1
|
Guo X, Zhou M, Chen J, Shao M, Zou L, Ying Y, Liu S. Genome-Wide Identification of the Highly Conserved INDETERMINATE DOMAIN ( IDD) Zinc Finger Gene Family in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2022; 23:ijms232213952. [PMID: 36430436 PMCID: PMC9695771 DOI: 10.3390/ijms232213952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
INDETERMINATE DOMAIN (IDD) proteins, a family of transcription factors unique to plants, function in multiple developmental processes. Although the IDD gene family has been identified in many plants, little is known about it in moso bamboo. In this present study, we identified 32 PheIDD family genes in moso bamboo and randomly sequenced the full-length open reading frames (ORFs) of ten PheIDDs. All PheIDDs shared a highly conserved IDD domain that contained two canonical C2H2-ZFs, two C2HC-ZFs, and a nuclear localization signal. Collinearity analysis showed that segmental duplication events played an important role in expansion of the PheIDD gene family. Synteny analysis indicated that 30 PheIDD genes were orthologous to those of rice (Oryza sativa). Thirty PheIDDs were expressed at low levels, and most PheIDDs exhibited characteristic organ-specific expression patterns. Despite their diverse expression patterns in response to exogenous plant hormones, 8 and 22 PheIDDs responded rapidly to IAA and 6-BA treatments, respectively. The expression levels of 23 PheIDDs were closely related to the outgrowth of aboveground branches and 20 PheIDDs were closely related to the awakening of underground dormant buds. In addition, we found that the PheIDD21 gene generated two products by alternative splicing. Both isoforms interacted with PheDELLA and PheSCL3. Furthermore, both isoforms could bind to the cis-elements of three genes (PH02Gene17121, PH02Gene35441, PH02Gene11386). Taken together, our work provides valuable information for studying the molecular breeding mechanism of lateral organ development in moso bamboo.
Collapse
|
2
|
Mehravi S, Ranjbar GA, Najafi-Zarrini H, Mirzaghaderi G, Hanifei M, Severn-Ellis AA, Edwards D, Batley J. Karyology and Genome Size Analyses of Iranian Endemic Pimpinella (Apiaceae) Species. FRONTIERS IN PLANT SCIENCE 2022; 13:898881. [PMID: 35783941 PMCID: PMC9240749 DOI: 10.3389/fpls.2022.898881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 05/09/2023]
Abstract
Pimpinella species are annual, biennial, and perennial semibushy aromatic plants cultivated for folk medicine, pharmaceuticals, food, and spices. The karyology and genome size of 17 populations of 16 different Pimpinella species collected from different locations in Iran were analyzed for inter-specific karyotypic and genome size variations. For karyological studies, root tips were squashed and painted with a DAPI solution (1 mg/ml). For flow cytometric measurements, fresh leaves of the standard reference (Solanum lycopersicum cv. Stupick, 2C DNA = 1.96 pg) and the Pimpinella samples were stained with propidium iodide. We identified two ploidy levels: diploid (2x) and tetraploid (4x), as well as five metaphase chromosomal counts of 18, 20, 22, 24, and 40. 2n = 24 is reported for the first time in the Pimpinella genus, and the presence of a B-chromosome is reported for one species. The nuclear DNA content ranged from 2C = 2.48 to 2C = 5.50 pg, along with a wide range of genome sizes between 1212.72 and 2689.50 Mbp. The average monoploid genome size and the average value of 2C DNA/chromosome were not proportional to ploidy. There were considerable positive correlations between 2C DNA and total chromatin length and total chromosomal volume. The present study results enable us to classify the genus Pimpinella with a high degree of morphological variation in Iran. In addition, cytological studies demonstrate karyotypic differences between P. anthriscoides and other species of Pimpinella, which may be utilized as a novel identification key to affiliate into a distinct, new genus - Pseudopimpinella.
Collapse
Affiliation(s)
- Shaghayegh Mehravi
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Department of Plant Breeding and Biotechnology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Gholam Ali Ranjbar
- Department of Plant Breeding and Biotechnology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hamid Najafi-Zarrini
- Department of Plant Breeding and Biotechnology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Kurdistan, Iran
| | - Mehrdad Hanifei
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
Genome Size and Chromosome Number Evaluation of Astragalus L. sect. Hymenostegis Bunge (Fabaceae). PLANTS 2022; 11:plants11030435. [PMID: 35161416 PMCID: PMC8838222 DOI: 10.3390/plants11030435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Astragalus section Hymenostegis is one of the important characteristic elements of thorn-cushion formations in the Irano-Turanian floristic region. In this paper, we examined the chromosome number of 17 species (15 new reports) and provide estimates of genome size for 62 individuals belonging to 38 taxa of A. sect. Hymenostegis, some species outside this section, plus two Oxytropis species. Based on chromosome counts 11 species were found to be diploid (2n = 16), four species tetraploid (2n = 32) and two taxa hexaploid (2n = 48). From genome size measurements on silica-gel dried material, three ploidy levels (2x, 4x and 6x) were inferred, with a majority of species being diploid. The 2C values reach from 2.07 pg in diploid Astragalus zohrabi to 7.16 pg in hexaploid A. rubrostriatus. We found indications that species might occur with different cytotypes. A phylogenetic framework using nrDNA ITS sequences was constructed to understand the evolution of ploidy changes and genome sizes. It showed that genome size values among the studied taxa differ only slightly within ploidy levels and are nearly constant within most species and groups of closely related taxa within the genus Astragalus. The results of this study show that there is a rather strong correlation between genome sizes and chromosome numbers in sect. Hymenostegis. The resolution of the ITS-based phylogenetic tree is too low to infer evolutionary or environmental correlations of genome size differences. Polyploidization seems to contribute to the high species number in Astragalus, however, in sect. Hymenostegis it is not the main driver of speciation.
Collapse
|
4
|
Comparative Genomics Analysis of Repetitive Elements in Ten Gymnosperm Species: "Dark Repeatome" and Its Abundance in Conifer and Gnetum Species. Life (Basel) 2021; 11:life11111234. [PMID: 34833110 PMCID: PMC8620675 DOI: 10.3390/life11111234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Repetitive elements (RE) and transposons (TE) can comprise up to 80% of some plant genomes and may be essential for regulating their evolution and adaptation. The “repeatome” information is often unavailable in assembled genomes because genomic areas of repeats are challenging to assemble and are often missing from final assembly. However, raw genomic sequencing data contain rich information about RE/TEs. Here, raw genomic NGS reads of 10 gymnosperm species were studied for the content and abundance patterns of their “repeatome”. We utilized a combination of alignment on databases of repetitive elements and de novo assembly of highly repetitive sequences from genomic sequencing reads to characterize and calculate the abundance of known and putative repetitive elements in the genomes of 10 conifer plants: Pinus taeda, Pinus sylvestris, Pinus sibirica, Picea glauca, Picea abies, Abies sibirica, Larix sibirica, Juniperus communis, Taxus baccata, and Gnetum gnemon. We found that genome abundances of known and newly discovered putative repeats are specific to phylogenetically close groups of species and match biological taxa. The grouping of species based on abundances of known repeats closely matches the grouping based on abundances of newly discovered putative repeats (kChains) and matches the known taxonomic relations.
Collapse
|
5
|
Trad RJ, Cabral FN, Bittrich V, Silva SRD, Amaral MDCED. Calophyllaceae plastomes, their structure and insights in relationships within the clusioids. Sci Rep 2021; 11:20712. [PMID: 34671062 PMCID: PMC8528878 DOI: 10.1038/s41598-021-99178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
A complete chloroplast genome is not yet available for numerous species of plants. Among the groups that lack plastome information is the clusioid clade (Malpighiales), which includes five families: Bonnetiaceae, Calophyllaceae, Clusiaceae, Hypericaceae, and Podostemaceae. With around 2200 species, it has few published plastomes and most of them are from Podostemaceae. Here we assembled and compared six plastomes from members of the clusioids: five from Calophyllaceae (newly sequenced) and one from Clusiaceae. Putative regions for evolutionary studies were identified and the newly assembled chloroplasts were analyzed with other available chloroplasts for the group, focusing on Calophyllaceae. Our results mostly agree with recent studies which found a general conserved structure, except for the two Podostemaceae species that have a large inversion (trnK-UUU–rbcL) and lack one intron from ycf3. Within Calophyllaceae we observed a longer LSC and reduced IRs in Mahurea exstipulata, resulting in some genic rearrangement, and a short inversion (psbJ–psbE) in Kielmeyera coriacea. Phylogenetic analyses recovered the clusioids and the five families as monophyletic and revealed that conflicts in relationships reported in the literature for the group agree with nodes concentrating uninformative or conflicting gene trees. Our study brings new insights about clusioid plastome architecture and its evolution.
Collapse
Affiliation(s)
- Rafaela Jorge Trad
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), CP 6109, Campinas, SP, 13083-970, Brazil. .,Macroecology Lab @ J3-166, Institute of Biological Sciences - ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Campinas, MG, 31270-901, Brazil.
| | - Fernanda Nunes Cabral
- Departamento de Ciências e Linguagens, Instituto Federal de Minas Gerais - Campus Bambuí, Bambuí, MG, 38900-000, Brazil
| | - Volker Bittrich
- Volker Bittrich is an independent scientist, Campinas, Brazil
| | - Saura Rodrigues da Silva
- Department of Technology, UNESP - São Paulo State University, Campus Jaboticabal, Jaboticabal, SP, 14884-900, Brazil
| | | |
Collapse
|
6
|
Chalopin D, Clark LG, Wysocki WP, Park M, Duvall MR, Bennetzen JL. Integrated Genomic Analyses From Low-Depth Sequencing Help Resolve Phylogenetic Incongruence in the Bamboos (Poaceae: Bambusoideae). FRONTIERS IN PLANT SCIENCE 2021; 12:725728. [PMID: 34567039 PMCID: PMC8456298 DOI: 10.3389/fpls.2021.725728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The bamboos (Bambusoideae, Poaceae) comprise a major grass lineage with a complex evolutionary history involving ancient hybridization and allopolyploidy. About 1700 described species are classified into three tribes, Olyreae (herbaceous bamboos), Bambuseae (tropical woody bamboos), and Arundinarieae (temperate woody bamboos). Nuclear analyses strongly support monophyly of the woody tribes, whereas plastome analyses strongly support paraphyly, with Bambuseae sister to Olyreae. Our objectives were to clarify the origin(s) of the woody bamboo tribes and resolve the nuclear vs. plastid conflict using genomic tools. For the first time, plastid and nuclear genomic information from the same bamboo species were combined in a single study. We sampled 51 species of bamboos representing the three tribes, estimated their genome sizes and generated low-depth sample sequence data, from which plastomes were assembled and nuclear repeats were analyzed. The distribution of repeat families was found to agree with nuclear gene phylogenies, but also provides novel insights into nuclear evolutionary history. We infer two early, independent hybridization events, one between an Olyreae ancestor and a woody ancestor giving rise to the two Bambuseae lineages, and another between two woody ancestors giving rise to the Arundinarieae. Retention of the Olyreae plastome associated with differential dominance of nuclear genomes and subsequent diploidization in some lineages explains the paraphyly observed in plastome phylogenetic estimations. We confirm ancient hybridization and allopolyploidy in the origins of the extant woody bamboo lineages and propose biased fractionation and diploidization as important factors in their evolution.
