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing 210043, China
| | - Huizhong Hou
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Jiangsu Graduate Workstation/Nanjing Agricultural University, Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing 210043, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Jiangsu Graduate Workstation/Nanjing Agricultural University, Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing 210043, China
| | - Jingya Zhao
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengjiao Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Renda Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Jiangsu Graduate Workstation/Nanjing Agricultural University, Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing 210043, China
| | - Fadi Chen
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Jiangsu Graduate Workstation/Nanjing Agricultural University, Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing 210043, China
| |
Collapse
|
7
|
Genome Size, Cytotype Diversity and Reproductive Mode Variation of Cotoneaster integerrimus (Rosaceae) from the Balkans. PLANTS 2021; 10:plants10122798. [PMID: 34961270 PMCID: PMC8708406 DOI: 10.3390/plants10122798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/28/2022]
Abstract
Cotoneaster integerrimus represents a multiploid and facultative apomictic system of widely distributed mountain populations. We used flow cytometry to determine genome size, ploidy level, and reproduction mode variation of the Balkan populations, supplemented by analysis of nuclear microsatellites in order to address: (i) geographic distribution and variation of cytotypes among the populations; (ii) variation of reproduction mode and the frequency of sexuality; (iii) pathways of endosperm formation among the sampled polyploids and their endosperm balance requirements; (iv) genotypic diversity and geographic distribution of clonal lineages of polyploids. The prevalence of apomictic tetraploid cytotype followed by sexual diploids and extremely rare triploids was demonstrated. This prevalence of tetraploids affected the populations’ structure composed from clonal genotypes with varying proportions. The co-occurrence of diploids and tetraploids generated higher cytotype, reproductive mode, and genotypic diversity, but mixed-ploidy sites were extremely rare. The endosperm imbalance facilitates the development and the occurrence of intermediate triploids in mixed-ploidy populations, but also different tetraploid lineages elsewhere with unbalanced endosperm. All these results showed that the South European populations of C. integerrimus have higher levels of cytotype and reproductive diversity compared to the Central European ones. Therefore, the South European populations can be considered as a potential reservoir of regional and global diversity for this species.
Collapse
|
8
|
Xu S, Wu Z, Hou H, Zhao J, Zhang F, Teng R, Ding L, Chen F, Teng N. The transcription factor CmLEC1 positively regulates the seed-setting rate in hybridization breeding of chrysanthemum. HORTICULTURE RESEARCH 2021; 8:191. [PMID: 34376645 PMCID: PMC8355372 DOI: 10.1038/s41438-021-00625-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Distant hybridization is widely used to develop crop cultivars, whereas the hybridization process of embryo abortion often severely reduces the sought-after breeding effect. The LEAFY COTYLEDON1 (LEC1) gene has been extensively investigated as a central regulator of seed development, but it is far less studied in crop hybridization breeding. Here we investigated the function and regulation mechanism of CmLEC1 from Chrysanthemum morifolium during its seed development in chrysanthemum hybridization. CmLEC1 encodes a nucleic protein and is specifically expressed in embryos. CmLEC1's overexpression significantly promoted the seed-setting rate of the cross, while the rate was significantly decreased in the amiR-CmLEC1 transgenic chrysanthemum. The RNA-Seq analysis of the developing hybrid embryos revealed that regulatory genes involved in seed development, namely, CmLEA (late embryogenesis abundant protein), CmOLE (oleosin), CmSSP (seed storage protein), and CmEM (embryonic protein), were upregulated in the OE (overexpressing) lines but downregulated in the amiR lines vs. wild-type lines. Future analysis demonstrated that CmLEC1 directly activated CmLEA expression and interacted with CmC3H, and this CmLEC1-CmC3H interaction could enhance the transactivation ability of CmLEC1 for the expression of CmLEA. Further, CmLEC1 was able to induce several other key genes related to embryo development. Taken together, our results show that CmLEC1 plays a positive role in the hybrid embryo development of chrysanthemum plants, which might involve activating CmLEA's expression and interacting with CmC3H. This may be a new pathway in the LEC1 regulatory network to promote seed development, one perhaps leading to a novel strategy to not only overcome embryo abortion during crop breeding but also increase the seed yield.
