1
|
Baru Venkata R, Prasanth DSNBK, Pasala PK, Panda SP, Tatipamula VB, Mulukuri S, Kota RK, Rudrapal M, Khan J, Aldosari S, Alshehri B, Banawas S, Challa MC, Kammili JK. Utilizing Andrographis paniculata leaves and roots by effective usage of the bioactive andrographolide and its nanodelivery: investigation of antikindling and antioxidant activities through in silico and in vivo studies. Front Nutr 2023; 10:1185236. [PMID: 37324729 PMCID: PMC10266967 DOI: 10.3389/fnut.2023.1185236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 06/17/2023] Open
Abstract
To valorise the bioactive constituents abundant in leaves and other parts of medicinal plants with the objective to minimize the plant-based wastes, this study was undertaken. The main bioactive constituent of Andrographis paniculata, an Asian medicinal plant, is andrographolide (AG, a diterpenoid), which has shown promising results in the treatment of neurodegenerative illnesses. Continuous electrical activity in the brain is a hallmark of the abnormal neurological conditions such as epilepsy (EY). This can lead to neurological sequelae. In this study, we used GSE28674 as a microarray expression profiling dataset to identify DEGs associated with andrographolide and those with fold changes >1 and p-value <0.05 GEO2R. We obtained eight DEG datasets (two up and six down). There was marked enrichment under various Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) terms for these DEGs (DUSP10, FN1, AR, PRKCE, CA12, RBP4, GABRG2, and GABRA2). Synaptic vesicles and plasma membranes were the predominant sites of DEG expression. AG acts as an antiepileptic agent by upregulating GABA levels. The low bioavailability of AG is a significant limitation of its application. To control these limitations, andrographolide nanoparticles (AGNPs) were prepared and their neuroprotective effect against pentylenetetrazol (PTZ)-induced kindling epilepsy was investigated using network pharmacology (NP) and docking studies to evaluate the antiepileptic multi-target mechanisms of AG. Andrographolide is associated with eight targets in the treatment of epilepsy. Nicotine addiction, GABAergic synapse, and morphine addiction were mainly related to epilepsy, according to KEGG pathway enrichment analysis (p < 0.05). A docking study showed that andrographolide interacted with the key targets. AG regulates epilepsy and exerts its therapeutic effects by stimulating GABA production. Rats received 80 mg/kg body weight of AG and AGNP, phenytoin and PTZ (30 mg/kg i.p. injection on alternate days), brain MDA, SOD, GSH, GABAand histological changes of hippocampus and cortex were observed. PTZ injected rats showed significantly (***p < 0.001) increased kindling behavior, increased MDA, decreased GSH, SOD, GABA activities, compared with normal rats, while treatment AGNPs significantly reduced kindling score and reversed oxidative damage. Finally, we conclude that the leaves and roots of A. Paniculata can be effectively utilized for its major bioactive constituent, andrographolide as a potent anti-epileptic agent. Furthermore, the findings of novel nanotherapeutic approach claim that nano-andrographolide can be successfully in the management of kindling seizures and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | | - Sirisha Mulukuri
- Department of Natural Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Bengaluru, India
| | - Ravi Kumar Kota
- Santhiram College of Pharmacy, JNTUA, Nandyal, Andhra Pradesh, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research, Guntur, India
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Sahar Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | | | | |
Collapse
|
2
|
Anti-Inflammation Associated Protective Mechanism of Berberine and its Derivatives on Attenuating Pentylenetetrazole-Induced Seizures in Zebrafish. J Neuroimmune Pharmacol 2020; 15:309-325. [DOI: 10.1007/s11481-019-09902-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
|
3
|
Marefati N, Mokhtari-Zaer A, Beheshti F, Karimi S, Mahdian Z, Khodamoradi M, Hosseini M. The effects of soy on scopolamine-induced spatial learning and memory impairments are comparable to the effects of estradiol. Horm Mol Biol Clin Investig 2019; 39:/j/hmbci.2019.39.issue-3/hmbci-2018-0084/hmbci-2018-0084.xml. [PMID: 31483756 DOI: 10.1515/hmbci-2018-0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/03/2019] [Indexed: 11/15/2022]
Abstract
Background Modulatory effects of soy extract and estradiol on the central nervous system (CNS) have been reported. The effect of soy on scopolamine-induced spatial learning and memory in comparison to the effect of estradiol was investigated. Materials and methods Ovariectomized rats were divided into the following groups: (1) control, (2) scopolamine (Sco), (3) scopolamine-soy 20 (Sco-S 20), (4) scopolamine-soy 60 (Sco-S 60), (5) scopolamine-estradiol 20 (Sco-E 20) and (6) scopolamine-estradiol 60 (Sco-E 60). Soy extract, estradiol and vehicle were administered daily for 6 weeks before training in the Morris water maze (MWM) test. Scopolamine (2 mg/kg) was injected 30 min before training in the MWM test. Results In the MWM, the escape latency and traveled path to find the platform in the Sco group was prolonged compared to the control group (p < 0.001). Treatment by higher doses of soy improved performances of the rats in the MWM (p < 0.05 - p < 0.001). However, treatment with both doses of estradiol (20 and 60 μg/kg) resulted in a statistically significant improvement in the MWM (p < 0.01 - p < 0.001). Cortical, hippocampal and serum levels of malondialdehyde (MDA), as an index of lipid peroxidation, were increased which was prevented by soy extract and estradiol (p < 0.001). Cortical, hippocampal as well as serum levels of the total thiol, superoxide dismutase (SOD) and catalase (CAT) in Sco group were lower than the control group (p < 0.001) while they were enhanced when the animals were treated by soy extract and estradiol (p < 0.01 - p < 0.001). Conclusions It was observed that both soy extract and estradiol prevented learning and memory impairments induced by scopolamine in ovariectomized rats. These effects can be attributed to their protective effects on oxidative damage of the brain tissue.
