1
|
Bin Y, Ding Y, Xiao W, Liao A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin Chim Acta 2020; 504:98-108. [PMID: 31981586 DOI: 10.1016/j.cca.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The Ras association domain family 1 isoform A (RASSF1A), a tumor suppressor, regulates several tumor-related signaling pathways and interferes with diverse cellular processes. RASSF1A is frequently demonstrated to be inactivated by hypermethylation in numerous types of solid cancers. It is also associated with lymph node metastasis, vascular invasion, and chemo-resistance. Therefore, reactivation of RASSF1A may be a viable strategy to block tumor progress and reverse drug resistance. In this review, we have summarized the clinical value of RASSF1A for screening, staging, and therapeutic management of human malignancies. We also highlighted the potential mechanism of RASSF1A in chemo-resistance, which may help identify novel drugs in the future.
Collapse
Affiliation(s)
- Yuling Bin
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Yong Ding
- Department of Vascular Surgery, Zhongshan Hospital, Institue of Vascular Surgery, Fudan University, Shanghai 200032, China
| | - Weisheng Xiao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Aijun Liao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Nikbakht Dastjerdi M, Azarnezhad A, Hashemibeni B, Salehi M, Kazemi M, Babazadeh Z. An Effective Concentration of 5-Aza-CdR to Induce Cell Death and Apoptosis in Human Pancreatic Cancer Cell Line through Reactivating RASSF1A and Up-Regulation of Bax Genes. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:533-540. [PMID: 30214106 PMCID: PMC6123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Promoter hyper-methylation of tumor suppressor genes is a common event that occurs in cancer. As methylation is a reversible modification, agents capable of reversing an abnormal methylation status should help to combat cancer. 5-Aza-CdR is a DNA methyl-transferase inhibitor. The present study aimed to evaluate the effect of 5-Aza-CdR on the proliferation of human pancreatic cancer cell line (PANC-1) and the expression of RASSF1A and Bax genes. METHODS PANC-1 cells were cultured and treated with 5 and 10 µM/L of 5-Aza-CdR for 24, 48, 72, and 96 hours and the percentages of cell viability and apoptosis were measured by MTT and flow cytometry. RASSF1A gene promoter methylation was assessed by methyl-specific primer-PCR (MSP-PCR) and the expression of RASSF1A and Bax genes was measured using quantitative real-time PCR (qPCR). All quantitative data are presented as mean±SD (standard deviation). The one-way analysis of variance (ANOVA) with the LSD post hoc test was performed for statistical analysis using the SPSS software package, version 16.0. RESULTS 3-[4,5-dimethythiaziazol-2yl]-2,5-diphenyl tetrazoliumbr omide (MTT) assay revealed that 5-Aza-CdR significantly inhibit the growth and proliferation of PANC-1. The flow cytometry results showed over 40% and 70% of early and late apoptotic cells after treatment with 5 and 10 µm/L of 5-Aza-CdR, respectively. MSP-PCR data indicated that the treatment of cells with 10 µm/L 5-Aza-CdR resulted in partial demethylation of RASSF1A gene promoter. qPCR results showed significant re-expression of RASSF1A and up-regulation of Bax genes after 96 hours treatment of cells with 10 µm/L 5-Aza-CdR versus control cells (P<0.01). CONCLUSION The result demonstrated that 5 and 10 µM of 5-Aza-CdR induce cell death and apoptosis by epigenetic reactivation of RASSF1A and up-regulation of Bax genes.
