1
|
Wu Z, Wang Z, Hua Z, Ji Y, Ye Q, Zhang H, Yan W. Prognostic signature and immunotherapeutic relevance of Focal adhesion signaling pathway-related genes in osteosarcoma. Heliyon 2024; 10:e38523. [PMID: 39524888 PMCID: PMC11550747 DOI: 10.1016/j.heliyon.2024.e38523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background As the most common primary malignant bone tumor in children and adolescents, osteosarcoma currently lacks an effective clinical cure. Focal adhesion plays a crucial role in tumor invasion, migration, and drug resistance by mediating communication between the extracellular matrix and tumor cells. This study investigated the prognostic features and immunotherapeutic relevance of focal adhesion pathway-related genes in osteosarcoma to aid in the development of new therapeutic options. Methods We obtained mutational, transcriptomic, gene expression, and clinical data of osteosarcoma patients from the Gene Expression Omnibus (GEO) and Therapeutically Applicable Research to Generate Effective (TARGET) databases. Differentially expressed genes were screened, followed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Kaplan-Meier survival analysis was performed for genes related to the focal adhesion pathway, and multivariate Cox regression analysis was employed to construct a prognostic signature model. Genes such as SIGLEC15, TIGIT, CD274, HAVCR2, PDCD1, CTLA4, and LAG3 were extracted from the TARGET and CCLE databases for osteosarcoma patients and osteosarcoma cell lines, respectively,to observe the expression of immune checkpoint-related genes. Finally, qRT-PCR was used to verify the expression of these immune checkpoint-related genes in osteosarcoma cell lines. Results In our study, 376 samples were analyzed, including 369 osteosarcoma samples and 7 normal tissue samples. We identified 50 up-regulated and 28 down-regulated differentially expressed genes. Among these, 10 Candidate genes relative to focal Adhesion were selected, and CAV1, ZYX, and ITGA5 were found to have a significant prognostic role based on survival analysis of osteosarcoma samples from the TARGET database. A predictive signature model related to the focal adhesion signaling pathway was constructed using these genes, and the AUCs of the 1-year, 3-year, and 5-year ROC curves were 0. 647, 0. 712, and 0. 717, respectively. The overall survival (OS) rate of osteosarcoma patients with high-risk scores was poorer than those with low-risk scores. Then, samples were divided into two subgroups based on the expression of the three genes, revealing significant differences in the expression of certain immune checkpoint-related genes between the subgroups. Additionally, above three genes and immune checkpoint-related genes in osteosarcoma cell lines were extracted from the CCLE database, showing high expression levels in eight osteosarcoma cell lines. We observed that CD274 and PDCD1LG2 were highly expressed in some osteosarcoma cell lines. Finally, the expression of CAV1, ZYX, ITGA5, CD80, CD274, and PDCD1LG2 in osteosarcoma cell lines was verified by qRT-PCR. Conclusions Our study validated the prognostic role of three focal adhesion pathway-related genes (ZYX, CAV1, and ITGA5) in patients with osteosarcoma and constructed a prognostic signature model associated with the focal adhesion signaling pathway. We identified significant differences in the expression of multiple immune checkpoint-related genes among subgroups defined by the three genes. Additionally, CD274 and PDCD1LG2 showed higher expression in osteosarcoma cell lines characterized by these genes. These findings may aid in the selection of effective immunotherapy for specific osteosarcoma patients.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhiqing Wang
- Zhabei Central Hospital, No. 619, Zhonghuaxin Road, Jing'an District, Shanghai, 200070, China
| | - Zhanqiang Hua
- Department of Orthopedics, Shanghai Electric Power Hospital, Shanghai, 200050, China
| | - Yingzheng Ji
- Department of Orthopedics, Naval Medical Center of PLA, Second Military Medical University, China
| | - Qingrong Ye
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hao Zhang
- Department of Orthopedics, Naval Medical Center of PLA, Second Military Medical University, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Santos L, Moreira JN, Abrunhosa A, Gomes C. Brain metastasis: An insight into novel molecular targets for theranostic approaches. Crit Rev Oncol Hematol 2024; 198:104377. [PMID: 38710296 DOI: 10.1016/j.critrevonc.2024.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Brain metastases (BrM) are common malignant lesions in the central nervous system, and pose a significant threat in advanced-stage malignancies due to delayed diagnosis and limited therapeutic options. Their distinct genomic profiles underscore the need for molecular profiling to tailor effective treatments. Recent advances in cancer biology have uncovered molecular drivers underlying tumor initiation, progression, and metastasis. This, coupled with the advances in molecular imaging technology and radiotracer synthesis, has paved the way for the development of innovative radiopharmaceuticals with enhanced specificity and affinity for BrM specific targets. Despite the challenges posed by the blood-brain barrier to effective drug delivery, several radiolabeled compounds have shown promise in detecting and targeting BrM. This manuscript provides an overview of the recent advances in molecular biomarkers used in nuclear imaging and targeted radionuclide therapy in both clinical and preclinical settings. Additionally, it explores potential theranostic applications addressing the unique challenges posed by BrM.