Collapse
Affiliation(s)
- Narges Marefati
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mokhtari-Zaer
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Department of Basic Science and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sareh Karimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Mahdian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center and Department of Physiology, Faculty of Medicine, Azadi Square, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran, Phone: +98-51-38828565, Fax: +98-51-38828564
| |
Collapse
|
4
|
Liu LM, Wang N, Lu Y, Wang WP. Edaravone acts as a potential therapeutic drug against pentylenetetrazole-induced epilepsy in male albino rats by downregulating cyclooxygenase-II. Brain Behav 2019; 9:e01156. [PMID: 30506635 PMCID: PMC6346642 DOI: 10.1002/brb3.1156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The effects of edaravone against pentylenetetrazole (PTZ)-induced epilepsy in male albino rats were investigated. Edaravone is a well-known commercial drug used in the treatment of strokes and amyotrophic lateral sclerosis (ALS). Antioxidant and free radical scavenging activities of edaravone have been reported in patients with ALS. METHODS In this study, the experimental groups were as follows: sham, control, 5 mg/kg edaravone, and 10 mg/kg edaravone. Behavioral assessment, determination of biochemical markers, apoptosis, nitric oxide (NO), and mRNA and protein expression of cyclooxygenase-II (COX-II) were carried out. Seizure incidence, including generalized tonic-clonic seizure (GTCS) and minimal clonic seizure (MCS), was directly associated with PTZ administration in rats. RESULTS Edaravone supplementation substantially increased MCS and GTCS latency in rats, and biochemical markers were significantly altered in the brain tissue of PTZ-treated rats. Edaravone treatment normalized altered biochemical markers compared with the untreated control. Apoptosis and NO levels were significantly reduced by more than 50% compared to their respective controls. COX-II mRNA was increased by 130% in PTZ-treated rats, while edaravone supplementation reduced mRNA and protein expression of COX-II by more than 20% and 40%, respectively. Immunohistochemistry indicated that COX-II protein expression was reduced by 13.2% and 33.7% following supplementation with 5 and 10 mg/kg edaravone, respectively. CONCLUSION Taken together, our results suggest that edaravone functions by downregulating the levels of COX-II and NO and is a potential candidate for the treatment of PTZ-induced epilepsy.