Collapse
Affiliation(s)
- Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Asaad Azarnezhad
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran;
,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran;
| | - Batool Hashemibeni
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Mansour Salehi
- Department of Molecular Biology, Isfahan University of Medical Science, Iran;
| | - Mohammad Kazemi
- Department of Molecular Biology, Isfahan University of Medical Science, Iran;
| | - Zahra Babazadeh
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
,Department of Anatomical Sciences, Faculty of Medicine, Babol University of MedicalSciences, Babol, Iran
| |
Collapse
|
3
|
Difference in DNA methylation levels of gastric c-myc, p16, and hMLH1among traditional Chinese medical syndromes for chronic atrophic gastritis. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Lina M, Changan W, Qing Z. Runt-related Transcription Factor 3 Promoter Hypermethylation and Gastric Cancer Risk: A Meta-analysis. Open Life Sci 2018; 13:64-70. [PMID: 33817069 PMCID: PMC7874703 DOI: 10.1515/biol-2018-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/08/2018] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the correlation between runt-related transcription factor 3 (RUNX3) gene promoter hypermethylation and gastric cancer risk by meta-analysis. METHODS By searching Medline, PubMed, Embase, Cochrane, Ovid and CNKI electronic databases, the open published studies about the association between RUNX3 gene promoter hypermethylation and gastric cancer risk were screened. The hypermethylation rate in cancer tissue and autologous control tissue (normal gastric tissue of gastric cancer patients) were extracted from each included study. The odds ratio (OR) and corresponding 95% confidence interval (95% CI) of RUNX3 gene promoter hypermethylation in cancer tissue versus autologous control tissue of gastric cancer patients were pooled with random or fixed effect models. The publication bias was evaluated by Begg's funnel plot and Egger's line regression test. RESULTS Finally, twenty three relevant studies were included in this meta-analysis. The hypermethylation rate in cancer tissue and autologous control tissue of gastric cancer patients were 0.56±0.16 and 0.18±0.22 respectively, which demonstrated a hypermethylation rate in cancer tissue significantly higher than that of autologous controls (P<0.05). A significant positive correlation of hypermethylation rate between cancer tissue and autologous control existed for the included 23 studies(rpearson =0.62, P<0.05). For significant heterogeneity across the studies, the OR was pooled by random effects model. The combined OR was 8.06 with the 95% CI of 5.73~11.32, which indicated the hypermethylation frequency in cancer tissue was higher than that of autologous controls. CONCLUSION The RUNX3 gene promoter hypermethylation rate was much higher in cancer tissue than that of normal gastric tissue in patients with gastric cancer, which indicates a close association between gastric cancer and RUNX3 gene promoter hypermethylation. Furthermore, RUNX3 gene promoter hypermethylation may be a potential biomarker for gastric cancer diagnosis.
Collapse
Affiliation(s)
- Mei Lina
- Department of Medicine, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang Province 313000, China
| | - Wu Changan
- Department of Medicine, Traditional Chinese Medicine of Huzhou City, Huzhou Zhejiang Province 313000, China
| | - Zhao Qing
- Department of Medicine, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang Province 313000, China
| |
Collapse
|
5
|
Liao A, Tan G, Chen L, Zhou W, Hu H. RASSF1A inhibits gastric cancer cell proliferation by miR-711- mediated downregulation of CDK4 expression. Oncotarget 2016; 7:5842-51. [PMID: 26735582 PMCID: PMC4868725 DOI: 10.18632/oncotarget.6813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/05/2015] [Indexed: 01/08/2023] Open
Abstract
Although interaction with DNA repair proteins has demonstrated that RASSF1A is a tumour suppressor gene, much attention has been directed in recent years towards its roles in regulating the cell cycle. However, the precise mechanism remains unclear. Uncovering how RASSF1A participates in regulating the cell cycle is critical to exploring effective therapeutic targets for gastric cancer. Here we show that RASSF1A could regulate 14 miRNAs’ expression in the typical human gastric cancer line SGC-7901, of which miR-711 was upregulated the most. Moreover, for SGC-7901 cells, miR-711 was found to downregulate CDK4 expression, and to arrest the cell cycle in the G1 phase. Our results suggest that RASSF1A inhibits the proliferation of gastric cancer cells by upregulating the expression of miR-711, which arrested gastric cancer cells in the G1 phase by downregulating expression of CDK4. This finding might provide us with a novel therapeutic target for gastric cancer by increasing RASSF1A expression via miR-711 regulation.