Collapse
Affiliation(s)
- Liliana Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra 3000-548, Portugal; Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra 3000-548, Portugal
| | - João Nuno Moreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra 3000-548, Portugal
| | - Antero Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra 3000-548, Portugal
| | - Célia Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra 3000-075, Portugal.
| |
Collapse
|
3
|
Wang C, Chiu S, Wu S, Pan L, Yen Y, Lai Y, Chen C. Treatment and mortality risk of older adults with non-small cell cancer in Taiwan: A population-based cohort study. Thorac Cancer 2023; 14:2687-2695. [PMID: 37551918 PMCID: PMC10493478 DOI: 10.1111/1759-7714.15055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Older patients tend to have decreased physical functions and more comorbidities than younger patients. At present, the best management for very elderly patients with lung cancer is not known. In this study, we aimed to investigate treatment and mortality risk of older adults with non-small cell cancer (NSCLC) in Taiwan. METHODS This study analyzed data from the Taiwan Cancer Registry database. Patients aged ≥80 years with newly diagnosed NSCLC between 2010 and 2017 were included. Treatment options were categorized as curative, palliative, and no treatment. Patients were followed up until death or December 31, 2020. Univariable and multivariable Cox proportional hazards models were used to estimate mortality risk, and Kaplan-Meier survival curves were drawn. RESULTS A total of 11 941 patients, aged ≥80 years, with newly diagnosed NSCLC between 2010 and 2017 were identified from the Taiwan Cancer Registry and followed up until 2020. The mean age was 84.4 ± 3.7 years old, and 7468 (62.54%) were men. The Kaplan-Meier survival curves showed significant differences across the three treatment options (log-rank p < 0.001). Results from multivariate Cox regression demonstrated that patients on palliative treatment (adjusted HR: 0.52, 95% CI: 0.48-0.56, p < 0.001) and curative treatment (adjusted HR: 0.45, 95% CI: 0.42-0.48, p < 0.001) had a significantly lower mortality risk than those with no treatment. The subgroup analyses stratified by cancer stages also showed consistent findings. CONCLUSION Elderly patients with NSCLC had significantly decreased mortality risk when receiving curative or palliative treatment compared with those without treatment. In the future, further studies are warranted to investigate complications and quality of life of elderly patients with NSCLC during palliative or curative treatment.