Collapse
Affiliation(s)
- Liang-Min Liu
- Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Ning Wang
- Department of Pediatric Intensive Care Unit, Anyang Traditional Chinese Medicine Hospital, Anyang, Henan, PR China
| | - Yan Lu
- Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Wei-Ping Wang
- Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| |
Collapse
|
5
|
Nagib MM, Tadros MG, Al-Khalek HAA, Rahmo RM, Sabri NA, Khalifa AE, Masoud SI. Molecular mechanisms of neuroprotective effect of adjuvant therapy with phenytoin in pentylenetetrazole-induced seizures: Impact on Sirt1/NRF2 signaling pathways. Neurotoxicology 2018; 68:47-65. [PMID: 30017425 DOI: 10.1016/j.neuro.2018.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/22/2018] [Accepted: 07/07/2018] [Indexed: 02/05/2023]
Abstract
Current anticonvulsant therapies are principally aimed at suppressing neuronal hyperexcitability to prevent or control the incidence of seizures. However, the role of oxidative stress processes in seizures led to the proposition that antioxidant compounds may be considered as promising candidates for limiting the progression of epilepsy. Accordingly, the aim of this study is to determine if coenzyme Q10 (CoQ10) and alpha-tocopherol (α-Toc) have a neuroprotective effect in rats against the observed oxidative stress and inflammation during seizures induced by pentylenetetrazole (PTZ) in rats, and to study their interactions with the conventional antiseizure drug phenytoin (PHT), either alone or in combination. Overall, the data revealed that α-Toc and CoQ10 supplementation can ameliorate PTZ-induced seizures and recommended that nuclear factor erythroid 2-related factor 2 (NRF2) and silencing information regulator 1 (Sirt1) signaling pathways may exemplify strategic molecular targets for seizure therapies. The results of the present study provide novel mechanistic insights regarding the protective effects of antioxidants and suggest an efficient therapeutic strategy to attenuate seizures. Additionally, concurrent supplementation of CoQ10 and α-Toc may be more effective than either antioxidant alone in decreasing inflammation and oxidative stress in both cortical and hippocampal tissues. Also, CoQ10 and α-Toc effectively reverse the PHT-mediated alterations in the brain antioxidant status when compared to PHT only.
Collapse
Affiliation(s)
- Marwa M Nagib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hadwa Ali Abd Al-Khalek
- Department of Histology and Cell biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Rania M Rahmo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University seconded to 57357 Children Cancer Hospital as the Scientific Consultant for Pharmacy Affairs, Cairo, Egypt
| | - Somaia I Masoud
- Former Head of Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Qi Z, Yu X, Xu P, Hao Y, Pan X, Zhang C. l-Homocarnosine, l-carnosine, and anserine attenuate brain oxidative damage in a pentylenetetrazole-induced epilepsy model of ovariectomized rats. 3 Biotech 2018; 8:363. [PMID: 30105188 DOI: 10.1007/s13205-018-1357-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/16/2018] [Indexed: 01/25/2023] Open
Abstract
In this study, we investigated the protective effect of l-homocarnosine, l-carnosine, and anserine (HCA) on seizure-induced brain injuries. We evaluated the protective effect of HCA on brain oxidative damage in a pentylenetetrazole (PTZ)-induced epilepsy model using ovariectomized (OVX) rats. The experimental groups were as follows: group I, sham; group II, sham + PTZ; group III, sham + HCA + PTZ; group IV, OVX; group V, OVZ + PTZ; and group VI, OVX + HCA + PTZ. We determined the levels of lipid peroxidation, glutathione peroxidase (Gpx), reduced glutathione (GSH), catalase, superoxide dismutase (SOD), and thiol in brain hippocampal and cortical tissue. The biochemical markers were significantly altered in the brain tissue of OVX rats. HCA supplementation significantly reduced lipid peroxidation and increased GSH, Gpx, SOD, catalase, and thiol levels in PTZ-treated OVX rats. Rats with an ovariectomy showed a significant protective effect against PTZ through elevation of the latency of generalized tonic-clonic seizures (GTCS). HCA substantially increased minimal clonic seizure and GTCS latency in the OVX-PTZ and sham-PTZ groups. In summary, our experimental data indicate that combined supplementation of HCA substantially increased anticonvulsant activity. Moreover, combined HCA supplementation reduced oxidative damage by decreasing lipid peroxidation and increasing antioxidant levels in the brain of a PTZ-induced seizure rodent model.