Collapse
Affiliation(s)
- Domitille Chalopin
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Lynn G. Clark
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - William P. Wysocki
- Center for Translational Data Science, University of Chicago, Chicago, IL, United States
| | - Minkyu Park
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Melvin R. Duvall
- Department of Biology and Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, United States
| | | |
Collapse
|
7
|
Yuan H, Huang Y, Mao Y, Zhang N, Nie Y, Zhang X, Zhou Y, Mao S. The Evolutionary Patterns of Genome Size in Ensifera (Insecta: Orthoptera). Front Genet 2021; 12:693541. [PMID: 34249107 PMCID: PMC8261143 DOI: 10.3389/fgene.2021.693541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Genomic size variation has long been a focus for biologists. However, due to the lack of genome size data, the mechanisms behind this variation and the biological significance of insect genome size are rarely studied systematically. The detailed taxonomy and phylogeny of the Ensifera, as well as the extensive documentation concerning their morphological, ecological, behavioral, and distributional characteristics, make them a strong model for studying the important scientific problem of genome size variation. However, data on the genome size of Ensifera are rather sparse. In our study, we used flow cytometry to determine the genome size of 32 species of Ensifera, the smallest one being only 1C = 0.952 pg with the largest species up to 1C = 19.135 pg, representing a 20-fold range. This provides a broader blueprint for the genome size variation of Orthoptera than was previously available. We also completed the assembly of nine mitochondrial genomes and combined mitochondrial genome data from public databases to construct phylogenetic trees containing 32 species of Ensifera and three outgroups. Based on these inferred phylogenetic trees, we detected the phylogenetic signal of genome size variation in Ensifera and found that it was strong in both males and females. Phylogenetic comparative analyses revealed that there were no correlations between genome size and body size or flight ability in Tettigoniidae. Reconstruction of ancestral genome size revealed that the genome size of Ensifera evolved in a complex pattern, in which the genome size of the grylloid clade tended to decrease while that of the non-grylloid clade expanded significantly albeit with fluctuations. However, the evolutionary mechanisms underlying variation of genome size in Ensifera are still unknown.
Collapse
Affiliation(s)
- Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ying Mao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Nan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yimeng Nie
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xue Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yafu Zhou
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, China
| | - Shaoli Mao
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, China
| |
Collapse
|
8
|
Abstract
Aims:
The discontinuous pattern of genome size variation in angiosperms is an unsolved
problem related to genome evolution. In this study, we introduced a genome evolution operator
and solved the related eigenvalue equation to deduce the discontinuous pattern.
Background:
Genome is a well-defined system for studying the evolution of species. One of the
basic problems is the genome size evolution. The DNA amounts for angiosperm species are highly
variable, differing over 1000-fold. One big surprise is the discovery of the discontinuous
distribution of nuclear DNA amounts in many angiosperm genera.
Objective:
The discontinuous distribution of nuclear DNA amounts has certain regularity, much
like a group of quantum states in atomic physics. The quantum pattern has not been explained by
all the evolutionary theories so far and we shall interpret it through the quantum simulation of
genome evolution.
Methods:
We introduced a genome evolution operator H to deduce the distribution of DNA
amount. The nuclear DNA amount in angiosperms is studied from the eigenvalue equation of the
genome evolution operator H. The operator H is introduced by physical simulation and it is
defined as a function of the genome size N and the derivative with respect to the size.
Results:
The discontinuity of DNA size distribution and its synergetic occurrence in related
angiosperms species are successfully deduced from the solution of the equation. The results agree
well with the existing experimental data of Aloe, Clarkia, Nicotiana, Lathyrus, Allium and other
genera.
Conclusion:
The success of our approach may infer the existence of a set of genomic evolutionary
equations satisfying classical-quantum duality. The classical phase of evolution means it obeys the
classical deterministic law, while the quantum phase means it obeys the quantum stochastic law.
The discontinuity of DNA size distribution provides novel evidences on the quantum evolution of
angiosperms. It has been realized that the discontinuous pattern is due to the existence of some
unknown evolutionary constraints. However, our study indicates that these constraints on the
angiosperm genome essentially originate from quantum.
Collapse
Affiliation(s)
- Liaofu Luo
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Lirong Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
9
|
Kellogg EA, Abbott JR, Bawa KS, Gandhi KN, Kailash BR, Ganeshaiah K, Shrestha UB, Raven P. Checklist of the grasses of India. PHYTOKEYS 2020; 163:1-560. [PMID: 37397271 PMCID: PMC10311516 DOI: 10.3897/phytokeys.163.38393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/22/2020] [Indexed: 07/04/2023]
Abstract
A checklist of the grasses of India is presented, as compiled from survey of all available literature. Of the twelve subfamilies of grasses, ten are represented in India. Most subfamilies have been examined by taxonomic experts for up-to-date nomenclature. The list includes 1506 species plus infraspecific taxa and presents information on types, synonyms, distribution within India, and habit. Twelve new combinations are made, viz. Arctopoa tibetica (Munro ex Stapf) Prob. var. aristulata (Stapf) E.A. Kellogg, comb. nov.; Chimonocalamus nagalandianus (H.B. Naithani) L.G. Clark, comb. nov.; Chionachne digitata (L.f.) E.A. Kellogg, comb. nov.; Chionachne wallichiana (Nees) E.A. Kellogg, comb. nov.; Dinebra polystachyos (R. Br.) E.A. Kellogg, comb. nov.; Moorochloa eruciformis (Sm.) Veldkamp var. divaricata (Basappa & Muniv.) E.A. Kellogg, comb. nov.; Phyllostachys nigra (Lodd. ex Lindl.) Munro var. puberula (Miq.) Kailash, comb. & stat. nov.; Tzveleviochloa schmidii (Hook. f.) E.A. Kellogg, comb. nov.; Urochloa lata (Schumach.) C.E. Hubb. var. pubescens (C.E. Hubb.) E.A. Kellogg, comb. nov.; Urochloa ramosa (L.) T.Q. Nguyen var. pubescens (Basappa & Muniy.) E.A. Kellogg, comb. nov.; Urochloa semiundulata (Hochst. ex A. Rich.) Ashalatha & V.J. Nair var. intermedia (Basappa & Muniy.) E.A. Kellogg, comb. nov.
Collapse
Affiliation(s)
| | - J. Richard Abbott
- Missouri Botanical GardenSt. LouisUnited States of America
- Missouri Botanical GardenSt. Louis, MOUnited States of America
| | - Kamaljit S. Bawa
- University of Massachusetts, BostonBostonUnited States of America
| | | | - B. R. Kailash
- 5Ashoka Trust for Research in Ecology and the Environment (ATREE)BangaloreIndia
| | | | | | - Peter Raven
- Missouri Botanical GardenSt. LouisUnited States of America
| |
Collapse
|
10
|
Prochetto S, Reinheimer R. Step by step evolution of Indeterminate Domain (IDD) transcriptional regulators: from algae to angiosperms. ANNALS OF BOTANY 2020; 126:85-101. [PMID: 32206771 PMCID: PMC7304464 DOI: 10.1093/aob/mcaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The Indeterminate Domain (IDD) proteins are a plant-specific subclass of C2H2 Zinc Finger transcription factors. Some of these transcription factors play roles in diverse aspects of plant metabolism and development, but the function of most of IDD genes is unknown and the molecular evolution of the subfamily has not been explored in detail. METHODS In this study, we mined available genome sequences of green plants (Viridiplantae) to reconstruct the phylogeny and then described the motifs/expression patterns of IDD genes. KEY RESULTS We identified the complete set of IDD genes of 16 Streptophyta genomes. We found that IDD and its sister clade STOP arose by a duplication at the base of Streptophyta. Once on land, the IDD genes duplicated extensively, giving rise to at least ten lineages. Some of these lineages were lost in extant non-vascular plants and gymnosperms, but all of them were retained in angiosperms, duplicating profoundly in dicots and monocots and acquiring, at the same time, surprising heterogeneity in their C-terminal regions and expression patterns. CONCLUSIONS IDDs were present in the last common ancestor of Streptophyta. On land, IDDs duplicated extensively, leading to ten lineages. Later, IDDs were recruited by angiosperms where they diversified greatly in number, C-terminal and expression patterns. Interestingly, such diversification occurred during the evolution of novel traits of the plant body. This study provides a solid framework of the orthology relationships of green land plant IDD transcription factors, thus increasing the accuracy of orthologue identification in model and non-model species and facilitating the identification of agronomically important genes related to plant metabolism and development.