Collapse
Affiliation(s)
- Aijun Liao
- Department of Gastroenterology, The First Affiliated Hospital of South China University, Hengyang, Hunan Province, China.,Gastric Cancer Research Center of Hunan Province, Hunan, China
| | - Gao Tan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Chen
- Department of Gastroenterology, The First Affiliated Hospital of South China University, Hengyang, Hunan Province, China
| | - Weiwei Zhou
- Department of Gastroenterology, The First Affiliated Hospital of South China University, Hengyang, Hunan Province, China
| | - Hongsai Hu
- Department of Gastroenterology, The First Affiliated Hospital of South China University, Hengyang, Hunan Province, China
| |
Collapse
|
6
|
Boyanapalli SSS, Li W, Fuentes F, Guo Y, Ramirez CN, Gonzalez XP, Pung D, Kong ANT. Epigenetic reactivation of RASSF1A by phenethyl isothiocyanate (PEITC) and promotion of apoptosis in LNCaP cells. Pharmacol Res 2016; 114:175-184. [PMID: 27818231 DOI: 10.1016/j.phrs.2016.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022]
Abstract
Epigenetic silencing of tumor suppressor genes is a phenomenon frequently observed in multiple cancers. Ras-association domain family 1 isoform A (RASSF1A) is a well-characterized tumor suppressor that belongs to the Ras-association domain family. Several studies have demonstrated that hypermethylation of the RASSF1A promoter is frequently observed in lung, prostate, and breast cancers. Phenethyl isothiocyanate (PEITC), a phytochemical abundant in cruciferous vegetables, possesses chemopreventive activities; however, its potential involvement in epigenetic mechanisms remains elusive. The present study aimed to examine the role of PEITC in the epigenetic reactivation of RASSF1A and the induction of apoptosis in LNCaP cells. LNCaP cells were treated for 5days with 0.01% DMSO, 2.5 or 5μM PETIC or 2.5μM azadeoxycytidine (5-Aza) with 0.5μM trichostatin A (TSA). We evaluated the effects of these treatments on CpG demethylation using methylation-specific polymerase chain reaction (MSP) and bisulfite genomic sequencing (BGS). CpG demethylation was significantly enhanced in cells treated with 5μM PEITC and 5-Aza+TSA; therefore, the latter treatment was used as a positive control in subsequent experiments. The decrease in RASSF1A promoter methylation correlated with an increase in expression of the RASSF1A gene in a dose-dependent manner. To confirm that promoter demethylation was mediated by DNA methyltransferases (DNMTs), we analyzed the expression levels of DNMTs and histone deacetylases (HDACs) at the gene and protein levels. PEITC reduced DNMT1, 3A and 3B protein levels in a dose-dependent manner, and 5μM PEITC significantly reduced DNMT3A and 3B protein levels. HDAC1, 2, 4 and 6 protein expression was also inhibited by 5μM PEITC. The combination of 5-Aza and TSA, a DNMT inhibitor and a HDAC inhibitor, respectively, was used as a positive control as this treatment significantly inhibited both HDACs and DNMTs. The function of RASSF1A reactivation in promoting apoptosis and inducing G2/M cell cycle arrest was analyzed using flow-cytometry analysis with Annexin V and propidium iodide (PI). Growth inhibition effect on LNCaP cells were investigated by colony formation assay. In addition, we analyzed p21, caspase-3 and 7, Bax, and Cyclin B1 protein levels. Flow-cytometry analysis of cells stained with PI alone demonstrated that 5μM PEITC promotes early apoptosis and G2/M cell cycle arrest. Flow cytometry analysis of cells stained with Annexin V and PI also demonstrated an increased proportion of cells in early apoptosis in cells treated with 5μM PEITC or 5-Aza with TSA. PEITC and efficiently inhibit colony numbers and total area. In addition, 5μM PEITC significantly enhanced p21, caspase-3, 7 and Bax levels and reduced Cyclin B1 expression compared with the control group. Collectively, the results of our study suggest that PEITC induces apoptosis in LNCaP cells potentially by reactivating RASSF1A via epigenetic mechanisms.
Collapse
Affiliation(s)
- Sarandeep S S Boyanapalli
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Wenji Li
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Francisco Fuentes
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Yue Guo
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Christina N Ramirez
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Ximena-Parades Gonzalez
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Douglas Pung
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road Piscataway, NJ, 08854, United States.
| |
Collapse
|
7
|
El-Araby AM, Fouad AA, Hanbal AM, Abdelwahab SM, Qassem OM, El-Araby ME. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises. Arch Pharm (Weinheim) 2016; 349:73-90. [PMID: 26754591 DOI: 10.1002/ardp.201500375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed.