Collapse
|
7
|
Khodamoradi M, Ghazvini H, Esmaeili-Mahani S, Shahveisi K, Farnia V, Zhaleh H, Abdoli N, Akbarnejad Z, Saadati H, Sheibani V. Genistein attenuates seizure-induced hippocampal brain-derived neurotrophic factor overexpression in ovariectomized rats. J Chem Neuroanat 2018. [DOI: 10.1016/j.jchemneu.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Ebrahimzadeh-Bideskan AR, Mansouri S, Ataei ML, Jahanshahi M, Hosseini M. The effects of soy and tamoxifen on apoptosis in the hippocampus and dentate gyrus in a pentylenetetrazole-induced seizure model of ovariectomized rats. Anat Sci Int 2018; 93:218-230. [PMID: 28283880 DOI: 10.1007/s12565-017-0398-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
The effects of tamoxifen and soy on apoptosis of the hippocampus and dentate gyrus of ovariectomized rats after repeated seizures were investigated. Female rats were divided into: (1) Control, (2) Sham, (3) Sham-Tamoxifen (Sham-T), (4) Ovariectomized (OVX), (5) OVX-Tamoxifen (OVX-T), (6)OVX-Soy(OVX-S) and (7) OVX-S-T. The animals in the OVX-S, OVX-T and OVX-S-T groups received soy extract (60 mg/kg; i.p.), tamoxifen (10 mg/kg) or both for 2 weeks before induction of seizures. The animals in these groups additionally received the mentioned treatments before each injection of pentylenetetrazole (PTZ; 40 mg/kg) for 6 days. The animals in the Sham and OVX groups received a vehicle of tamoxifen and soy. A significant decrease in the seizure score and TUNEL-positive neurons was seen in the OVX group compared to the Sham (P < 0.001). The animals in both the OVX-T and OVX-S groups had a significantly higher seizure score as well as number of TUNEL-positive neurons compared to the OVX group (P < 0.01-P < 0.001). Co-treatment of the OVX rats by the extract and tamoxifen decreased the seizure score and number of TUNEL-positive neurons compared to OVX-S (P < 0.001). Treatment of the OVX rats by either soy or tamoxifen increased the seizure score as well as the number of TUNEL-positive neurons in the hippocampal formation. Co-administration of tamoxifen and soy extract inhibited the effects of the soy extract and tamoxifen when they were administered alone. It might be suggested that both soy and tamoxifen have agonistic effects on estrogen receptors by changing the seizure severity.
Collapse
Affiliation(s)
- Ali Reza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaieh Mansouri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mariam Lale Ataei
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Jahanshahi
- Department of Anatomy, School of Medicine, Golestan University of Medical Sciences, Grogan, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
9
|
Khodamoradi M, Asadi-Shekaari M, Esmaeili-Mahani S, Sharififar F, Sheibani V. Effects of Hydroalcoholic Extract of Soy on Learning, Memory and Synaptic Plasticity Deficits Induced by Seizure in Ovariectomized Rats. Basic Clin Neurosci 2017; 8:395-403. [PMID: 29167726 PMCID: PMC5691171 DOI: 10.18869/nirp.bcn.8.5.395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Introduction: Previous studies have shown that seizure can induce cognitive impairment. On the other hand, soy phytoestrogens, which are mainly found in soybean (Glycine max (L.) Merr.), have beneficial effects on the nervous system. However, little is known about their probable effects on seizure. The present study aimed to examine the probable effects of soy extract, containing the phytoestrogen genistein on seizure-induced cognitive and synaptic plasticity impairment in Ovariectomized (OVX) rats. Methods: Rats were ovariectomized, implanted with guide cannula and then divided into 5 groups (n=7–8 in each group): PBS, KA, Saline-KA, Higher Dose Soy (HDS-KA), and Lower Dose Soy (LDS-KA) groups. Animals of the HDS-KA and LDS-KA groups received intraperitoneal administration of soy extract (20 and 2 mg/kg, respectively) and the Saline-KA group received normal saline once a day for 4 days. Sixty minutes after the last injection, Kainic Acid (KA) or PBS was injected into the left lateral ventricle via pre-implanted guide cannula to induce generalized seizures. The Morris water maze task and in vivo field potential recordings were conducted 7 days later. Results: Soy extract at both doses significantly improved learning impairment and at the higher dose (20 mg/kg) significantly prevented seizure-induced spatial memory impairment and deficit of long-term potentiation in the hippocampus. Conclusion: The soy extract containing the phytoestrogen genistein may have beneficial effects on memory deficit induced by seizure in OVX rats and this effect is accompanied by a beneficial effect on synaptic plasticity.
Collapse
Affiliation(s)
- Mehdi Khodamoradi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Rabiei Z. Anticonvulsant effects of medicinal plants with emphasis on mechanisms of action. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Westmark CJ. Soy-Based Therapeutic Baby Formulas: Testable Hypotheses Regarding the Pros and Cons. Front Nutr 2017; 3:59. [PMID: 28149839 PMCID: PMC5241282 DOI: 10.3389/fnut.2016.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
Soy-based infant formulas have been consumed in the United States since 1909, and currently constitute a significant portion of the infant formula market. There are efforts underway to generate genetically modified soybeans that produce therapeutic agents of interest with the intent to deliver those agents in a soy-based infant formula platform. The threefold purpose of this review article is to first discuss the pros and cons of soy-based infant formulas, then present testable hypotheses to discern the suitability of a soy platform for drug delivery in babies, and finally start a discussion to inform public policy on this important area of infant nutrition.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin , Madison, WI , USA
| |
Collapse
|
12
|
Bargi R, Asgharzadehyazdi F, Beheshti F, Mousavi SM, Langehbiz SV, Rakhshandeh H, Sadeghnia HR, Hosseini M. The Effects of Hydroalcoholic Extract of Pinus eldarica on Hippocampal Tissue Oxidative Damage in Pentylenetetrazole-Induced Seizures in Rat. CURRENT NUTRITION & FOOD SCIENCE 2017. [DOI: 10.2174/1573401312666161017142930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Brain tissues oxidative damage has been proposed to occur as a result of
epileptic seizures. With respect to the antioxidant effects of Pinus eldarica (P. eldarica), the impacts
of a hydroalcoholic extract of the plant on the brain tissues oxidative damage taking after seizures
induced by Pentylenetetrazole (PTZ) was investigated in rats.