Collapse
Affiliation(s)
- Chun‐Chieh Wang
- Division of Chest Medicine, Department of Internal MedicinePuli Branch of Taichung Veterans General HospitalNantouTaiwan
- Department of EldercareCentral Taiwan University of Science and TechnologyTaichungTaiwan
| | - Shao‐Wen Chiu
- Healthcare Technology Business Division, Healthcare DepartmentInternational Integrated SystemsTaipeiTaiwan
| | - Shang‐Jung Wu
- Department of NursingPuli Branch of Taichung Veterans General HospitalNantouTaiwan
| | - Lung‐Kwang Pan
- Department of Medical Imaging and Radiological ScienceCentral Taiwan University of Science and TechnologyTaichungTaiwan
| | - Yung‐Feng Yen
- Section of Infectious Diseases, Taipei City Hospital, Taipei City GovernmentTaipeiTaiwan
- Institute of Hospital and Health Care AdministrationNational Yang‐Ming UniversityTaipeiTaiwan
- Department of Health Care ManagementNational Taipei University of Nursing and Health SciencesTaipeiTaiwan
| | - Yun‐Ju Lai
- Department of Health Care ManagementNational Taipei University of Nursing and Health SciencesTaipeiTaiwan
- School of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Department of Exercise Health ScienceNational Taiwan University of SportTaichungTaiwan
- Division of Endocrinology and Metabolism, Department of Internal MedicinePuli Branch of Taichung Veterans General HospitalNantouTaiwan
| | - Chu‐Chieh Chen
- Department of Health Care ManagementNational Taipei University of Nursing and Health SciencesTaipeiTaiwan
| |
Collapse
|
4
|
Berger A, Mullen R, Bernstein K, Alzate JD, Silverman JS, Sulman EP, Donahue BR, Chachoua A, Shum E, Velcheti V, Sabari J, Golfinos JG, Kondziolka D. Extended Survival in Patients With Non-Small-Cell Lung Cancer-Associated Brain Metastases in the Modern Era. Neurosurgery 2023; 93:50-59. [PMID: 36722962 DOI: 10.1227/neu.0000000000002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Brain metastases (BM) have long been considered a terminal diagnosis with management mainly aimed at palliation and little hope for extended survival. Use of brain stereotactic radiosurgery (SRS) and/or resection, in addition to novel systemic therapies, has enabled improvements in overall and progression-free (PFS) survival. OBJECTIVE To explore the possibility of extended survival in patients with non-small-cell lung cancer (NSCLC) BM in the current era. METHODS During the years 2008 to 2020, 606 patients with NSCLC underwent their first Gamma Knife SRS for BM at our institution with point-of-care data collection. We reviewed clinical, molecular, imaging, and treatment parameters to explore the relationship of such factors with survival. RESULTS The median overall survival was 17 months (95% CI, 13-40). Predictors of increased survival in a multivariable analysis included age <65 years ( P < .001), KPS ≥80 ( P < .001), absence of extracranial metastases ( P < .001), fewer BM at first SRS (≤3, P = .003), and targeted therapy ( P = .005), whereas chemotherapy alone was associated with shorter survival ( P = .04). In a subgroup of patients managed before 2016 (n = 264), 38 (14%) were long-term survivors (≥5 years), of which 16% required no active cancer treatment (systemic or brain) for ≥3 years by the end of their follow-up. CONCLUSION Long-term survival in patients with brain metastases from NSCLC is feasible in the current era of SRS when combined with the use of effective targeted therapeutics. Of those living ≥5 years, the chance for living with stable disease without the need for active treatment for ≥3 years was 16%.