Collapse
Affiliation(s)
- Sujuan Xu
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Ze Wu
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Huizhong Hou
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Jingya Zhao
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Renda Teng
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Liping Ding
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| |
Collapse
|
9
|
Phylogenetic relationships and chloroplast capture in the Amelanchier-Malacomeles-Peraphyllum clade (Maleae, Rosaceae): Evidence from chloroplast genome and nuclear ribosomal DNA data using genome skimming. Mol Phylogenet Evol 2020; 147:106784. [DOI: 10.1016/j.ympev.2020.106784] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/07/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
|
10
|
Breeding Systems in Diploid and Polyploid Hawthorns (Crataegus): Evidence from Experimental Pollinations of C. monogyna, C. subsphaerica, and Natural Hybrids. FORESTS 2019. [DOI: 10.3390/f10121059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background and Objectives: Polyploidisation and frequent hybridisation play an important role in speciation processes and evolutionary history and have a large impact on reproductive systems in the genus Crataegus. Reproductive modes in selected diploid and polyploid taxa in eastern Slovakia were investigated and analysed for the first time. Materials and Methods: Diploid, triploid, and tetraploid hawthorns were tested for self-pollination, self-compatibility, and self-fertilisation. Pollination experiments were performed within and between diploid and triploid species to determine the possibilities and directions of pollen transfer under natural conditions. Seeds from crossing experiments and open pollinations were analysed using the flow cytometric seed screen method. Results: These experiments demonstrated that sexual reproduction, cross-pollination, and self-incompatibility are typical of the diploid species Crataegus monogyna and C. kyrtostyla. Seeds produced by self-fertile tetraploid C. subsphaerica were derived from both meiotically reduced and unreduced megagametophytes. Conclusions: Experimental results concerning triploid C. subsphaerica and C. laevigata × C. subsphaerica are ambiguous but suggest that seeds are almost exclusively created through apomixis, although a few sexually generated seeds were observed. In the genus Crataegus, pseudogamy is a common feature of polyploid taxa, as in all cases pollination is essential for regular seed development. Research Highlights: We suggest that all studied Crataegus taxa produce reduced pollen irrespective of ploidy level. Moreover, we emphasise that triploids produce apparently aneuploid pollen grains as a result of irregular meiosis. They are also capable of utilising pollen from 2x, 3x, or 4x donors for pseudogamous formation of endosperm.
Collapse
|
11
|
Fei X, Shi J, Liu Y, Niu J, Wei A. The steps from sexual reproduction to apomixis. PLANTA 2019; 249:1715-1730. [PMID: 30963237 DOI: 10.1007/s00425-019-03113-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
In this paper, an interaction model of apomixis-related genes was constructed to analyze the emergence of apomictic types. It is speculated that apomixis technology will be first implemented in gramineous plants. Apomixis (asexual seed formation) is a phenomenon in which a plant bypasses the most fundamental aspects of sexual reproduction-meiosis and fertilization-to form a viable seed. Plants can form seeds without fertilization, and the seed genotype is consistent with the female parent. The development of apomictic technology would be revolutionary for agriculture and for food production as it would reduce costs and breeding times and also avoid many complications typical of sexual reproduction (e.g. incompatibility barriers) and of vegetative propagation (e.g. viral transfer). The application of apomictic reproductive technology has the potential to revolutionize crop breeding. This article reviews recent advances in apomixis in cytology and molecular biology. The general idea of identifying apomixis was proposed and the process of the emergence of non-fusion types was discussed. To better understand the apomixis mechanism, an apomixis regulatory model was established. At the same time, the realization of apomixis technology is proposed, which provides reference for the research and application of apomixis.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingwei Shi
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinshuang Niu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
12
|
Hojsgaard D, Hörandl E. The Rise of Apomixis in Natural Plant Populations. FRONTIERS IN PLANT SCIENCE 2019; 10:358. [PMID: 31001296 PMCID: PMC6454013 DOI: 10.3389/fpls.2019.00358] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 05/04/2023]