Methods: The rats were divided into 6 groups and treated: (1) Control(saline); (2) PTZ (100 mg/kg,
i.p.), [3-6] four doses including 20, 50, 200 and 500 mg/kg of P. eldarica extract (Ext 20, Ext 50, Ext
200, Ext 500) 30 min before PTZ injection. Latencies to the first Minimal Clonic (MCS) and Generalized
Tonic-Clonic (GTCS) seizures were recorded. The hippocampal tissues were then collected
for biochemical measurements.
Results: The extract non-significantly postponed both the MCS and GTCS onsets. PTZ- induced seizure
increased Malondialdehyde (MDA) (P<0.001) concentration while, diminished thiol contents
(P<0.01) of hippocampal tissues. Pretreatment with 200 mg of the extract diminished MDA level in
the hippocampal tissues compared to the PTZ group (P<0.001). Both 50 and 200 mg/kg of the extract
improved thiol concentration in the hippocampal tissues (p<0.01).
Conclusion: The present study demonstrated that the extract of P. eldarica possess protective effects
against hippocampal tissues oxidative damage in PTZ- induced seizure model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Azadi Square, Mashhad, Postal Code: 9177948564,, Iran
| |
Collapse
|
13
|
Afsordeh N, Heydari A, Salami M, Sadat Alavi S, Arbabi E, Karimi S, Hamidi G. Effect of Estradiol and Soy Extract on the Onset of PTZ-Induced Seizure in Ovariectomized Rats: Implications for Nurses and Midwives. Nurs Midwifery Stud 2016. [DOI: 10.17795/nmsjournal33428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Seghatoleslam M, Alipour F, Shafieian R, Hassanzadeh Z, Edalatmanesh MA, Sadeghnia HR, Hosseini M. The effects of Nigella sativa on neural damage after pentylenetetrazole induced seizures in rats. J Tradit Complement Med 2015; 6:262-8. [PMID: 27419091 PMCID: PMC4936772 DOI: 10.1016/j.jtcme.2015.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/07/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
Nigella sativa (NS) has been suggested to have neuroprotective and anti-seizures properties. The aim of current study was to investigate the effects of NS hydro-alcoholic extract on neural damage after pentylenetetrazole (PTZ) - induced repeated seizures. The rats were divided into five groups: (1) control (saline), (2) PTZ (50 mg/kg, i.p.), (3-5) PTZ-NS 100, PTZ-NS 200 and PTZ-NS 400 (100, 200 and 400 mg/kg of NS extract respectively, 30 min prior to each PTZ injection on 5 consecutive days). The passive avoidance (PA) test was done and the brains were then removed for histological measurements. The PTZ-NS 100, PTZ-NS 200 and PTZ-NS 400 groups had lower seizure scores than PTZ group (P < 0.01 and P < 0.001). The latency to enter the dark compartment by the animals of PTZ group was lower than control in PA test (P < 0.01). Pre-treatment by 400 mg/kg of the extract increased the latency to enter the dark compartment (P < 0.05). Meanwhile, different doses of the extract inhibited production of dark neurons in different regions of hippocampus (P < 0.001). The present study allows us to suggest that the NS possesses a potential ability to prevent hippocampal neural damage which is accompanied with improving effects on memory.