Collapse
Affiliation(s)
- Santiago Prochetto
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), FBCB, Santa Fe, Argentina
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| | - Renata Reinheimer
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), FBCB, Santa Fe, Argentinaand
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
11
|
Burchardt P, Buddenhagen CE, Gaeta ML, Souza MD, Marques A, Vanzela ALL. Holocentric Karyotype Evolution in Rhynchospora Is Marked by Intense Numerical, Structural, and Genome Size Changes. FRONTIERS IN PLANT SCIENCE 2020; 11:536507. [PMID: 33072141 PMCID: PMC7533669 DOI: 10.3389/fpls.2020.536507] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/21/2020] [Indexed: 05/07/2023]
Abstract
Cyperaceae is a family of Monocotyledons comprised of species with holocentric chromosomes that are associated with intense dysploidy and polyploidy events. Within this family the genus Rhynchospora has recently become the focus of several studies that characterize the organization of the holocentric karyotype and genome structures. To broaden our understanding of genome evolution in this genus, representatives of Rhynchospora were studied to contrast chromosome features, C-CMA/DAPI band distribution and genome sizes. Here, we carried out a comparative analysis for 35 taxa of Rhynchospora, and generated new genome size estimates for 20 taxa. The DNA 2C-values varied up to 22-fold, from 2C = 0.51 pg to 11.32 pg, and chromosome numbers ranged from 2n = 4 to 61. At least 37% of our sampling exhibited 2n different from the basic number x = 5, and chromosome rearrangements were also observed. A large variation in C-CMA/DAPI band accumulation and distribution was observed as well. We show that genome variation in Rhynchospora is much larger than previously reported. Phylogenetic analysis showed that most taxa were grouped in clades corresponding to previously described taxonomic sections. Basic chromosome numbers are the same within every section, however, changes appeared in all the clades. Ancestral chromosome number reconstruction revealed n = 5 as the most likely ancestral complements, but n = 10 appears as a new possibility. Chromosome evolution models point to polyploidy as the major driver of chromosome evolution in Rhynchospora, followed by dysploidy. A negative correlation between chromosome size and diploid number open the discussion for holokinetic drive-based genome evolution. This study explores relationships between karyotype differentiation and genome size variation in Rhynchospora, and contrasts it against the phylogeny of this holocentric group.
Collapse
Affiliation(s)
- Paula Burchardt
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Marcos L. Gaeta
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
| | - Murilo D. Souza
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- *Correspondence: André L. L. Vanzela, ; André Marques,
| | - André L. L. Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina, Londrina, Brazil
- *Correspondence: André L. L. Vanzela, ; André Marques,
| |
Collapse
|
12
|
Kautsar SA, Suarez Duran HG, Blin K, Osbourn A, Medema MH. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res 2019; 45:W55-W63. [PMID: 28453650 PMCID: PMC5570173 DOI: 10.1093/nar/gkx305] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
Plant specialized metabolites are chemically highly diverse, play key roles in host-microbe interactions, have important nutritional value in crops and are frequently applied as medicines. It has recently become clear that plant biosynthetic pathway-encoding genes are sometimes densely clustered in specific genomic loci: biosynthetic gene clusters (BGCs). Here, we introduce plantiSMASH, a versatile online analysis platform that automates the identification of candidate plant BGCs. Moreover, it allows integration of transcriptomic data to prioritize candidate BGCs based on the coexpression patterns of predicted biosynthetic enzyme-coding genes, and facilitates comparative genomic analysis to study the evolutionary conservation of each cluster. Applied on 48 high-quality plant genomes, plantiSMASH identifies a rich diversity of candidate plant BGCs. These results will guide further experimental exploration of the nature and dynamics of gene clustering in plant metabolism. Moreover, spurred by the continuing decrease in costs of plant genome sequencing, they will allow genome mining technologies to be applied to plant natural product discovery. The plantiSMASH web server, precalculated results and source code are freely available from http://plantismash.secondarymetabolites.org.
Collapse
Affiliation(s)
- Satria A Kautsar
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands.,Teknik Informatika, Universitas Lampung, Jln. Sumantri Brojonegoro No. 01, Lampung 35141, Indonesia
| | | | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Valencia JD, Girgis HZ. LtrDetector: A tool-suite for detecting long terminal repeat retrotransposons de-novo. BMC Genomics 2019; 20:450. [PMID: 31159720 PMCID: PMC6547461 DOI: 10.1186/s12864-019-5796-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long terminal repeat retrotransposons are the most abundant transposons in plants. They play important roles in alternative splicing, recombination, gene regulation, and defense mechanisms. Large-scale sequencing projects for plant genomes are currently underway. Software tools are important for annotating long terminal repeat retrotransposons in these newly available genomes. However, the available tools are not very sensitive to known elements and perform inconsistently on different genomes. Some are hard to install or obsolete. They may struggle to process large plant genomes. None can be executed in parallel out of the box and very few have features to support visual review of new elements. To overcome these limitations, we developed LtrDetector, which uses techniques inspired by signal-processing. RESULTS We compared LtrDetector to LTR_Finder and LTRharvest, the two most successful predecessor tools, on six plant genomes. For each organism, we constructed a ground truth data set based on queries from a consensus sequence database. According to this evaluation, LtrDetector was the most sensitive tool, achieving 16-23% improvement in sensitivity over LTRharvest and 21% improvement over LTR_Finder. All three tools had low false positive rates, with LtrDetector achieving 98.2% precision, in between its two competitors. Overall, LtrDetector provides the best compromise between high sensitivity and low false positive rate while requiring moderate time and utilizing memory available on personal computers. CONCLUSIONS LtrDetector uses a novel methodology revolving around k-mer distributions, which allows it to produce high-quality results using relatively lightweight procedures. It is easy to install and use. It is not species specific, performing well using its default parameters on genomes of varying size and repeat content. It is automatically configured for parallel execution and runs efficiently on an ordinary personal computer. It includes a k-mer scores visualization tool to facilitate manual review of the identified elements. These features make LtrDetector an attractive tool for future annotation projects involving long terminal repeat retrotransposons.
Collapse
Affiliation(s)
- Joseph D Valencia
- The Bioinformatics Toolsmith Laboratory, Tandy School of Computer Science, University of Tulsa, 800 South Tucker Drive, Tulsa, 74104, OK, USA
| | - Hani Z Girgis
- The Bioinformatics Toolsmith Laboratory, Tandy School of Computer Science, University of Tulsa, 800 South Tucker Drive, Tulsa, 74104, OK, USA.
| |
Collapse
|
14
|
Lu H, Cui X, Liu Z, Liu Y, Wang X, Zhou Z, Cai X, Zhang Z, Guo X, Hua J, Ma Z, Wang X, Zhang J, Zhang H, Liu F, Wang K. Discovery and annotation of a novel transposable element family in Gossypium. BMC PLANT BIOLOGY 2018; 18:307. [PMID: 30486783 PMCID: PMC6264596 DOI: 10.1186/s12870-018-1519-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 11/13/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Fluorescence in situ hybridization (FISH) is an efficient cytogenetic technology to study chromosome structure. Transposable element (TE) is an important component in eukaryotic genomes and can provide insights in the structure and evolution of eukaryotic genomes. RESULTS A FISH probe derived from bacterial artificial chromosome (BAC) clone 299N22 generated striking signals on all 26 chromosomes of the cotton diploid A genome (AA, 2x=26) but very few on the diploid D genome (DD, 2x=26). All 26 chromosomes of the A sub genome (At) of tetraploid cotton (AADD, 2n=4x=52) also gave positive signals with this FISH probe, whereas very few signals were observed on the D sub genome (Dt). Sequencing and annotation of BAC clone 299N22, revealed a novel Ty3/gypsy transposon family, which was named as 'CICR'. This family is a significant contributor to size expansion in the A (sub) genome but not in the D (sub) genome. Further FISH analysis with the LTR of CICR as a probe revealed that CICR is lineage-specific, since massive repeats were found in A and B genomic groups, but not in C-G genomic groups within the Gossypium genus. Molecular evolutionary analysis of CICR suggested that tetraploid cottons evolved after silence of the transposon family 1-1.5 million years ago (Mya). Furthermore, A genomes are more homologous with B genomes, and the C, E, F, and G genomes likely diverged from a common ancestor prior to 3.5-4 Mya, the time when CICR appeared. The genomic variation caused by the insertion of CICR in the A (sub) genome may have played an important role in the speciation of organisms with A genomes. CONCLUSIONS The CICR family is highly repetitive in A and B genomes of Gossypium, but not amplified in the C-G genomes. The differential amount of CICR family in At and Dt will aid in partitioning sub genome sequences for chromosome assemblies during tetraploid genome sequencing and will act as a method for assessing the accuracy of tetraploid genomes by looking at the proportion of CICR elements in resulting pseudochromosome sequences. The timeline of the expansion of CICR family provides a new reference for cotton evolutionary analysis, while the impact on gene function caused by the insertion of CICR elements will be a target for further analysis of investigating phenotypic differences between A genome and D genome species.