Abstract
Apomixis, the asexual reproduction via seed, has many potential applications for plant breeding by maintaining desirable genotypes over generations. Since most major crops do not express natural apomixis, it is useful to understand the origin and maintenance of apomixis in natural plant systems. Here, we review the state of knowledge on origin, establishment and maintenance of natural apomixis. Many studies suggest that hybridization, either on diploid or polyploid cytotypes, is a major trigger for the formation of unreduced female gametophytes, which represents the first step toward apomixis, and must be combined to parthenogenesis, the development of an unfertilized egg cell. Nevertheless, fertilization of endosperm is still needed for most apomictic plants. Coupling of these three steps appears to be a major constraint for shifts to natural apomixis. Adventitious embryony is another developmental pathway toward apomixis. Establishment of a newly arisen apomictic lineage is often fostered by side-effects of polyploidy. Polyploidy creates an immediate reproductive barrier against the diploid parental and progenitor populations; it can cause a breakdown of genetic self-incompatibility (SI) systems which is needed to establish self-fertility of pseudogamous apomictic lineages; and finally, polyploidy could indirectly help to establish an apomictic cytotype in a novel ecological niche by increasing adaptive potentials of the plants. This step may be followed by a phase of diversification and range expansion, mostly described as geographical parthenogenesis. The utilization of apomixis in crops must consider the potential risks of pollen transfer and introgression into sexual crop fields, which might be overcome by using pollen-sterile or cleistogamous variants. Another risk is the escape into natural vegetation and potential invasiveness of apomictic plants which needs careful management and consideration of ecological conditions.
Collapse
|
13
|
Samaniego F, Kolár F, Urfus T, Barragán Á, Romoleroux K. Determination of apomixis by flow cytometry in two species of Lachemilla (Rosaceae) in Ecuador. NEOTROPICAL BIODIVERSITY 2018. [DOI: 10.1080/23766808.2018.1542785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Fernanda Samaniego
- Herbario QCA - Pontificia Universidad Catolica del Ecuador, Quito, Ecuador
| | | | - Tomas Urfus
- Fyziologicky Ustav Akademie Ved Ceske Republiky, Pruhonice, Czech republic
| | - Álvaro Barragán
- Museo QCAZ - Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Katya Romoleroux
- Herbario QCA - Pontificia Universidad Catolica del Ecuador, Quito, Ecuador
| |
Collapse
|
14
|
Kuklina AG, Kuznetsova OI, Schanzer IA. Molecular Genetic Study of Invasive Shadberry Species (Amelanchier Medik.). RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2018. [DOI: 10.1134/s2075111718020066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Klatt S, Schinkel CCF, Kirchheimer B, Dullinger S, Hörandl E. Effects of cold treatments on fitness and mode of reproduction in the diploid and polyploid alpine plant Ranunculus kuepferi (Ranunculaceae). ANNALS OF BOTANY 2018; 121:1287-1298. [PMID: 29462249 PMCID: PMC6007502 DOI: 10.1093/aob/mcy017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/25/2017] [Indexed: 05/20/2023]
Abstract
Background and Aims Alpine plants grow in harsh environments and are thought to face occasional frost during the sensitive reproductive phase. Apomixis (asexual reproduction via seed) can be advantageous when sexual reproduction is disturbed by cold stress. Apomictic polyploids tend to grow in colder climates than their sexual diploid relatives. Whether cold temperatures actually induce apomixis was unknown to date. Methods We tested experimentally in climate cabinets for effects of low temperatures and repeated frost on phenology, fitness and mode of reproduction in diploid and tetraploid cytotypes of the alpine species Ranunculus kuepferi. The reproduction mode was determined via flow cytometric seed screening (FCSS). Key Results Diploids produced the first flowers earlier than the tetraploids in all treatments. Cold treatments significantly reduced the fitness of both cytotypes regarding seed set, and increased the frequency of apomictic seed formation in diploids, but not in tetraploids. Over consecutive years, the degree of facultative apomixis showed individual phenotypic plasticity. Conclusions Cold stress is correlated to expression of apomixis in warm-adapted, diploid R. kuepferi, while temperature-tolerant tetraploids just maintain facultative apomixis as a possible adaptation to colder climates. However, expression of apomixis may not depend on polyploidy, but rather on failure of the sexual pathway.