Collapse
Affiliation(s)
- Masoumeh Seghatoleslam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Hassanzadeh
- Neurogenic Inflammation Research Center and Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Ebrahimzadeh Bideskan AR, Lale Ataei M, Mansouri S, Hosseini M. The effects of tamoxifen and soy on dark neuron production in hippocampal formation after pentylenetetrazole-induced repeated seizures in rats. PATHOPHYSIOLOGY 2015; 22:125-35. [DOI: 10.1016/j.pathophys.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 04/10/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
|
16
|
Zabihi H, Hosseini M, Pourganji M, Oryan S, Soukhtanloo M, Niazmand S. The effects of tamoxifen on learning, memory and brain tissues oxidative damage in ovariectomized and naïve female rats. Adv Biomed Res 2014; 3:219. [PMID: 25371876 PMCID: PMC4219215 DOI: 10.4103/2277-9175.143297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022] Open
Abstract
Background: Regarding the modulatory effects of tamoxifen (TAM) on the actions of estrogen in the present study, the effects of TAM on learning, memory and brain tissues oxidative damage in ovariectomized (OVX) and naοve female rats was investigated. Materials and Methods: The animals were divided into: (1) Sham, (2) OVX, (3) Sham-tamoxifen (Sham-TAM) and (4) ovariectomized-tamoxifen (OVX-TAM). The animals of the Sham-TAM and OVX-TAM groups were treated by TAM (1 mg/kg; 4 weeks). Results: In Morris water maze, the escape latency in the OVX group was higher than in the Sham group (P < 0.01). The time latency in the animals of OVX-TAM group was lower than that of OVX group (P < 0.01); however, there were no significant differences between the Sham-TAM and Sham groups. In the probe trial, the time spent in target quadrant (Q1) by the animals of OVX group was lower than that of Sham group (P < 0.01). Interestingly, the animals of OVX-TAM group spent more times in target quadrant (Q1) compared with OVX group (P < 0.01). In passive avoidance test, the animals of OVX group had lower latencies to enter the dark compartment compared with the Sham group (P < 0.05). The time latency to enter the dark compartment by animals of OVX-TAM group was higher than in OVX group (P < 0.01). In OVX-TAM group, the total thiol concentration was significantly higher (P < 0.05) and malondialdehyde concentration was lower (P < 0.01) than OVX group. Conclusions: These results allow us to propose that TAM enhances learning and memory of OVX rats. The possible mechanism may be due to the protective effects against brain tissues oxidative damage.
Collapse
Affiliation(s)
- Hoda Zabihi
- Department of Biology, Faculty of Science, Tarbiat Moallem University of Tehran, Tehran, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoume Pourganji
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrbanoo Oryan
- Department of Biology, Faculty of Science, Tarbiat Moallem University of Tehran, Tehran, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Westmark CJ. A hypothesis regarding the molecular mechanism underlying dietary soy-induced effects on seizure propensity. Front Neurol 2014; 5:169. [PMID: 25232349 PMCID: PMC4153031 DOI: 10.3389/fneur.2014.00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/21/2014] [Indexed: 11/13/2022] Open
Abstract
Numerous neurological disorders including fragile X syndrome, Down syndrome, autism, and Alzheimer’s disease are co-morbid with epilepsy. We have observed elevated seizure propensity in mouse models of these disorders dependent on diet. Specifically, soy-based diets exacerbate audiogenic-induced seizures in juvenile mice. We have also found potential associations between the consumption of soy-based infant formula and seizure incidence, epilepsy comorbidity, and autism diagnostic scores in autistic children by retrospective analyses of medical record data. In total, these data suggest that consumption of high levels of soy protein during postnatal development may affect neuronal excitability. Herein, we present our theory regarding the molecular mechanism underlying soy-induced effects on seizure propensity. We hypothesize that soy phytoestrogens interfere with metabotropic glutamate receptor signaling through an estrogen receptor-dependent mechanism, which results in elevated production of key synaptic proteins and decreased seizure threshold.