Collapse
Affiliation(s)
- Hejun Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
- Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Xinglei Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Zhen Liu
- Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Zhenmei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Xinlei Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Jinping Hua
- Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Zhiying Ma
- Key Laboratory for Crop Germplasm Resources of Hebei province, Hebei Agricultural University, Baoding, 071000 Hebei China
| | - Xiyin Wang
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000 Hebei China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, 88003 USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, 79409 USA
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| |
Collapse
|
15
|
Yruela I, Contreras-Moreira B, Dunker AK, Niklas KJ. Evolution of Protein Ductility in Duplicated Genes of Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1216. [PMID: 30177944 PMCID: PMC6109787 DOI: 10.3389/fpls.2018.01216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Previous work has shown that ductile/intrinsically disordered proteins (IDPs) and residues (IDRs) are found in all unicellular and multicellular organisms, wherein they are essential for basic cellular functions and complement the function of rigid proteins. In addition, computational studies of diverse phylogenetic lineages have revealed: (1) that protein ductility increases in concert with organismic complexity, and (2) that distributions of IDPs and IDRs along the chromosomes of plant species are non-random and correlate with variations in the rates of the genetic recombination and chromosomal rearrangement. Here, we show that approximately 50% of aligned residues in paralogs across a spectrum of algae, bryophytes, monocots, and eudicots are IDRs and that a high proportion (ca. 60%) are in disordered segments greater than 30 residues. When three types of IDRs are distinguished (i.e., identical, similar and variable IDRs) we find that species with large numbers of chromosome and endoduplicated genes exhibit paralogous sequences with a higher frequency of identical IDRs, whereas species with small chromosomes numbers exhibit paralogous sequences with a higher frequency of similar and variable IDRs. These results are interpreted to indicate that genome duplication events influence the distribution of IDRs along protein sequences and likely favor the presence of identical IDRs (compared to similar IDRs or variable IDRs). We discuss the evolutionary implications of gene duplication events in the context of ductile/disordered residues and segments, their conservation, and their effects on functionality.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology, Joint Unit to CSIC, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology, Joint Unit to CSIC, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza, Spain
| | - A. Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Karl J. Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
de Souza TB, Chaluvadi SR, Johnen L, Marques A, González-Elizondo MS, Bennetzen JL, Vanzela ALL. Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes. ANNALS OF BOTANY 2018; 122:279-290. [PMID: 30084890 PMCID: PMC6070107 DOI: 10.1093/aob/mcy066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/18/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Long terminal repeat-retrotransposons (LTR-RTs) comprise a large portion of plant genomes, with massive repeat blocks distributed across the chromosomes. Eleocharis species have holocentric chromosomes, and show a positive correlation between chromosome numbers and the amount of nuclear DNA. To evaluate the role of LTR-RTs in karyotype diversity in members of Eleocharis (subgenus Eleocharis), the occurrence and location of different members of the Copia and Gypsy superfamilies were compared, covering interspecific variations in ploidy levels (considering chromosome numbers), DNA C-values and chromosomal arrangements. METHODS The DNA C-value was estimated by flow cytometry. Genomes of Eleocharis elegans and E. geniculata were partially sequenced using Illumina MiSeq assemblies, which were a source for searching for conserved proteins of LTR-RTs. POL domains were used for recognition, comparing families and for probe production, considering different families of Copia and Gypsy superfamilies. Probes were obtained by PCR and used in fluorescence in situ hybridization (FISH) against chromosomes of seven Eleocharis species. KEY RESULTS A positive correlation between ploidy levels and the amount of nuclear DNA was observed, but with significant variations between samples with the same ploidy levels, associated with repetitive DNA fractions. LTR-RTs were abundant in E. elegans and E. geniculata genomes, with a predominance of Copia Sirevirus and Gypsy Athila/Tat clades. FISH using LTR-RT probes exhibited scattered and clustered signals, but with differences in the chromosomal locations of Copia and Gypsy. The diversity in LTR-RT locations suggests that there is no typical chromosomal distribution pattern for retrotransposons in holocentric chromosomes, except the CRM family with signals distributed along chromatids. CONCLUSIONS These data indicate independent fates for each LTR-RT family, including accumulation between and within chromosomes and genomes. Differential activity and small changes in LTR-RTs suggest a secondary role in nuclear DNA variation, when compared with ploidy changes.
Collapse
Affiliation(s)
- Thaíssa B de Souza
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Lucas Johnen
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - André Marques
- Laboratory of Genetic Resources, Campus Arapiraca, Federal University of Alagoas, Arapiraca, Brazil
| | | | | | - André L L Vanzela
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
17
|
Abstract
The long linear chromosomes of eukaryotic organisms are tightly packed into the nucleus of the cell. Beyond a first organization into nucleosomes and higher-order chromatin fibers, the positioning of nuclear DNA within the three-dimensional space of the nucleus plays a critical role in genome function and gene expression. Different techniques have been developed to assess nanoscale chromatin organization, nuclear position of genomic regions or specific chromatin features and binding proteins as well as higher-order chromatin organization. Here, I present an overview of imaging and molecular techniques applied to study nuclear architecture in plants, with special attention to the related protocols published in the "Plant Chromatin Dynamics" edition from Methods in Molecular Biology.
Collapse
Affiliation(s)
- Aline V Probst
- GReD, Université Clermont Auvergne, CNRS, INSERM, 63001, Clermont-Ferrand, France.
| |
Collapse
|
18
|
Luo X, Tinker NA, Zhou Y, Wight CP, Liu J, Wan W, Chen L, Peng Y. Genomic relationships among sixteen species of Avena based on (ACT)6 trinucleotide repeat FISH. Genome 2018; 61:63-70. [DOI: 10.1139/gen-2017-0132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Knowledge of the locations of repeat elements could be very important in the assembly of genome sequences and their assignment to physical chromosomes. Genomic and species relationships among 16 species were investigated using fluorescence in situ hybridization (FISH) with the Am1 and (ACT)6 probes. The Am1 oligonucleotide probe was particularly enriched in the C genomes, whereas the (ACT)6 trinucleotide repeat probe showed a diverse distribution of hybridization patterns in the A, AB, C, AC, and ACD genomes but might not be present in the B and D genomes. The hybridization pattern of Avena sativa was very similar to that of A. insularis, indicating that this species most likely originated from A. insularis as a tetraploid ancestor. Although the two FISH probes failed to identify relationships of more species, this proof-of-concept approach opens the way to the use of FISH probes in assigning other signature elements from genomic sequence to physical chromosomes.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Nick A. Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, KW Neatby Bldg., Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Charlene P. Wight
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, KW Neatby Bldg., Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Juncheng Liu
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Wenlin Wan
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Liang Chen
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| |
Collapse
|
19
|
Zeng FC, Zhao YJ, Zhang QJ, Gao LZ. LTRtype, an Efficient Tool to Characterize Structurally Complex LTR Retrotransposons and Nested Insertions on Genomes. FRONTIERS IN PLANT SCIENCE 2017; 8:402. [PMID: 28421083 PMCID: PMC5379124 DOI: 10.3389/fpls.2017.00402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/09/2017] [Indexed: 05/14/2023]
Abstract
The amplification and recombination of long terminal repeat (LTR) retrotransposons have proven to determine the size, organization, function, and evolution of most host genomes, especially very large plant genomes. However, the limitation of tools for an efficient discovery of structural complexity of LTR retrotransposons and the nested insertions is a great challenge to confront ever-growing amount of genomic sequences for many organisms. Here we developed a novel software, called as LTRtype, to characterize different types of structurally complex LTR retrotransposon elements as well as nested events. This system is capable of rapidly scanning large-scale genomic sequences and appropriately characterizing the five complex types of LTR retrotransposon elements. After testing on the Arabidopsis thaliana genome, we found that this program is able to properly annotate a large number of structurally complex elements as well as the nested insertions. Thus, LTRtype can be employed as an automatic and efficient tool that will help to reconstruct the evolutionary history of LTR retrotransposons and better understand the evolution of host genomes. LTRtype is publicly available at: http://www.plantkingdomgdb.com/LTRtype/index.html.
Collapse
Affiliation(s)
- Fan-Chun Zeng
- Institution of Genomics and Bioinformatics, South China Agricultural UniversityGuangzhou, China
| | - You-Jie Zhao
- Institution of Genomics and Bioinformatics, South China Agricultural UniversityGuangzhou, China
| | - Que-Jie Zhang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Li-Zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural UniversityGuangzhou, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- *Correspondence: Li-Zhi Gao,
| |
Collapse
|
20
|
Barker EI, Ashton NW. Ancestral and more recently acquired syntenic relationships of MADS-box genes uncovered by the Physcomitrella patens pseudochromosomal genome assembly. PLANT CELL REPORTS 2016; 35:505-12. [PMID: 26573679 DOI: 10.1007/s00299-015-1898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 05/15/2023]
Abstract
The Physcomitrella pseudochromosomal genome assembly revealed previously invisible synteny enabling realisation of the full potential of shared synteny as a tool for probing evolution of this plant's MADS-box gene family. Assembly of the sequenced genome of Physcomitrella patens into 27 mega-scaffolds (pseudochromosomes) has confirmed the major predictions of our earlier model of expansion of the MADS-box gene family in the Physcomitrella lineage. Additionally, microsynteny has been conserved in the immediate vicinity of some recent duplicates of MADS-box genes. However, comparison of non-syntenic MIKC MADS-box genes and neighbouring genes indicates that chromosomal rearrangements and/or sequence degeneration have destroyed shared synteny over longer distances (macrosynteny) around MADS-box genes despite subsets comprising two or three MIKC genes having remained syntenic. In contrast, half of the type I MADS-box genes have been transposed creating new syntenic relations with MIKC genes. This implies that conservation of ancient ancestral synteny of MIKC genes and of more recently acquired synteny of type I and MIKC genes may be selectively advantageous. Our revised model predicts the birth rate of MIKC genes in Physcomitrella is higher than that of type I genes. However, this difference is attributable to an early tandem duplication and an early segmental duplication of MIKC genes prior to the two polyploidisations that account for most of the expansion of the MADS-box gene family in Physcomitrella. Furthermore, this early segmental duplication spawned two chromosomal lineages: one with a MIKC (C) gene, belonging to the PPM2 clade, in close proximity to one or a pair of MIKC* genes and another with a MIKC (C) gene, belonging to the PpMADS-S clade, characterised by greater separation from syntenic MIKC* genes. Our model has evolutionary implications for the Physcomitrella karyotype.
Collapse
Affiliation(s)
- Elizabeth I Barker
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Neil W Ashton
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada.
| |
Collapse
|
21
|
Yan H, Martin SL, Bekele WA, Latta RG, Diederichsen A, Peng Y, Tinker NA. Genome size variation in the genus Avena. Genome 2016; 59:209-20. [PMID: 26881940 DOI: 10.1139/gen-2015-0132] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB < AC < CC (average 2C = 16.76, 18.60, and 21.78 pg, respectively). All accessions from three hexaploid species with the ACD genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.