Collapse
Affiliation(s)
- Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| | - Christoph C F Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| | - Bernhard Kirchheimer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| |
Collapse
|
16
|
Schinkel CCF, Kirchheimer B, Dullinger S, Geelen D, De Storme N, Hörandl E. Pathways to polyploidy: indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). PLANT SYSTEMATICS AND EVOLUTION = ENTWICKLUNGSGESCHICHTE UND SYSTEMATIK DER PFLANZEN 2017; 303:1093-1108. [PMID: 29081576 PMCID: PMC5640749 DOI: 10.1007/s00606-017-1435-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/14/2017] [Indexed: 05/05/2023]
Abstract
Polyploidy is one of the most important evolutionary processes in plants. In natural populations, polyploids usually emerge from unreduced gametes which either fuse with reduced ones, resulting in triploid offspring (triploid bridge), or with other unreduced gametes, resulting in tetraploid embryos. The frequencies of these two pathways, and male versus female gamete contributions, however, are largely unexplored. Ranunculus kuepferi occurs with diploid, triploid and autotetraploid cytotypes in the Alps, whereby diploids are mostly sexual, while tetraploids are facultative apomicts. To test for the occurrence of polyploidization events by triploid bridge, we investigated 551 plants of natural populations via flow cytometric seed screening. We assessed ploidy shifts in the embryo to reconstruct female versus male gamete contributions to polyploid embryo and/or endosperm formation. Seed formation via unreduced egg cells (BIII hybrids) occurred in all three cytotypes, while only in one case both gametes were unreduced. Polyploids further formed seeds with reduced, unfertilized egg cells (polyhaploids and aneuploids). Pollen was highly variable in diameter, but only pollen >27 μm was viable, whereby diploids produced higher proportions of well-developed pollen. Pollen size was not informative for the formation of unreduced pollen. These results suggest that a female triploid bridge via unreduced egg cells is the major pathway toward polyploidization in R. kuepferi, maybe as a consequence of constraints of endosperm development. Triploids resulting from unreduced male gametes were not observed, which explains the lack of obligate sexual tetraploid individuals and populations. Unreduced egg cell formation in diploids represents the first step toward apomixis.
Collapse
Affiliation(s)
- Christoph C. F. Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Bernhard Kirchheimer
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany
| |
Collapse
|
17
|
Xiang Y, Huang CH, Hu Y, Wen J, Li S, Yi T, Chen H, Xiang J, Ma H. Evolution of Rosaceae Fruit Types Based on Nuclear Phylogeny in the Context of Geological Times and Genome Duplication. Mol Biol Evol 2017; 34:262-281. [PMID: 27856652 PMCID: PMC5400374 DOI: 10.1093/molbev/msw242] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fruits are the defining feature of angiosperms, likely have contributed to angiosperm successes by protecting and dispersing seeds, and provide foods to humans and other animals, with many morphological types and important ecological and agricultural implications. Rosaceae is a family with ∼3000 species and an extraordinary spectrum of distinct fruits, including fleshy peach, apple, and strawberry prized by their consumers, as well as dry achenetum and follicetum with features facilitating seed dispersal, excellent for studying fruit evolution. To address Rosaceae fruit evolution and other questions, we generated 125 new transcriptomic and genomic datasets and identified hundreds of nuclear genes to reconstruct a well-resolved Rosaceae phylogeny with highly supported monophyly of all subfamilies and tribes. Molecular clock analysis revealed an estimated age of ∼101.6 Ma for crown Rosaceae and divergence times of tribes and genera, providing a geological and climate context for fruit evolution. Phylogenomic analysis yielded strong evidence for numerous whole genome duplications (WGDs), supporting the hypothesis that the apple tribe had a WGD and revealing another one shared by fleshy fruit-bearing members of this tribe, with moderate support for WGDs in the peach tribe and other groups. Ancestral character reconstruction for fruit types supports independent origins of fleshy fruits from dry-fruit ancestors, including the evolution of drupes (e.g., peach) and pomes (e.g., apple) from follicetum, and drupetum (raspberry and blackberry) from achenetum. We propose that WGDs and environmental factors, including animals, contributed to the evolution of the many fruits in Rosaceae, which provide a foundation for understanding fruit evolution.