Collapse
Affiliation(s)
- Assaf Berger
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Reed Mullen
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Kenneth Bernstein
- Department of Radiation Oncology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Juan Diego Alzate
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Joshua S Silverman
- Department of Radiation Oncology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Bernadine R Donahue
- Department of Radiation Oncology, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Abraham Chachoua
- Medical Oncology, Perlmutter Cancer Center, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Elaine Shum
- Medical Oncology, Perlmutter Cancer Center, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Vamsidhar Velcheti
- Medical Oncology, Perlmutter Cancer Center, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Joshua Sabari
- Medical Oncology, Perlmutter Cancer Center, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - John G Golfinos
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| | - Douglas Kondziolka
- Department of Neurological Surgery, NYU Langone Health Medical Center, New York University, New York, New York, USA
| |
Collapse
|
5
|
Huang HT, Nix MG, Brand DH, Cobben D, Hiley CT, Fenwick JD, Hawkins MA. Dose-Response Analysis Describes Particularly Rapid Repopulation of Non-Small Cell Lung Cancer during Concurrent Chemoradiotherapy. Cancers (Basel) 2022; 14:4869. [PMID: 36230791 PMCID: PMC9563948 DOI: 10.3390/cancers14194869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Purpose: We analysed overall survival (OS) rates following radiotherapy (RT) and chemo-RT of locally-advanced non-small cell lung cancer (LA-NSCLC) to investigate whether tumour repopulation varies with treatment-type, and to further characterise the low α/β ratio found in a previous study. (2) Materials and methods: Our dataset comprised 2-year OS rates for 4866 NSCLC patients (90.5% stage IIIA/B) belonging to 51 cohorts treated with definitive RT, sequential chemo-RT (sCRT) or concurrent chemo-RT (cCRT) given in doses-per-fraction ≤3 Gy over 16-60 days. Progressively more detailed dose-response models were fitted, beginning with a probit model, adding chemotherapy effects and survival-limiting toxicity, and allowing tumour repopulation and α/β to vary with treatment-type and stage. Models were fitted using the maximum-likelihood technique, then assessed via the Akaike information criterion and cross-validation. (3) Results: The most detailed model performed best, with repopulation offsetting 1.47 Gy/day (95% confidence interval, CI: 0.36, 2.57 Gy/day) for cCRT but only 0.30 Gy/day (95% CI: 0.18, 0.47 Gy/day) for RT/sCRT. The overall fitted tumour α/β ratio was 3.0 Gy (95% CI: 1.6, 5.6 Gy). (4) Conclusion: The fitted repopulation rates indicate that cCRT schedule durations should be shortened to the minimum in which prescribed doses can be tolerated. The low α/β ratio suggests hypofractionation should be efficacious.
Collapse
Affiliation(s)
- Huei-Tyng Huang
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Michael G. Nix
- Department of Medical Physics and Engineering, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Foundation Trust, Leeds LS9 7TF, UK
| | - Douglas H. Brand
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
- University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
| | - David Cobben
- Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool CH63 4JY, UK
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK
| | - Crispin T. Hiley
- University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6AG, UK
| | - John D. Fenwick
- Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool CH63 4JY, UK
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 7BE, UK
| | - Maria A. Hawkins
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
- University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
| |
Collapse
|
6
|
Lee EQ, Camidge DR, Mehta G. Extending Our Reach: Expanding Enrollment in Brain Metastases and Primary Brain Tumor Clinical Trials. Am Soc Clin Oncol Educ Book 2022; 42:1-9. [PMID: 35427188 DOI: 10.1200/edbk_349155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Despite the unmet need, clinical trial opportunities for primary and metastatic central nervous system cancers are limited and clinical trial enrollment is poor. Multiple stakeholders have launched efforts to improve the clinical trial landscape for patients with primary and metastatic central nervous system tumors, including work that promotes the inclusion of patients with brain tumors into clinical trials, re-examination of eligibility criteria, and careful consideration of trial design aspects that may uniquely impact the patients with this disease. Herein, we consider regulatory perspectives from the U.S. Food and Drug Administration and clinician-trialist perspectives from a neuro-oncologist and a medical oncologist.