Collapse
Affiliation(s)
- Honghai Yan
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada.,b Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, People's Republic of China
| | - Sara L Martin
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada
| | - Wubishet A Bekele
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada
| | - Robert G Latta
- c Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2, Canada
| | - Axel Diederichsen
- d Agriculture and Agri-Food Canada, Plant Gene Resources of Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Yuanying Peng
- b Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, People's Republic of China
| | - Nicholas A Tinker
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
22
|
|
23
|
Fonsêca A, Ferraz ME, Pedrosa-Harand A. Speeding up chromosome evolution in Phaseolus: multiple rearrangements associated with a one-step descending dysploidy. Chromosoma 2015; 125:413-21. [PMID: 26490170 DOI: 10.1007/s00412-015-0548-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022]
Abstract
The genus Phaseolus L. has been subject of extensive cytogenetic studies due to its global economic importance. It is considered karyotypically stable, with most of its ca. 75 species having 2n = 22 chromosomes, and only three species (Phaseolus leptostachyus, Phaseolus macvaughii, and Phaseolus micranthus), which form the Leptostachyus clade, having 2n = 20. To test whether a simple chromosomal fusion was the cause of this descending dysploidy, mitotic chromosomes of P. leptostachyus (2n = 20) were comparatively mapped by fluorescent in situ hybridization (FISH) using bacterial artificial chromosomes (BACs) and ribosomal DNA (rDNA) probes. Our results corroborated the conservation of the 5S and 45S rDNA sites on ancestral chromosomes 10 and 6, respectively. The reduction from x = 11 to x = 10 was the result of the insertion of chromosome 10 into the centromeric region of chromosome 11, supporting a nested chromosome fusion (NCF) as the main cause of this dysploidy. Additionally, the terminal region of the long arm of chromosome 6 was translocated to this larger chromosome. Surprisingly, the NCF was accompanied by several additional translocations and inversions previously unknown for the genus, suggesting that the dysploidy may have been associated to a burst of genome reorganization in this otherwise stable, diploid plant genus.
Collapse
Affiliation(s)
- Artur Fonsêca
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, PE, 50670-420, Brazil
| | - Maria Eduarda Ferraz
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, PE, 50670-420, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
24
|
Olanj N, Garnatje T, Sonboli A, Vallès J, Garcia S. The striking and unexpected cytogenetic diversity of genus Tanacetum L. (Asteraceae): a cytometric and fluorescent in situ hybridisation study of Iranian taxa. BMC PLANT BIOLOGY 2015; 15:174. [PMID: 26152193 PMCID: PMC4494159 DOI: 10.1186/s12870-015-0564-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/26/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND Although karyologically well studied, the genus Tanacetum (Asteraceae) is poorly known from the perspective of molecular cytogenetics. The prevalence of polyploidy, including odd ploidy warranted an extensive cytogenetic study. We studied several species native to Iran, one of the most important centres of diversity of the genus. We aimed to characterise Tanacetum genomes through fluorochrome banding, fluorescent in situ hybridisation (FISH) of rRNA genes and the assessment of genome size by flow cytometry. We appraise the effect of polyploidy and evaluate the existence of intraspecific variation based on the number and distribution of GC-rich bands and rDNA loci. Finally, we infer ancestral genome size and other cytogenetic traits considering phylogenetic relationships within the genus. RESULTS We report first genome size (2C) estimates ranging from 3.84 to 24.87 pg representing about 11 % of those recognised for the genus. We found striking cytogenetic diversity both in the number of GC-rich bands and rDNA loci. There is variation even at the population level and some species have undergone massive heterochromatic or rDNA amplification. Certain morphometric data, such as pollen size or inflorescence architecture, bear some relationship with genome size. Reconstruction of ancestral genome size, number of CMA+ bands and number of rDNA loci show that ups and downs have occurred during the evolution of these traits, although genome size has mostly increased and the number of CMA+ bands and rDNA loci have decreased in present-day taxa compared with ancestral values. CONCLUSIONS Tanacetum genomes are highly unstable in the number of GC-rich bands and rDNA loci, although some patterns can be established at the diploid and tetraploid levels. In particular, aneuploid taxa and some odd ploidy species show greater cytogenetic instability than the rest of the genus. We have also confirmed a linked rDNA arrangement for all the studied Tanacetum species. The labile scenario found in Tanacetum proves that some cytogenetic features previously regarded as relatively constant, or even diagnostic, can display high variability, which is better interpreted within a phylogenetic context.
Collapse
Affiliation(s)
- Nayyereh Olanj
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Iran.
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, 08038, Barcelona, Catalonia, Spain.
| | - Ali Sonboli
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113, Tehran, Iran.
| | - Joan Vallès
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| | - Sònia Garcia
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
25
|
Atluri S, Rampersad SN, Bonen L. Retention of functional genes for S19 ribosomal protein in both the mitochondrion and nucleus for over 60 million years. Mol Genet Genomics 2015; 290:2325-33. [DOI: 10.1007/s00438-015-1087-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022]
|
26
|
Grabowska-Joachimiak A, Kula A, Gernand-Kliefoth D, Joachimiak AJ. Karyotype structure and chromosome fragility in the grass Phleum echinatum Host. PROTOPLASMA 2015; 252:301-6. [PMID: 25056831 PMCID: PMC4287660 DOI: 10.1007/s00709-014-0681-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/14/2014] [Indexed: 05/11/2023]
Abstract
Phleum echinatum Host (2n = 2x = 10) is an annual Mediterranean species which differs from other representatives of the genus Phleum by reduced chromosome number, asymmetric karyotype and unusually high amount of DNA in the genome. Chromosomes of this plant were studied using conventional acetic-orcein staining and fluorescence in situ hybridization (FISH). FISH showed the major 35S ribosomal DNA (rDNA) site at the secondary constriction of satellite chromosome (3) and the minor 35S rDNA site near 5S rDNA cluster in the monobrachial chromosome 5. Telomeric repeats were detected at all chromosome ends within secondary constriction in satellited chromosome 3 and at the centromeric regions of chromosomes 1 and 2. Intrachromosomally located telomeric repeats are probably traces of chromosomal rearrangements that have shaped P.echinatum genome; they were prone to breakage which was manifested in chromosome fragmentation. The most distinct telomeric signals, suggesting massive amplification of interstitial telomeric sequences (ITRs), were observed at the nucleolar organizer region (NOR) of the third chromosome pair. Double FISH confirmed co-localization of telomeric and 35S rDNA repeats in this locus characterized by the biggest fragility in the karyotype. Fragile sites of P.echinatum, composed of amplified telomeric repeats, may bear a resemblance to metazoan rare fragile sites enriched in microsatellite repeats.
Collapse
|
27
|
Lichvar RW. Genomic Size and Ploidy Level Patterns of Intermountain WestLepidiumDetermined Using Flow Cytometry. WEST N AM NATURALIST 2014. [DOI: 10.3398/064.074.0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Fleischmann A, Michael TP, Rivadavia F, Sousa A, Wang W, Temsch EM, Greilhuber J, Müller KF, Heubl G. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. ANNALS OF BOTANY 2014; 114:1651-63. [PMID: 25274549 PMCID: PMC4649684 DOI: 10.1093/aob/mcu189] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/07/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Some species of Genlisea possess ultrasmall nuclear genomes, the smallest known among angiosperms, and some have been found to have chromosomes of diminutive size, which may explain why chromosome numbers and karyotypes are not known for the majority of species of the genus. However, other members of the genus do not possess ultrasmall genomes, nor do most taxa studied in related genera of the family or order. This study therefore examined the evolution of genome sizes and chromosome numbers in Genlisea in a phylogenetic context. The correlations of genome size with chromosome number and size, with the phylogeny of the group and with growth forms and habitats were also examined. METHODS Nuclear genome sizes were measured from cultivated plant material for a comprehensive sampling of taxa, including nearly half of all species of Genlisea and representing all major lineages. Flow cytometric measurements were conducted in parallel in two laboratories in order to compare the consistency of different methods and controls. Chromosome counts were performed for the majority of taxa, comparing different staining techniques for the ultrasmall chromosomes. KEY RESULTS Genome sizes of 15 taxa of Genlisea are presented and interpreted in a phylogenetic context. A high degree of congruence was found between genome size distribution and the major phylogenetic lineages. Ultrasmall genomes with 1C values of <100 Mbp were almost exclusively found in a derived lineage of South American species. The ancestral haploid chromosome number was inferred to be n = 8. Chromosome numbers in Genlisea ranged from 2n = 2x = 16 to 2n = 4x = 32. Ascendant dysploid series (2n = 36, 38) are documented for three derived taxa. The different ploidy levels corresponded to the two subgenera, but were not directly correlated to differences in genome size; the three different karyotype ranges mirrored the different sections of the genus. The smallest known plant genomes were not found in G. margaretae, as previously reported, but in G. tuberosa (1C ≈ 61 Mbp) and some strains of G. aurea (1C ≈ 64 Mbp). CONCLUSIONS Genlisea is an ideal candidate model organism for the understanding of genome reduction as the genus includes species with both relatively large (∼1700 Mbp) and ultrasmall (∼61 Mbp) genomes. This comparative, phylogeny-based analysis of genome sizes and karyotypes in Genlisea provides essential data for selection of suitable species for comparative whole-genome analyses, as well as for further studies on both the molecular and cytogenetic basis of genome reduction in plants.