Collapse
Affiliation(s)
- Yezi Xiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA
| | - Jun Wen
- The Smithsonian Institution, Washington, DC
| | - Shisheng Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, School of Life Sciences, Huanggang Normal College, Huanggang, Hubei, China
| | - Tingshuang Yi
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hongyi Chen
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, School of Life Sciences, Huanggang Normal College, Huanggang, Hubei, China
| | - Jun Xiang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, School of Life Sciences, Huanggang Normal College, Huanggang, Hubei, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Schinkel CCF, Kirchheimer B, Dullinger S, Geelen D, De Storme N, Hörandl E. Pathways to polyploidy: indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). PLANT SYSTEMATICS AND EVOLUTION = ENTWICKLUNGSGESCHICHTE UND SYSTEMATIK DER PFLANZEN 2017; 303:1093-1108. [PMID: 29081576 DOI: 10.1007/s00606-017-1435-1436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/14/2017] [Indexed: 05/20/2023]
Abstract
Polyploidy is one of the most important evolutionary processes in plants. In natural populations, polyploids usually emerge from unreduced gametes which either fuse with reduced ones, resulting in triploid offspring (triploid bridge), or with other unreduced gametes, resulting in tetraploid embryos. The frequencies of these two pathways, and male versus female gamete contributions, however, are largely unexplored. Ranunculus kuepferi occurs with diploid, triploid and autotetraploid cytotypes in the Alps, whereby diploids are mostly sexual, while tetraploids are facultative apomicts. To test for the occurrence of polyploidization events by triploid bridge, we investigated 551 plants of natural populations via flow cytometric seed screening. We assessed ploidy shifts in the embryo to reconstruct female versus male gamete contributions to polyploid embryo and/or endosperm formation. Seed formation via unreduced egg cells (BIII hybrids) occurred in all three cytotypes, while only in one case both gametes were unreduced. Polyploids further formed seeds with reduced, unfertilized egg cells (polyhaploids and aneuploids). Pollen was highly variable in diameter, but only pollen >27 μm was viable, whereby diploids produced higher proportions of well-developed pollen. Pollen size was not informative for the formation of unreduced pollen. These results suggest that a female triploid bridge via unreduced egg cells is the major pathway toward polyploidization in R. kuepferi, maybe as a consequence of constraints of endosperm development. Triploids resulting from unreduced male gametes were not observed, which explains the lack of obligate sexual tetraploid individuals and populations. Unreduced egg cell formation in diploids represents the first step toward apomixis.
Collapse
Affiliation(s)
- Christoph C F Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Bernhard Kirchheimer
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany
| |
Collapse
|
19
|
Zhang F, Hua L, Fei J, Wang F, Liao Y, Fang W, Chen F, Teng N. Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genomics 2016; 17:585. [PMID: 27506621 PMCID: PMC4979184 DOI: 10.1186/s12864-016-2939-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/14/2016] [Indexed: 12/05/2022] Open
Abstract
Background Cross breeding is the most commonly used method in chrysanthemum (Chrysanthemum morifolium) breeding; however, cross barriers always exist in these combinations. Many studies have shown that paternal chromosome doubling can often overcome hybridization barriers during cross breeding, although the underlying mechanism has seldom been investigated. Results In this study, we performed two crosses: C. morifolium (pollen receptor) × diploid C. nankingense (pollen donor) and C. morifolium × tetraploid C. nankingense. Seeds were obtained only from the latter cross. RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) were used to investigate differentially expressed genes and proteins during key embryo development stages in the latter cross. A previously performed cross, C. morifolium × diploid C. nankingense, was compared to our results and revealed that transcription factors (i.e., the agamous-like MADS-box protein AGL80 and the leucine-rich repeat receptor protein kinase EXS), hormone-responsive genes (auxin-binding protein 1), genes and proteins related to metabolism (ATP-citrate synthase, citrate synthase and malate dehydrogenase) and other genes reported to contribute to embryo development (i.e., LEA, elongation factor and tubulin) had higher expression levels in the C. morifolium × tetraploid C. nankingense cross. In contrast, genes related to senescence and cell death were down-regulated in the C. morifolium × tetraploid C. nankingense cross. Conclusions The data resources helped elucidate the gene and protein expression profiles and identify functional genes during different development stages. When the chromosomes from the male parent are doubled, the genes contributing to normal embryo developmentare more abundant. However, genes with negative functions were suppressed, suggesting that chromosome doubling may epigenetically inhibit the expression of these genes and allow the embryo to develop normally. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2939-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China
| | - Lichun Hua
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangsong Fei
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China.