Collapse
Affiliation(s)
- Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Gautam Mehta
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
7
|
Corroyer-Dulmont A, Jaudet C, Frelin AM, Fantin J, Weyts K, Vallis KA, Falzone N, Sibson NR, Chérel M, Kraeber-Bodéré F, Batalla A, Bardet S, Bernaudin M, Valable S. Radioimmunotherapy for Brain Metastases: The Potential for Inflammation as a Target of Choice. Front Oncol 2021; 11:714514. [PMID: 34504791 PMCID: PMC8423367 DOI: 10.3389/fonc.2021.714514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Brain metastases (BM) are frequently detected during the follow-up of patients with malignant tumors, particularly in those with advanced disease. Despite a major progress in systemic anti-cancer treatments, the average overall survival of these patients remains limited (6 months from diagnosis). Also, cognitive decline is regularly reported especially in patients treated with whole brain external beam radiotherapy (WBRT), due to the absorbed radiation dose in healthy brain tissue. New targeted therapies, for an earlier and/or more specific treatment of the tumor and its microenvironment, are needed. Radioimmunotherapy (RIT), a combination of a radionuclide to a specific antibody, appears to be a promising tool. Inflammation, which is involved in multiple steps, including the early phase, of BM development is attractive as a relevant target for RIT. This review will focus on the (1) early biomarkers of inflammation in BM pertinent for RIT, (2) state of the art studies on RIT for BM, and (3) the importance of dosimetry to RIT in BM. These two last points will be addressed in comparison to the conventional EBRT treatment, particularly with respect to the balance between tumor control and healthy tissue complications. Finally, because new diagnostic imaging techniques show a potential for the detection of BM at an early stage of the disease, we focus particularly on this therapeutic window.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- Medical Physics Department, CLCC François Baclesse, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Cyril Jaudet
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Anne-Marie Frelin
- Grand accélérateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
| | - Jade Fantin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Kathleen Weyts
- Nuclear Medicine Department, CLCC François Baclesse, Caen, France
| | - Katherine A. Vallis
- Medical Research Council, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Nicola R. Sibson
- Medical Research Council, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michel Chérel
- Team 13-Nuclear Oncology, CRCINA, INSERM, CNRS, Nantes University, Nantes, France
| | - Françoise Kraeber-Bodéré
- Team 13-Nuclear Oncology, CRCINA, INSERM, CNRS, Nantes University, Nantes, France
- Nuclear Medicine Department, University Hospital, Nantes, France
| | - Alain Batalla
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Stéphane Bardet
- Nuclear Medicine Department, CLCC François Baclesse, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| |
Collapse
|
8
|
US Food and Drug Administration regulatory updates in neuro-oncology. J Neurooncol 2021; 153:375-381. [PMID: 34156585 PMCID: PMC8218275 DOI: 10.1007/s11060-021-03789-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022]
Abstract
Objective Contemporary management of patients with neuro-oncologic disease requires an understanding of approvals by the US Food and Drug Administration (FDA) related to nervous system tumors. To summarize FDA updates applicable to neuro-oncology practitioners, we sought to review oncology product approvals and Guidances that were pertinent to the field in the past year. Methods Oncology product approvals between January 1, 2020, and December 31, 2020, were reviewed for clinical trial outcomes involving tumors of the nervous system. FDA Guidances relevant to neuro-oncology were also reviewed. Results Five oncology product approvals described outcomes for nervous system tumors in the year 2020. These included the first regulatory approval for neurofibromatosis type 1: selumetinib for children with symptomatic, inoperable plexiform neurofibromas. Additionally, there were 4 regulatory approvals for non-central nervous system (CNS) cancers that described clinical outcomes for patients with brain metastases. These included the approval of tucatinib for metastatic human epidermal growth factor receptor 2 (HER2)-positive breast cancer including patients with brain metastases, brigatinib for anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC), and pralsetinib and selpercatinib for RET fusion-positive NSCLC. Finally, two FDA Guidances for Industry, “Cancer Clinical Trial Eligibility Criteria: Brain Metastases” and “Evaluating Cancer Drugs in Patients with Central Nervous System Metastases” were published to facilitate drug development for and inclusion of patients with CNS metastases in clinical trials. Conclusions Despite the challenges of the past year brought on by the COVID-19 pandemic, progress continues to be made in neuro-oncology. These include first-of-their-kind FDA approvals and Guidances that are relevant to the management of patients with nervous system tumors.