Collapse
Affiliation(s)
- Cara Jean Westmark
- Department of Neurology, Medical Sciences Center, University of Wisconsin , Madison, WI , USA
| |
Collapse
|
18
|
Neamati A, Chaman F, Hosseini M, Boskabady MH. The effects of Valeriana officinalis L. hydro-alcoholic extract on depression like behavior in ovalbumin sensitized rats. J Pharm Bioallied Sci 2014; 6:97-103. [PMID: 24741277 PMCID: PMC3983753 DOI: 10.4103/0975-7406.129174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/28/2013] [Accepted: 12/08/2013] [Indexed: 12/27/2022] Open
Abstract
Background: Neuroimmune factors have been considered as contributors to the pathogenesis of depression. Beside other therapeutic effects, Valeriana officinalis L., have been suggested to have anti-inflammatory effects. In the present study, the effects of V. officinalis L. hydro alcoholic extract was investigated on depression like behavior in ovalbumin sensitized rats. Materials and Methods: A total of 50 Wistar rats were divided into five groups: Group 1 (control group) received saline instead of Valeriana officinalis L. extract. The animals in group 2 (sensitized) were treated by saline instead of the extract and were sensitized using the ovalbumin. Groups 3-5 (Sent - Ext 50), (Sent - Ext 100) and (Sent - Ext 200) were treated by 50, 100 and 200 mg/kg of V. officinalis L. hydro-alcoholic extract respectively, during the sensitization protocol. Forced swimming test was performed for all groups and immobility time was recorded. Finally, the animals were placed in the open-field apparatus and the crossing number on peripheral and central areas was observed. Results: The immobility time in the sensitized group was higher than that in the control group (P < 0.01). The animals in Sent-Ext 100 and Sent-Ext 200 groups had lower immobility times in comparison with sensitized group (P < 0.05 and P < 0.01). In the open field test, the crossed number in peripheral by the sensitized group was higher than that of the control one (P < 0.01) while, the animals of Sent-Ext 50, Sent-Ext 100 and Sent-Ext 200 groups had lower crossing number in peripheral compared with the sensitized group (P < 0.05 and P < 0.01 respectively). Furthermore, in the sensitized group, the central crossing number was lower than that of the control group (P < 0.001). In the animals treated by 200 mg/kg of the extract, the central crossing number was higher than that of the sensitized group (P < 0. 05). Conclusions: The results of the present study showed that the hydro-alcoholic extract of V. officinalis prevents depression like behavior in ovalbumin sensitized rats. These results support the traditional belief on the about beneficial effects of V. officinalis in the nervous system. Moreover, further investigations are required in order to better understand this protective effect.
Collapse
Affiliation(s)
- Ali Neamati
- Department of Biology, Faculty of Basic Sciences, Mashhad Branch, Islamic Azad University, Mashad, Iran
| | - Fariba Chaman
- Department of Biology, Faculty of Basic Sciences, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Mansouri S, Ataei ML, Hosseini M, Bideskan ARE. Tamoxifen mimics the effects of endogenous ovarian hormones on repeated seizures induced by pentylenetetrazole in rats. Exp Neurobiol 2013; 22:116-23. [PMID: 23833560 PMCID: PMC3699672 DOI: 10.5607/en.2013.22.2.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 11/19/2022] Open
Abstract
In the present study, the effects of tamoxifen on pentylenetetrazole (PTZ)-induced repeated seizures and hippocampal neuronal damage in ovariectomized rats were investigated. Thirty seven virgin female Wistar rats were divided to: (1) control, (2) sham-PTZ, (3) sham-PTZ-tamoxifen (sham-PTZ-T), (4) Ovariectomized -PTZ (OVX-PTZ) and (5) OVX-PTZ-tamoxifen (OVX-PTZ-T) groups. The animals of groups 3 and 5 were injected by tamoxifen (10 mg/kg) on 7 consecutive days. After 7 days of tamoxifen injection, they also were then injected by tamoxifen 30 min prior each PTZ injection. PTZ (40 mg/kg) was injected on 6 consecutive days and the animal behaviors were observed for 60 min. The histological methods were then used to determine dark neurons in hippocampus. A significant decrease in the seizure score was seen in OVX-PTZ group compared to Sham-PTZ. The animals of OVX-PTZ-T group had a significant higher seizure score compared to OVX-PTZ group. The dark neurons in DG of OVX group were lower than sham group (p<0.01). The numbers of dark neurons in CA1 area of OVX-PTZ-T group was higher than OVX-PTZ group (p<0.05) compared to control, the numbers of dark neurons in CA3 area showed a significant increase in Sham-PTZ and OVX-PTZ group (p<0.05 and p<0.01 respectively). Dark neurons in OVX-PTZ-T group were higher than OVX-PTZ group (p<0.05). It is concluded that pretreatment of the ovariectomized rats by tamoxifen increased PTZ-induced seizure score and dark neurons. It might be suggested that tamoxifen has agonistic effects for estrogen receptors to change the seizure severity.