Collapse
Affiliation(s)
- Andreas Fleischmann
- Department of Biology, Systematic Botany and Mycology and Geo-Bio Center LMU, Ludwig-Maximilians-Universität München, Menzinger Strasse 67, D 80638 Munich, Germany
| | - Todd P Michael
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | - Aretuza Sousa
- Department of Biology, Systematic Botany and Mycology and Geo-Bio Center LMU, Ludwig-Maximilians-Universität München, Menzinger Strasse 67, D 80638 Munich, Germany
| | - Wenqin Wang
- Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, A 1030 Vienna, Austria
| | - Johann Greilhuber
- Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, A 1030 Vienna, Austria
| | - Kai F Müller
- Institute for Evolution and Biodiversity, University of Muenster, Hüfferstrasse 1, D 48149 Münster, Germany
| | - Günther Heubl
- Department of Biology, Systematic Botany and Mycology and Geo-Bio Center LMU, Ludwig-Maximilians-Universität München, Menzinger Strasse 67, D 80638 Munich, Germany
| |
Collapse
|
29
|
Zheng X, Cai D, Potter D, Postman J, Liu J, Teng Y. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences. Mol Phylogenet Evol 2014; 80:54-65. [PMID: 25083939 DOI: 10.1016/j.ympev.2014.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 07/10/2014] [Accepted: 07/17/2014] [Indexed: 11/28/2022]
Abstract
Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence datasets. Phylogenetic trees based on both cpDNA and nuclear LFY2int2-N (LN) data resulted in poor resolution, especially, only five primary species were monophyletic in the LN tree. A phylogenetic network of LN suggested that reticulation caused by hybridization is one of the major evolutionary processes for Pyrus species. Polytomies of the gene trees and star-like structure of cpDNA networks suggested rapid radiation is another major evolutionary process, especially for the occidental species. Pyrus calleryana and P. regelii were the earliest diverged Pyrus species. Two North African species, P. cordata, P. spinosa and P. betulaefolia were descendent of primitive stock Pyrus species and still share some common molecular characters. Southwestern China, where a large number of P. pashia populations are found, is probably the most important diversification center of Pyrus. More accessions and nuclear genes are needed for further understanding the evolutionary histories of Pyrus.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Department of Horticulture, The State Agricultural Ministry Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Horticulture and Landscape, College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Danying Cai
- Department of Horticulture, The State Agricultural Ministry Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daniel Potter
- Department of Plant Sciences, University of California, Mail Stop 2, Davis, CA 95616-8780, USA
| | - Joseph Postman
- National Clonal Germplasm Repository, USDA-ARS, Corvallis, OR 97333, USA
| | - Jing Liu
- Department of Horticulture, The State Agricultural Ministry Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuanwen Teng
- Department of Horticulture, The State Agricultural Ministry Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
30
|
Poggio L, Realini MF, Fourastié MF, García AM, González GE. Genome downsizing and karyotype constancy in diploid and polyploid congeners: a model of genome size variation. AOB PLANTS 2014; 6:plu029. [PMID: 24969503 PMCID: PMC4152747 DOI: 10.1093/aobpla/plu029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Evolutionary chromosome change involves significant variation in DNA amount in diploids and genome downsizing in polyploids. Genome size and karyotype parameters of Hippeastrum species with different ploidy level were analysed. In Hippeastrum, polyploid species show less DNA content per basic genome than diploid species. The rate of variation is lower at higher ploidy levels. All the species have a basic number x = 11 and bimodal karyotypes. The basic karyotypes consist of four short metacentric chromosomes and seven large chromosomes (submetacentric and subtelocentric). The bimodal karyotype is preserved maintaining the relative proportions of members of the haploid chromosome set, even in the presence of genome downsizing. The constancy of the karyotype is maintained because changes in DNA amount are proportional to the length of the whole-chromosome complement and vary independently in the long and short sets of chromosomes. This karyotype constancy in taxa of Hippeastrum with different genome size and ploidy level indicates that the distribution of extra DNA within the complement is not at random and suggests the presence of mechanisms selecting for constancy, or against changes, in karyotype morphology.
Collapse
Affiliation(s)
- Lidia Poggio
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Realini
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Fourastié
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana María García
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela Esther González
- Instituto de Ecología, Genética y Evolución (IEGEBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
31
|
Chang S, Thurber CS, Brown PJ, Hartman GL, Lambert KN, Domier LL. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine. PLoS One 2014; 9:e99427. [PMID: 24937645 PMCID: PMC4061007 DOI: 10.1371/journal.pone.0099427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 12/22/2022] Open
Abstract
Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production.
Collapse
Affiliation(s)
- Sungyul Chang
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Carrie S. Thurber
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Patrick J. Brown
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Glen L. Hartman
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- United States Department of Agriculture, Agricultural Research Service, Urbana, Illinois, United States of America
| | - Kris N. Lambert
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Leslie L. Domier
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- United States Department of Agriculture, Agricultural Research Service, Urbana, Illinois, United States of America
| |
Collapse
|
32
|
Panaud O, Jackson SA, Wendel JF. Drivers and dynamics of diversity in plant genomes. THE NEW PHYTOLOGIST 2014; 202:15-18. [PMID: 24571694 DOI: 10.1111/nph.12633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Olivier Panaud
- Université de Perpignan, UMR 5096 CNRS - IRD - UPVD, Perpignan, France
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
33
|
Michael TP. Plant genome size variation: bloating and purging DNA. Brief Funct Genomics 2014; 13:308-17. [DOI: 10.1093/bfgp/elu005] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:505-30. [PMID: 24579996 DOI: 10.1146/annurev-arplant-050213-035811] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Transposable elements (TEs) are the key players in generating genomic novelty by a combination of the chromosome rearrangements they cause and the genes that come under their regulatory sway. Genome size, gene content, gene order, centromere function, and numerous other aspects of nuclear biology are driven by TE activity. Although the origins and attitudes of TEs have the hallmarks of selfish DNA, there are numerous cases where TE components have been co-opted by the host to create new genes or modify gene regulation. In particular, epigenetic regulation has been transformed from a process to silence invading TEs and viruses into a key strategy for regulating plant genes. Most, perhaps all, of this epigenetic regulation is derived from TE insertions near genes or TE-encoded factors that act in trans. Enormous pools of genome data and new technologies for reverse genetics will lead to a powerful new era of TE analysis in plants.
Collapse
Affiliation(s)
- Jeffrey L Bennetzen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | |
Collapse
|
35
|
Angulo MB, Dematteis M. Nuclear DNA content in some species of Lessingianthus (Vernonieae, Asteraceae) by flow cytometry. JOURNAL OF PLANT RESEARCH 2013; 126:461-468. [PMID: 23212646 DOI: 10.1007/s10265-012-0539-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
The nuclear DNA content was determined for the first time in 25 species of the South American genus Lessingianthus H.Rob. (Vernonieae, Asteraceae) by flow cytometry. This analysis constitutes the first estimation of the genome size for the Vernonieae tribe. The 2C- and 1Cx-values were calculated in all the species. The 2C-value ranged from 2.04 to 14.34 pg. The 1Cx-value ranged from 0.995 to 1.43 pg. The general tendency indicated a decrease in the 1Cx-value with increasing ploidy level, with some exceptions, in some species the 1Cx-value increased with the ploidy increase. The measuring of DNA content allowed reporting a new cytotype for L. polyphyllus (Sch.Bip.) H.Rob.
Collapse
Affiliation(s)
- María B Angulo
- Instituto de Botánica del Nordeste (UNNE, CONICET), Casilla de Correo 209, 3400, Corrientes, Argentina.
| | | |
Collapse
|
36
|
de Paz JP, Caujapé-Castells J. A review of the allozyme data set for the Canarian endemic flora: causes of the high genetic diversity levels and implications for conservation. ANNALS OF BOTANY 2013; 111:1059-73. [PMID: 23609020 PMCID: PMC3662517 DOI: 10.1093/aob/mct076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/19/2013] [Indexed: 05/08/2023]
Abstract
Background and Aims Allozyme and reproductive data sets for the Canarian flora are updated in order to assess how the present levels and structuring of genetic variation have been influenced by the abiotic island traits and by phylogenetically determined biotic traits of the corresponding taxa; and in order to suggest conservation guidelines. Methods Kruskal-Wallis tests are conducted to assess the relationships of 27 variables with genetic diversity (estimated by A, P, Ho and He) and structuring (GST) of 123 taxa representing 309 populations and 16 families. Multiple linear regression analyses (MLRAs) are carried out to determine the relative influence of the less correlated significant abiotic and biotic factors on the genetic diversity levels. Key Results and Conclusions The interactions between biotic features of the colonizing taxa and the abiotic island features drive plant diversification in the Canarian flora. However, the lower weight of closeness to the mainland than of (respectively) high basic chromosome number, partial or total self-incompatibility and polyploidy in the MLRAs indicates substantial phylogenetic constraint; the importance of a high chromosome number is feasibly due to the generation of a larger number of linkage groups, which increase gametic and genotypic diversity. Genetic structure is also more influenced by biotic factors (long-range seed dispersal, basic chromosome number and partial or total self-incompatibility) than by distance to the mainland. Conservation-wise, genetic structure estimates (FST/GST) only reflect endangerment under intensive population sampling designs, and neutral genetic variation levels do not directly relate to threat status or to small population sizes. Habitat protection is emphasized, but the results suggest the need for urgent implementation of elementary reproductive studies in all cases, and for ex situ conservation measures for the most endangered taxa, even without prior studies. In non-endangered endemics, multidisciplinary research is needed before suggesting case-specific conservation strategies. The molecular information relevant for conservation should be conserved in a standardized format to facilitate further insight.
Collapse
Affiliation(s)
| | - Juli Caujapé-Castells
- Jardín Botánico Canario ‘Viera y Clavijo’-Unidad Asociada CSIC, Cabildo de Gran Canaria. Camino al Palmeral 15, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
37
|
Renny-Byfield S, Kovarik A, Kelly LJ, Macas J, Novak P, Chase MW, Nichols RA, Pancholi MR, Grandbastien MA, Leitch AR. Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:829-39. [PMID: 23517128 DOI: 10.1111/tpj.12168] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/23/2013] [Accepted: 03/01/2013] [Indexed: 05/18/2023]
Abstract
Recent advances have highlighted the ubiquity of whole-genome duplication (polyploidy) in angiosperms, although subsequent genome size change and diploidization (returning to a diploid-like condition) are poorly understood. An excellent system to assess these processes is provided by Nicotiana section Repandae, which arose via allopolyploidy (approximately 5 million years ago) involving relatives of Nicotiana sylvestris and Nicotiana obtusifolia. Subsequent speciation in Repandae has resulted in allotetraploids with divergent genome sizes, including Nicotiana repanda and Nicotiana nudicaulis studied here, which have an estimated 23.6% genome expansion and 19.2% genome contraction from the early polyploid, respectively. Graph-based clustering of next-generation sequence data enabled assessment of the global genome composition of these allotetraploids and their diploid progenitors. Unexpectedly, in both allotetraploids, over 85% of sequence clusters (repetitive DNA families) had a lower abundance than predicted from their diploid relatives; a trend seen particularly in low-copy repeats. The loss of high-copy sequences predominantly accounts for the genome downsizing in N. nudicaulis. In contrast, N. repanda shows expansion of clusters already inherited in high copy number (mostly chromovirus-like Ty3/Gypsy retroelements and some low-complexity sequences), leading to much of the genome upsizing predicted. We suggest that the differential dynamics of low- and high-copy sequences reveal two genomic processes that occur subsequent to allopolyploidy. The loss of low-copy sequences, common to both allopolyploids, may reflect genome diploidization, a process that also involves loss of duplicate copies of genes and upstream regulators. In contrast, genome size divergence between allopolyploids is manifested through differential accumulation and/or deletion of high-copy-number sequences.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pfeifer M, Martis M, Asp T, Mayer KF, Lübberstedt T, Byrne S, Frei U, Studer B. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics. PLANT PHYSIOLOGY 2013; 161:571-82. [PMID: 23184232 PMCID: PMC3561004 DOI: 10.1104/pp.112.207282] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/20/2012] [Indexed: 05/18/2023]
Abstract
Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.