Collapse
|
9
|
Corroyer-Dulmont A, Valable S, Falzone N, Frelin-Labalme AM, Tietz O, Toutain J, Soto MS, Divoux D, Chazalviel L, Pérès EA, Sibson NR, Vallis KA, Bernaudin M. VCAM-1 targeted alpha-particle therapy for early brain metastases. Neuro Oncol 2020; 22:357-368. [PMID: 31538194 PMCID: PMC7162423 DOI: 10.1093/neuonc/noz169] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Brain metastases (BM) develop frequently in patients with breast cancer. Despite the use of external beam radiotherapy (EBRT), the average overall survival is short (6 months from diagnosis). The therapeutic challenge is to deliver molecularly targeted therapy at an early stage when relatively few metastatic tumor cells have invaded the brain. Vascular cell adhesion molecule 1 (VCAM-1), overexpressed by nearby endothelial cells during the early stages of BM development, is a promising target. The aim of this study was to investigate the therapeutic value of targeted alpha-particle radiotherapy, combining lead-212 (212Pb) with an anti-VCAM-1 antibody (212Pb-αVCAM-1). METHODS Human breast carcinoma cells that metastasize to the brain, MDA-231-Br-GFP, were injected into the left cardiac ventricle of nude mice. Twenty-one days after injection, 212Pb-αVCAM-1 uptake in early BM was determined in a biodistribution study and systemic/brain toxicity was evaluated. Therapeutic efficacy was assessed using MR imaging and histology. Overall survival after 212Pb-αVCAM-1 treatment was compared with that observed after standard EBRT. RESULTS 212Pb-αVCAM-1 was taken up into early BM with a tumor/healthy brain dose deposition ratio of 6 (5.52e108 and 0.92e108) disintegrations per gram of BM and healthy tissue, respectively. MRI analyses showed a statistically significant reduction in metastatic burden after 212Pb-αVCAM-1 treatment compared with EBRT (P < 0.001), translating to an increase in overall survival of 29% at 40 days post prescription (P < 0.01). No major toxicity was observed. CONCLUSIONS The present investigation demonstrates that 212Pb-αVCAM-1 specifically accumulates at sites of early BM causing tumor growth inhibition.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Samuel Valable
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | | | | | - Ole Tietz
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Jérôme Toutain
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Manuel Sarmiento Soto
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Didier Divoux
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Laurent Chazalviel
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Elodie A Pérès
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Katherine A Vallis
- Cancer Research UK and Medical Research Council, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Myriam Bernaudin
- Normandie University, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, Caen, France
| |
Collapse
|
10
|
Nix MG, Rowbottom CG, Vivekanandan S, Hawkins MA, Fenwick JD. Chemoradiotherapy of locally-advanced non-small cell lung cancer: Analysis of radiation dose-response, chemotherapy and survival-limiting toxicity effects indicates a low α/β ratio. Radiother Oncol 2019; 143:58-65. [PMID: 31439448 DOI: 10.1016/j.radonc.2019.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/21/2019] [Accepted: 07/22/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE To analyse changes in 2-year overall survival (OS2yr) with radiotherapy (RT) dose, dose-per-fraction, treatment duration and chemotherapy use, in data compiled from prospective trials of RT and chemo-RT (CRT) for locally-advanced non-small cell lung cancer (LA-NSCLC). MATERIAL AND METHODS OS2yr data was analysed for 6957 patients treated on 68 trial arms (21 RT-only, 27 sequential CRT, 20 concurrent CRT) delivering doses-per-fraction ≤4.0 Gy. An initial model considering dose, dose-per-fraction and RT duration was fitted using maximum-likelihood techniques. Model extensions describing chemotherapy effects and survival-limiting toxicity at high doses were assessed using likelihood-ratio testing, the Akaike Information Criterion (AIC) and cross-validation. RESULTS A model including chemotherapy effects and survival-limiting toxicity described the data significantly better than simpler models (p < 10-14), and had better AIC and cross-validation scores. The fitted α/β ratio for LA-NSCLC was 4.0 Gy (95%CI: 2.8-6.0 Gy), repopulation negated 0.38 (95%CI: 0.31-0.47) Gy EQD2/day beyond day 12 of RT, and concurrent CRT increased the effective tumour EQD2 by 23% (95%CI: 16-31%). For schedules delivered in 2 Gy fractions over 40 days, maximum modelled OS2yr for RT was 52% and 38% for stages IIIA and IIIB NSCLC respectively, rising to 59% and 42% for CRT. These survival rates required 80 and 87 Gy (RT or sequential CRT) and 67 and 73 Gy (concurrent CRT). Modelled OS2yr rates fell at higher doses. CONCLUSIONS Fitted dose-response curves indicate that gains of ~10% in OS2yr can be made by escalating RT and sequential CRT beyond 64 Gy, with smaller gains for concurrent CRT. Schedule acceleration achieved via hypofractionation potentially offers an additional 5-10% improvement in OS2yr. Further 10-20% OS2yr gains might be made, according to the model fit, if critical normal structures in which survival-limiting toxicities arise can be identified and selectively spared.