| |
Collapse
|
20
|
Piedra-malagón EM, Albarrán-lara AL, Rull J, Piñero D, Sosa V. Using multiple sources of characters to delimit species in the genusCrataegus(Rosaceae): the case of theCrataegus roseicomplex. SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2015.1117027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Etterson JR, Toczydlowski RH, Winkler KJ, Kirschbaum JA, McAulay TS. Solidago altissima differs with respect to ploidy frequency and clinal variation across the prairie-forest biome border in Minnesota. AMERICAN JOURNAL OF BOTANY 2016; 103:22-32. [PMID: 26507110 DOI: 10.3732/ajb.1500146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/30/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Although our awareness of ploidy diversity has expanded with the application of flow cytometry, we still know little about the extent to which cytotypes within mixed-ploidy populations are genetically differentiated across environmental gradients. METHODS To address this issue, we reared 14 populations of Solidago altissima spanning the prairie-forest ecotone in Minnesota in a common garden with a watering treatment. We assessed ploidy frequencies and measured survival, flowering phenology, and plant architectural traits for 4 years. KEY RESULTS All populations harbored multiple cytotypes; prairie populations were dominated by tetraploids, forest populations by hexaploids. Diploids and polyploids differed significantly for 84% of the traits. Beyond average differences, the slope of trait values covaried with latitude and longitude, but this relationship was stronger for diploids than the other two polyploid cytotypes as indicated by numerous ploidy × latitude and ploidy × longitude interactions. For example, the timing of flowering of the cytotypes overlapped in populations sampled from the northeastern hemiboreal forest but differed significantly between cytotypes sampled from populations in the southwestern prairie. The watering treatments had weak effects, and there were no ploidy differences for phenotypic plasticity. CONCLUSIONS Our data show that diploids have diverged genetically to a greater extent than polyploids along the environmental clines sampled in this study. Moreover, different environments favor phenotypic convergence over divergence among cytotypes for some traits. Differences in ploidy frequency and phenotypic divergence among cytotypes across gradients of temperature and precipitation are important considerations for restoration in an age of climate change.
Collapse
Affiliation(s)
- Julie R Etterson
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, Duluth, Minnesota 55812 USA
| | - Rachel H Toczydlowski
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, Duluth, Minnesota 55812 USA
| | - Katharine J Winkler
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, Duluth, Minnesota 55812 USA
| | - Jessica A Kirschbaum
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, Duluth, Minnesota 55812 USA
| | - Tim S McAulay
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, Duluth, Minnesota 55812 USA
| |
Collapse
|
22
|
Burgess MB, Cushman KR, Doucette ET, Frye CT, Campbell CS. Understanding diploid diversity: A first step in unraveling polyploid, apomictic complexity in Amelanchier. AMERICAN JOURNAL OF BOTANY 2015; 102:2041-2057. [PMID: 26643889 DOI: 10.3732/ajb.1500330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Delimitation of Amelanchier species is difficult because of polyploidy and gametophytic apomixis. A first step in unraveling this species problem is understanding the diversity of the diploids that contributed genomes to polyploid apomicts. This research helps clarify challenging species-delimitation problems attending polyploid, apomictic complexity. METHODS We sampled 431 diploid accessions from 13 species, of which 10 are North American and three are Old World. Quantitative morphological analyses tested the null hypothesis of no discrete groups. Using three to nine diploid accessions per species, we constructed phylogenies with DNA sequences from ETS, ITS, the second intron of LEAFY, and chloroplast regions rpoB-trnC, rpl16, trnD-trnT, and ycf6-psbM. KEY RESULTS Most Amelanchier diploid taxa are morphologically and ecogeographically distinct and genetically exclusive lineages. They rarely hybridize with one another. Nuclear and chloroplast DNA sequences almost completely resolve the Amelanchier phylogeny. The backbone is the mostly western North American clade A, eastern North American clade B, and Old World clade O. DNA sequences and morphology support clades A and O as sister taxa. Despite extensive paralogy, our LEAFY data are phylogenetically informative and identify a clade (T) of three arborescent taxa within clade B. CONCLUSIONS Amelanchier diploids differ strikingly from polyploid apomicts, in that hybridization among them is rare, and they form taxa that would qualify as species by most species concepts. Knowledge of diploid morphology, phylogeny, and ecogeography provides a foundation for understanding the evolutionary history of polyploid apomicts, their patterns of diversification, and their species status.