Collapse
Affiliation(s)
- Matthias Pfeifer
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Mihaela Martis
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Torben Asp
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Klaus F.X. Mayer
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Thomas Lübberstedt
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Stephen Byrne
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Ursula Frei
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Bruno Studer
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| |
Collapse
|
39
|
Estep MC, DeBarry JD, Bennetzen JL. The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Heredity (Edinb) 2013; 110:194-204. [PMID: 23321774 PMCID: PMC3554455 DOI: 10.1038/hdy.2012.99] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/09/2022] Open
Abstract
Sample sequence analysis was employed to investigate the repetitive DNAs that were most responsible for the evolved variation in genome content across seven panicoid grasses with >5-fold variation in genome size and different histories of polyploidy. In all cases, the most abundant repeats were LTR retrotransposons, but the particular families that had become dominant were found to be different in the Pennisetum, Saccharum, Sorghum and Zea lineages. One element family, Huck, has been very active in all of the studied species over the last few million years. This suggests the transmittal of an active or quiescent autonomous set of Huck elements to this lineage at the founding of the panicoids. Similarly, independent recent activity of Ji and Opie elements in Zea and of Leviathan elements in Sorghum and Saccharum species suggests that members of these families with exceptional activation potential were present in the genome(s) of the founders of these lineages. In a detailed analysis of the Zea lineage, the combined action of several families of LTR retrotransposons were observed to have approximately doubled the genome size of Zea luxurians relative to Zea mays and Zea diploperennis in just the last few million years. One of the LTR retrotransposon amplification bursts in Zea may have been initiated by polyploidy, but the great majority of transposable element activations are not. Instead, the results suggest random activation of a few or many LTR retrotransposons families in particular lineages over evolutionary time, with some families especially prone to future activation and hyper-amplification.
Collapse
Affiliation(s)
- M C Estep
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - J D DeBarry
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - J L Bennetzen
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
40
|
Kellogg EA, Camara PEAS, Rudall PJ, Ladd P, Malcomber ST, Whipple CJ, Doust AN. Early inflorescence development in the grasses (Poaceae). FRONTIERS IN PLANT SCIENCE 2013; 4:250. [PMID: 23898335 PMCID: PMC3721031 DOI: 10.3389/fpls.2013.00250] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/20/2013] [Indexed: 05/17/2023]
Abstract
The shoot apical meristem of grasses produces the primary branches of the inflorescence, controlling inflorescence architecture and hence seed production. Whereas leaves are produced in a distichous pattern, with the primordia separated from each other by an angle of 180°, inflorescence branches are produced in a spiral in most species. The morphology and developmental genetics of the shift in phyllotaxis have been studied extensively in maize and rice. However, in wheat, Brachypodium, and oats, all in the grass subfamily Pooideae, the change in phyllotaxis does not occur; primary inflorescence branches are produced distichously. It is unknown whether the distichous inflorescence originated at the base of Pooideae, or whether it appeared several times independently. In this study, we show that Brachyelytrum, the genus sister to all other Pooideae has spiral phyllotaxis in the inflorescence, but that in the remaining 3000+ species of Pooideae, the phyllotaxis is two-ranked. These two-ranked inflorescences are not perfectly symmetrical, and have a clear "front" and "back;" this developmental axis has never been described in the literature and it is unclear what establishes its polarity. Strictly distichous inflorescences appear somewhat later in the evolution of the subfamily. Two-ranked inflorescences also appear in a few grass outgroups and sporadically elsewhere in the family, but unlike in Pooideae do not generally correlate with a major radiation of species. After production of branches, the inflorescence meristem may be converted to a spikelet meristem or may simply abort; this developmental decision appears to be independent of the branching pattern.
Collapse
Affiliation(s)
- Elizabeth A. Kellogg
- Department of Biology, University of Missouri-St. LouisSt. Louis, MO, USA
- *Correspondence: Elizabeth A. Kellogg, Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, USA e-mail:
| | | | | | - Philip Ladd
- School of Veterinary and Life Sciences, Murdoch UniversityPerth, WA, Australia
| | - Simon T. Malcomber
- Department of Biology, California State University-Long BeachLong Beach, CA, USA
| | | | - Andrew N. Doust
- Department of Botany, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
41
|
Wang Q, Dooner HK. Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:212-221. [PMID: 22621343 DOI: 10.1111/j.1365-313x.2012.05059.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genome structure exhibits remarkable plasticity within Zea mays. To examine how haplotype structure has evolved within the Andropogoneae tribe, we have analyzed the bz gene-rich region of maize (Zea mays), the Zea teosintes mays ssp. mexicana, luxurians and diploperennis, Tripsacum dactyloides, Coix lacryma-jobi and Sorghum propinquum. We sequenced and annotated BAC clones from these species and re-annotated the orthologous Sorghum bicolor region. Gene colinearity in the region is well conserved within the genus Zea. However, the orthologous regions of Coix and Sorghum exhibited several micro-rearrangements relative to Zea, including addition, truncation and deletion of genes. The stc1 gene, involved in the production of a terpenoid insect defense signal, is evolving particularly fast, and its progressive disappearance from some species is occurring by microhomology-mediated recombination. LTR retrotransposons are the main contributors to the dynamic evolution of the bz region. Common transposon insertion sites occur among haplotypes from different Zea mays sub-species, but not outside the species. As in Zea, different patterns of interspersion between genes and retrotransposons are observed in Sorghum. We estimate that the mean divergence times between maize and Tripsacum, Coix and Sorghum are 8.5, 12.1 and 12.4 million years ago, respectively, and that between Coix and Sorghum is 9.3 million years ago. A comparison of the bz orthologous regions of Zea, Sorghum and Coix with those of Brachypodium, Setaria and Oryza allows us to infer how the region has evolved by addition and deletion of genes in the approximately 50 million years since these genera diverged from a common progenitor.
Collapse
Affiliation(s)
- Qinghua Wang
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
42
|
Byers E, Bonen L. Potential role of tRNAs in wheat and Lolium mitochondrial rps7 transcript processing. Genome 2012; 55:615-21. [DOI: 10.1139/g2012-052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The wheat mitochondrial gene for ribosomal protein S7 exhibits multiple transcripts that share the same 3′ terminus but range in overall length from 3.4 to 0.7 kb because of 5′end-maturation events. The longest detectable precursor RNA maps precisely to the 3′ end of a chloroplast-origin tRNA-Phe gene, consistent with it providing signals for endonucleolytic cleavage. Steady-state levels of precursor RNAs were seen to be lower in seedlings than in germinating embryos, although the degree of editing within untranslated regions (UTRs) was higher in seedlings. In another grass, Lolium multiflorum Lam., rps7 displays transcripts of 1.3 and 0.7 kb, and although the distal 5′ UTRs are unrelated in sequence to those of wheat, the 5′ terminus of the longer transcript also maps to a tRNA gene, in this case the native mitochondrial-type tRNA-Ser. Our findings illustrate the plasticity of plant mitochondrial transcriptional units and the recruitment of chloroplast-origin sequences for the expression of mitochondrial genes.
Collapse
Affiliation(s)
- Evan Byers
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Linda Bonen
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
43
|
Cronn R, Knaus BJ, Liston A, Maughan PJ, Parks M, Syring JV, Udall J. Targeted enrichment strategies for next-generation plant biology. AMERICAN JOURNAL OF BOTANY 2012; 99:291-311. [PMID: 22312117 DOI: 10.3732/ajb.1100356] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
PREMISE OF THE STUDY The dramatic advances offered by modern DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome size, extensive variation in the proportion of organellar DNA in total DNA, polyploidy, and gene number/redundancy contribute to these challenges, and they demand flexible targeted enrichment strategies to achieve the desired goals. METHODS In this article, we summarize the many available targeted enrichment strategies that can be used to target partial-to-complete organellar genomes, as well as known and anonymous nuclear targets. These methods fall under four categories: PCR-based enrichment, hybridization-based enrichment, restriction enzyme-based enrichment, and enrichment of expressed gene sequences. KEY RESULTS Examples of plant-specific applications exist for nearly all methods described. While some methods are well established (e.g., transcriptome sequencing), other promising methods are in their infancy (hybridization enrichment). A direct comparison of methods shows that PCR-based enrichment may be a reasonable strategy for accessing small genomic targets (e.g., ≤50 kbp), but that hybridization and transcriptome sequencing scale more efficiently if larger targets are desired. CONCLUSIONS While the benefits of targeted sequencing are greatest in plants with large genomes, nearly all comparative projects can benefit from the improved throughput offered by targeted multiplex DNA sequencing, particularly as the amount of data produced from a single instrument approaches a trillion bases per run.