Collapse
Affiliation(s)
- Michael G Nix
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, United Kingdom.
| | - Carl G Rowbottom
- Department of Physics, Clatterbridge Cancer Centre, Wirral, United Kingdom; Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool, United Kingdom
| | - Sindu Vivekanandan
- Guy's Hospital Cancer Centre, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Maria A Hawkins
- Department of Oncology, University of Oxford, United Kingdom
| | - John D Fenwick
- Department of Physics, Clatterbridge Cancer Centre, Wirral, United Kingdom; Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, United Kingdom
| |
Collapse
|
11
|
Tsiambas E, Lefas AY, Georgiannos SN, Ragos V, Fotiades PP, Grapsa D, Stamatelopoulos A, Kavantzas N, Patsouris E, Syrigos K. EGFR gene deregulation mechanisms in lung adenocarcinoma: A molecular review. Pathol Res Pract 2016; 212:672-7. [PMID: 27461822 DOI: 10.1016/j.prp.2016.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/22/2016] [Accepted: 06/15/2016] [Indexed: 12/26/2022]
Abstract
For the last two decades, evolution in molecular biology has expanded our knowledge in decoding a broad spectrum of genomic imbalances that progressively lead normal cells to a neoplastic state and finally to complete malignant transformation. Concerning oncogenes and signaling transduction pathways mediated by them, identification of specific gene alterations remains a critical process for handling patients by applying targeted therapeutic regimens. The epidermal growth factor receptor (EGFR) signaling pathway plays a crucial role in regulating cell proliferation, differentiation and apoptosis in normal cells. EGFR mutations and amplification represent the gene's main deregulation mechanisms in cancers of different histo-genetic origin. Furthermore, intra-cancer molecular heterogeneity due to clonal rise and expansion mainly explains the variable resistance to novel anti-EGFR monoclonal antibody (mAb), and also tyrosine kinase inhibitors (TKIs). According to recently published 2015 WHO new classification, lung cancer is the leading cause of death related to cancer and its incidence is still on the increase worldwide. The majority of patients suffering from lung cancer are diagnosed with epithelial tumors (adenocarcinoma predominantly and squamous cell carcinoma represent ∼85% of all pathologically defined lung cancer cases). In those patients, EGFR-activating somatic mutations in exons 18/19/20/21 modify patients' sensitivity (i.e. exon 21 L858R, exon 19 LREA deletion) or resistance (ie exon 20 T790M and/or insertion) to TKI mediated targeted therapeutic strategies. Additionally, the role of specific micro-RNAs that affect EGFR regulation is under investigation. In the current review, we focused on EGFR gene/protein structural and functional aspects and the corresponding alterations that occur mainly in lung adenocarcinoma to critically modify its molecular landscape.
Collapse
Affiliation(s)
- Evangelos Tsiambas
- Dept of IHC & Mol Biology, 401 GAH, Athens, Greece; Dept of Pathology, Medical School, University of Athens, Greece.
| | | | | | - Vasileios Ragos
- Dept of Maxillofacial, School of Medicine, University of Ioannina, Greece
| | | | - Dimitra Grapsa
- 3rd Dept of Medicine, Athens School of Medicine, "Sotiria" General Hospital, Athens, Greece
| | | | | | | | - Konstantinos Syrigos
- 3rd Dept of Medicine, Athens School of Medicine, "Sotiria" General Hospital, Athens, Greece
| |
Collapse
|