Collapse
Affiliation(s)
- Michael B Burgess
- Department of Biological Sciences, State University of New York Plattsburgh, Plattsburgh, New York 12901, USA
| | - Kevin R Cushman
- School of Biology and Ecology, University of Maine, Orono, Maine 04469, USA
| | - Eric T Doucette
- School of Biology and Ecology, University of Maine, Orono, Maine 04469, USA
| | - Christopher T Frye
- Maryland Department of Natural Resources, Natural Heritage Program, 909 Wye Mills Road, Wye Mills, Maryland 21679, USA
| | | |
Collapse
|
23
|
Hajrudinović A, Siljak-Yakovlev S, Brown SC, Pustahija F, Bourge M, Ballian D, Bogunić F. When sexual meets apomict: genome size, ploidy level and reproductive mode variation of Sorbus aria s.l. and S. austriaca (Rosaceae) in Bosnia and Herzegovina. ANNALS OF BOTANY 2015; 116:301-12. [PMID: 26113635 PMCID: PMC4512196 DOI: 10.1093/aob/mcv093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 05/07/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Allopolyploidy and intraspecific heteroploid crosses are associated, in certain groups, with changes in the mating system. The genus Sorbus represents an appropriate model to study the relationships between ploidy and reproductive mode variations. Diploid S. aria and tetraploid apomictic S. austriaca were screened for ploidy and mating system variations within pure and sympatric populations in order to gain insights into their putative causalities. METHODS Flow cytometry was used to assess genome size and ploidy level among 380 S. aria s.l. and S. austriaca individuals from Bosnia and Herzegovina, with 303 single-seed flow cytometric seed screenings being performed to identify their mating system. Pollen viability and seed set were also determined. KEY RESULTS Flow cytometry confirmed the presence of di-, tri- and tetraploid cytotype mixtures in mixed-ploidy populations of S. aria and S. austriaca. No ploidy variation was detected in single-species populations. Diploid S. aria mother plants always produced sexually originated seeds, whereas tetraploid S. austriaca as well as triploid S. aria were obligate apomicts. Tetraploid S. aria preserved sexuality in a low portion of plants. A tendency towards a balanced 2m : 1p parental genome contribution to the endosperm was shared by diploids and tetraploids, regardless of their sexual or asexual origin. In contrast, most triploids apparently tolerated endosperm imbalance. CONCLUSIONS Coexistence of apomictic tetraploids and sexual diploids drives the production of novel polyploid cytotypes with predominantly apomictic reproductive modes. The data suggest that processes governing cytotype diversity and mating system variation in Sorbus from Bosnia and Herzegovina are probably parallel to those in other diversity hotspots of this genus. The results represent a solid contribution to knowledge of the reproduction of Sorbus and will inform future investigations of the molecular and genetic mechanisms involved in triggering and regulating cytotype diversity and alteration of reproductive modes.
Collapse
Affiliation(s)
- Alma Hajrudinović
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sonja Siljak-Yakovlev
- CNRS, Université Paris-Sud, AgroParisTech, UMR 8079, Ecologie, Systématique, Evolution, Bât. 360, 91450 Orsay, France and
| | - Spencer C Brown
- Pôle de Biologie Cellulaire, Imagif, Centre de Recherche de Gif (FRC3115), CNRS, Saclay Plant Sciences, 91198, Gif-sur-Yvette Cedex, France
| | - Fatima Pustahija
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mickael Bourge
- Pôle de Biologie Cellulaire, Imagif, Centre de Recherche de Gif (FRC3115), CNRS, Saclay Plant Sciences, 91198, Gif-sur-Yvette Cedex, France
| | - Dalibor Ballian
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000 Sarajevo, Bosnia and Herzegovina
| | - Faruk Bogunić
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000 Sarajevo, Bosnia and Herzegovina,
| |
Collapse
|