Collapse
Affiliation(s)
- Richard Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon 97331, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Akiyama Y, Goel S, Conner JA, Hanna WW, Yamada-Akiyama H, Ozias-Akins P. Evolution of the apomixis transmitting chromosome in Pennisetum. BMC Evol Biol 2011; 11:289. [PMID: 21975191 PMCID: PMC3198970 DOI: 10.1186/1471-2148-11-289] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/05/2011] [Indexed: 11/28/2022] Open
Abstract
Background Apomixis is an intriguing trait in plants that results in maternal clones through seed reproduction. Apomixis is an elusive, but potentially revolutionary, trait for plant breeding and hybrid seed production. Recent studies arguing that apomicts are not evolutionary dead ends have generated further interest in the evolution of asexual flowering plants. Results In the present study, we investigate karyotypic variation in a single chromosome responsible for transmitting apomixis, the Apospory-Specific Genomic Region carrier chromosome, in relation to species phylogeny in the genera Pennisetum and Cenchrus. A 1 kb region from the 3' end of the ndhF gene and a 900 bp region from trnL-F were sequenced from 12 apomictic and eight sexual species in the genus Pennisetum and allied genus Cenchrus. An 800 bp region from the Apospory-Specific Genomic Region also was sequenced from the 12 apomicts. Molecular cytological analysis was conducted in sixteen Pennisetum and two Cenchrus species. Our results indicate that the Apospory-Specific Genomic Region is shared by all apomictic species while it is absent from all sexual species or cytotypes. Contrary to our previous observations in Pennisetum squamulatum and Cenchrus ciliaris, retrotransposon sequences of the Opie-2-like family were not closely associated with the Apospory-Specific Genomic Region in all apomictic species, suggesting that they may have been accumulated after the Apospory-Specific Genomic Region originated. Conclusions Given that phylogenetic analysis merged Cenchrus and newly investigated Pennisetum species into a single clade containing a terminal cluster of Cenchrus apomicts, the presumed monophyletic origin of Cenchrus is supported. The Apospory-Specific Genomic Region likely preceded speciation in Cenchrus and its lateral transfer through hybridization and subsequent chromosome repatterning may have contributed to further speciation in the two genera.
Collapse
Affiliation(s)
- Yukio Akiyama
- Department of Horticulture, The University of Georgia, 2360 Rainwater Rd,, Tifton, GA 31793-5766, USA
| | | | | | | | | | | |
Collapse
|
45
|
Benor S, Fuchs J, Blattner FR. Genome size variation in Corchorus olitorius (Malvaceae s.l.) and its correlation with elevation and phenotypic traits. Genome 2011; 54:575-85. [PMID: 21745142 DOI: 10.1139/g11-021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we report genome size variations in Corchorus olitorius L. (Malvaceae s.l.), a crop species known for its morphological plasticity and broad geographical distribution, and Corchorus capsularis L., the second widely cultivated species in the genus. Flow cytometric analyses were conducted with several tissues and nuclei isolation buffers using 69 accessions of C. olitorius and 4 accessions of C. capsularis, representing different habitats and geographical origins. The mean 2C nuclear DNA content (± SD) of C. olitorius was estimated to be 0.918 ± 0.011 pg, with a minimum of 0.882 ± 0.004 pg, and a maximum of 0.942 ± 0.004 pg. All studied plant materials were found to be diploid with 2n = 14. The genome size is negatively correlated with days to flowering (r = -0.29, p < 0.05) and positively with seed surface area (r = 0.38, p < 0.05). Moreover, a statistically significant positive correlation was detected between genome size and growing elevation (r = 0.59, p < 0.001) in wild populations. The mean 2C nuclear DNA content of C. capsularis was estimated to be 0.802 ± 0.008 pg. In comparison to other economically important crop species, the genome sizes of C. olitorius and C. capsularis are much smaller, and therewith closer to that of rice. The relatively small genome sizes will be of general advantage for any efforts into genomics or sequencing approaches of these species.
Collapse
Affiliation(s)
- Solomon Benor
- Taxonomy and Evolutionary Biology, Leibniz Institute of Plant Genetics and Crop Research (IPK), Gatersleben, Germany.
| | | | | |
Collapse
|
46
|
Ness RW, Graham SW, Barrett SCH. Reconciling gene and genome duplication events: using multiple nuclear gene families to infer the phylogeny of the aquatic plant family Pontederiaceae. Mol Biol Evol 2011; 28:3009-18. [PMID: 21633114 DOI: 10.1093/molbev/msr119] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most plant phylogenetic inference has used DNA sequence data from the plastid genome. This genome represents a single genealogical sample with no recombination among genes, potentially limiting the resolution of evolutionary relationships in some contexts. In contrast, nuclear DNA is inherently more difficult to employ for phylogeny reconstruction because major mutational events in the genome, including polyploidization, gene duplication, and gene extinction can result in homologous gene copies that are difficult to identify as orthologs or paralogs. Gene tree parsimony (GTP) can be used to infer the rooted species tree by fitting gene genealogies to species trees while simultaneously minimizing the estimated number of duplications needed to reconcile conflicts among them. Here, we use GTP for five nuclear gene families and a previously published plastid data set to reconstruct the phylogenetic backbone of the aquatic plant family Pontederiaceae. Plastid-based phylogenetic studies strongly supported extensive paraphyly of Eichhornia (one of the four major genera) but also depicted considerable ambiguity concerning the true root placement for the family. Our results indicate that species trees inferred from the nuclear genes (alone and in combination with the plastid data) are highly congruent with gene trees inferred from plastid data alone. Consideration of optimal and suboptimal gene tree reconciliations place the root of the family at (or near) a branch leading to the rare and locally restricted E. meyeri. We also explore methods to incorporate uncertainty in individual gene trees during reconciliation by considering their individual bootstrap profiles and relate inferred excesses of gene duplication events on individual branches to whole-genome duplication events inferred for the same branches. Our study improves understanding of the phylogenetic history of Pontederiaceae and also demonstrates the utility of GTP for phylogenetic analysis.
Collapse
Affiliation(s)
- Rob W Ness
- Department of Ecology & Evolutionary Biology, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
47
|
Sakuma S, Salomon B, Komatsuda T. The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. PLANT & CELL PHYSIOLOGY 2011; 52:738-49. [PMID: 21389058 PMCID: PMC3093126 DOI: 10.1093/pcp/pcr025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The process of crop domestication began 10,000 years ago in the transition of early humans from hunter/gatherers to pastoralists/farmers. Recent research has revealed the identity of some of the main genes responsible for domestication. Two of the major domestication events in barley were (i) the failure of the spike to disarticulate and (ii) the six-rowed spike. The former mutation increased grain yield by preventing grain loss after maturity, while the latter resulted in an up to 3-fold increase in yield potential. Here we provide an overview of the disarticulation systems and inflorescence characteristics, along with the genes underlying these traits, occurring in the Triticeae tribe.
Collapse
Affiliation(s)
- Shun Sakuma
- National Institute of Agrobiological Sciences (NIAS), Plant Genome Research Unit, 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8602 Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510 Japan
| | - Björn Salomon
- Swedish University of Agricultural Sciences, Department of Plant Breeding and Biotechnology, PO Box 101, SE-23053 Alnarp, Sweden
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences (NIAS), Plant Genome Research Unit, 2-1-2 Kan-non-dai, Tsukuba, Ibaraki, 305-8602 Japan
- *Corresponding author: E-mail, ; Fax, +81-29-838-7408
| |
Collapse
|
48
|
Burgess KS, Fazekas AJ, Kesanakurti PR, Graham SW, Husband BC, Newmaster SG, Percy DM, Hajibabaei M, Barrett SCH. Discriminating plant species in a local temperate flora using the rbcL
+matK
DNA barcode. Methods Ecol Evol 2011. [DOI: 10.1111/j.2041-210x.2011.00092.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Pellicer J, Garcia S, Canela MA, Garnatje T, Korobkov AA, Twibell JD, Vallès J. Genome size dynamics in Artemisia L. (Asteraceae): following the track of polyploidy. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:820-30. [PMID: 20701707 DOI: 10.1111/j.1438-8677.2009.00268.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyploidy is a key factor in the evolution of higher plants and plays an important role in the variation of plant genomes, leading to speciation in some cases. During polyploidisation, different balancing processes take place at the genomic level that can promote variation in nuclear DNA content. We estimated genome size using flow cytometry in 84 populations of 67 Artemisia species and one population of Crossostephium chinense. A total of 73 sequences of nrDNA ITS and 3'-ETS were newly generated and analysed, together with previously published sequences, to address the evolution of genome size in a phylogenetic framework. Differences in 2C values were detected among some lineages, as well as an increase of genome size heterogeneity in subgenera whose phylogenetic relationships are still unclear. We confirmed that the increase in 2C values in Artemisia polyploids was not proportional to ploidy level, but 1Cx genome size tended to decrease significantly when high ploidy levels were reached. The results lead us to hypothesise that genome size in polyploids tends to a maximum as it follows saturation behaviour, in agreement with the Michaelis-Menten model. We tested different arithmetic functions with our dataset that corroborated a non-linear relationship of genome size increase in polyploids, allowing us to suggest a theoretical upper limit for the DNA content of this genus.
Collapse
Affiliation(s)
- J Pellicer
- Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Impact of genomic environment on mitochondrial rps7 mRNA features in grasses. Mol Genet Genomics 2010; 284:207-16. [PMID: 20652591 DOI: 10.1007/s00438-010-0562-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
The mitochondrial genomes of flowering plants are highly recombinogenic and this can lead to altered transcriptional units, even between closely related species. We are interested in the effects that DNA rearrangements have on the generation of mature mRNAs, and to this end we have determined the termini of mitochondrial S7 ribosomal protein (rps7) mRNAs from selected grasses, using circularized-RT-PCR. Although the rps7 mRNAs show a similar size of about 750 nt by northern hybridization analysis and have virtually identical 3' UTRs, their 5' terminal extremities differ among plant species, and this is attributable to genome rearrangements in some but not all cases. In wheat, rice, and barley, the 5' ends are homogeneous for each plant but map to non-homologous sites among the three species. In contrast, the rye, brome and Lolium 5' ends are quite heterogeneous in length even though they are located within conserved genomic regions. Comparative sequence analysis suggests that certain grass lineages have retained an ancestral organization upstream of rps7 that includes a 170-bp block homologous to sequences preceding several other mitochondrial genes, whereas others have undergone independent rearrangements at a recombination-prone site. Our analysis of mature rps7 transcripts revealed two non-silent RNA edits within the coding sequences, and also editing at several sites within the conserved 5' and 3' UTR regions in these plants, raising the possibility of their role in rps7 expression at the post-transcriptional level. Taken together, our observations illustrate the dynamic nature of upstream regulatory cis-elements for mitochondrial rps7 mRNA production in contrast to conservative 3' end-formation signals, during evolution in grasses.
Collapse
|