Collapse
Affiliation(s)
- Somaeh Mansouri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| | | | | | | |
Collapse
|
20
|
Hosseini M, Jafarianheris T, Seddighi N, Parvaneh M, Ghorbani A, Sadeghnia HR, Rakhshandeh H. Effects of different extracts of Eugenia caryophyllata on pentylenetetrazole-induced seizures in mice. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2012; 10:1476-81. [PMID: 23257144 DOI: 10.3736/jcim20121222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the possible anticonvulsant effect of different extracts of Eugenia caryophyllata (clove) on pentylenetetrazole (PTZ)-induced seizures in mice. METHODS The animals were divided into saline, 50, 100, 250 and 500 mg/kg of aqueous extract, 50, 100, 250 and 500 mg/kg of ethanolic extract, and 50, 100, 250 and 500 mg/kg of chloroformic extract of clove groups. The extracts or saline were injected 60 min before each PTZ injection. Latency to the first minimal clonic seizure (MCS) and generalized tonic-clonic seizure (GTCS) and the percent of mortality were recorded. RESULTS Aqueous extract of clove at doses of 50, 100, 250 and 500 mg/kg significantly extended the MCS and GTCS latency (P<0.05). The MCS latency in mice treated with 50, 100 and 250 mg/kg of the ethanolic extract was significantly increased (P<0.05). The GTCS latency in mice treated with 50, 100, 250 and 500 mg/kg of ethanolic extract was significantly higher than that of the saline-treated group (P<0.05). There were no significant differences in MCS and GTCS latency between mice treated with different chloroformic extract of clove or saline. CONCLUSION The aqueous and ethanolic extracts of clove could inhibit the PTZ-induced convulsion, and this plant has the potential to be used as a new therapeutic agent for control of seizures. The exact mechanisms and the active compounds that are responsible for the anticonvulsive effect need to be clarified in future studies.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | | | | | |
Collapse
|
21
|
Mohammadpour T, Hosseini M, Karami R, Sadeghnia HR, Ebrahimzadeh Bideskan AR, Enayatfard L. Estrogen-dependent effect of soy extract on pentylenetetrazole-induced seizures in rats. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2012; 10:1470-6. [PMID: 23257143 DOI: 10.3736/jcim20121221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To study the different effects of soy extract on pentylenetetrazole (PTZ)-induced seizures in the presence and absence of ovarian hormones in rats, and the gender-dependent differences in the effects of phytoestrogens on behavior. METHODS Male and female Wistar rats were randomly divided into nine groups with eight in each, namely, male-saline (M-saline), male-low-dose soy (M-LDS), male-high-dose soy (M-HDS), sham-saline (Sh-saline), sham-low-dose soy (Sh-LDS), sham-high-dose soy (Sh-HDS), ovariectomized-saline (OVX-saline), ovariectomized-low-dose soy (OVX-LDS) and ovariectomized-high-dose soy (OVX-HDS). The rats of groups 7 to 9 were ovariectomized under ketamine anesthesia. The rats of groups 2, 5 and 8 were treated by 20 mg/kg of soy extract while the animals of groups 3, 6 and 9 received 60 mg/kg of soy extract for two weeks. In groups 1, 4 and 7, saline was injected instead of soy extract. The animals were then injected by a single dose of PTZ (90 mg/kg body weight, intraperitoneally) and placed in a plexiglas cage and the latency to minimal clonic seizure (MCS) and generalized tonic-clonic seizure (GTCS) was recorded. RESULTS Both MCS and GTCS latency in M-LDS and M-HDS groups was significantly lower than that in M-saline group (P<0.05 or P<0.01). Treatment for female sham rats by soy extract did not affect MCS and GTCS latency. The animals of OVX-LDS and OVX-HDS groups had lower MCS and GTCS latency in comparison with OVX-saline group (P<0.05 or P<0.01). CONCLUSION It is concluded that the phytoestrogens of soy affect seizure severity induced by PTZ, but their effects are different in the presence or absence of ovarian hormones. However, further studies are necessary to be done.
Collapse
Affiliation(s)
- Toktam Mohammadpour
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | |
Collapse
|
22
|
Effect of Aqueous Extract of Crocus sativus L. on Morphine-Induced Memory Impairment. Adv Pharmacol Sci 2012; 2012:494367. [PMID: 23091484 PMCID: PMC3474206 DOI: 10.1155/2012/494367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 12/02/2022] Open
Abstract
In the present study, the effect of aqueous extracts of saffron on morphine-induced memory impairment was investigated. On the training trial, the mice received an electric shock when the animals were entered into the dark compartment. Twenty-four and forty-eight hours later, the time latency for entering the dark compartment was recorded and defined as the retention trial. The mice were divided into (1) control, (2) morphine which received morphine before the training in the passive avoidance test, (3–5) three groups treated by 50, 150 and 450 mg/kg of saffron extract before the training trial, and (6 and 7) the two other groups received 150 and 450 mg/kg of saffron extract before the retention trial. The time latency in morphine-treated group was lower than control (P < 0.01). Treatment of the animals by 150 and 450 mg/kg of saffron extract before the training trial increased the time latency at 24 and 48 hours after the training trial (P < 0.05 and P < 0.01). Administration of both 150 and 450 mg/kg doses of the extract before retention trials also increased the time latency (P < 0.01). The results revealed that the saffron extract attenuated morphine-induced memory impairment.
Collapse
|