Collapse
Affiliation(s)
- Amr M El-Araby
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Amr M Hanbal
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Omar M Qassem
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | - Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanya, Jeddah, Saudi Arabia.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
8
|
JOO MOONKYUNG, KIM KEYHYEON, PARK JONGJAE, YOO HYOSOON, CHOE JUNGWAN, KIM HYOJUNG, LEE BEOMJAE, KIM JAESEON, BAK YOUNGTAE. CpG island promoter hypermethylation of Ras association domain family 1A gene contributes to gastric carcinogenesis. Mol Med Rep 2014; 11:3039-46. [DOI: 10.3892/mmr.2014.3055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 11/20/2014] [Indexed: 11/06/2022] Open
|
9
|
Beta M, Chitipothu S, Khetan V, Biswas J, Krishnakumar S. Hypermethylation of adenomatosis polyposis coli-2 and its tumor suppressor role in retinoblastoma. Curr Eye Res 2014; 40:719-28. [PMID: 25207834 DOI: 10.3109/02713683.2014.954673] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Retinoblastoma (RB) is a progressive eye cancer of infancy and childhood. Hypermethylation, epigenetic silencing of genes is one of the key events in tumorigenesis. The purpose of this study is to investigate hypermethylation of adenomatosis polyposis coli homologue, APC-2 and possible interaction of APC-2 with Wnt signaling β-catenin protein in Retinoblastoma. METHODOLOGY Primary RB tumor samples and cell line were used for the study. DNA isolation, bisulfite conversion, methylation specific PCR and DNA sequencing analysis of PCR products were performed to identify CpG islands and methylation in primary RB tumor samples (n = 30). Chemical demethylation and retrieval of APC-2 expression was studied using 5-Azacytidine (5'-AZC). Flow cytometry, immunofluorescence, western blot were performed for APC-2 expression analysis in demethylated Y79 cells. Co-localization study was conducted to understand the interaction between APC-2 and β-catenin. RESULTS APC-2 gene was methylated and down regulated in primary RB tumors. We observed that 70% of RB tumors (21/30) showed positivity with APC-2 methylation. The RB Y79 cells after treatment with demethylating agent 5'-AZC retrieved APC-2 expression, which was confirmed by immunofluorescence and Western blot. Flow cytometry showed APC-2 expression of 29.22% in 5'-AZC treated cells. Co-localization study showed interaction of APC-2 and RB upregulated β-catenin in Y79 cells. CONCLUSION We report that APC-2 gene is hypermethylated in both RB tumor samples and Y79 cells. Reduced APC-2 lead to increased Wnt signaling pathway protein, β-catenin suggesting tumor suppressive role of APC-2 gene.
Collapse
Affiliation(s)
- Madhu Beta
- L & T Ocular Pathology Department, Vision Research Foundation , Chennai, Tamil Nadu , India
| | | | | | | | | |
Collapse
|
10
|
Wang Y, Huang LH, Xu CX, Xiao J, Zhou L, Cao D, Liu XM, Qi Y. Connexin 32 and 43 promoter methylation in Helicobacter pylori-associated gastric tumorigenesis. World J Gastroenterol 2014; 20:11770-9. [PMID: 25206281 PMCID: PMC4155367 DOI: 10.3748/wjg.v20.i33.11770] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/11/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the mechanism of abnormal Connexin (Cx) 32 and Cx43 expression in the gastric mucosa after Helicobacter pylori (H. pylori) infection. METHODS Biopsy specimens of gastric mucosa in different gastric carcinogenesis stages with H. pylori infection, that is, non-atrophic gastritis (NAG; n = 24), chronic atrophic gastritis (CAG; n = 25), intestinal metaplasia (IM; n = 28), dysplasia (DYS; n = 24), and gastric cancer (GC; n = 30), as well as specimens of normal gastric mucosa without H. pylori infection (NGM; n = 25), were confirmed by endoscopy and pathological examination. Cx32 and Cx43 mRNA expression was detected by real-time polymerase chain reaction (PCR). Cx32 and Cx43 promoter CpG island methylation status was determined by methylation-specific PCR (MSP), bisulfite PCR sequencing (BSP) and MassArray methods. RESULTS The relative mRNA expression levels in the gastric mucosa of patients with NGM, NAG, CAG, IM, DYS and GC were 0.146 ± 0.011, 0.133 ± 0.026, 0.107 ± 0.035, 0.039 ± 0.032, 0.037 ± 0.01 and 0.03 ± 0.011 for Cx32; and 0.667 ± 0.057, 0.644 ± 0.051, 0.624 ± 0.049, 0.555 ± 0.067, 0.536 ± 0.058 and 0.245 ± 0.121 for Cx43, respectively, which were gradually decreasing and significantly different (GC vs NGM: P < 0.001 for Cx32, P < 0.001 for Cx43). The promoter methylation levels in the gastric mucosa from NGM to GC stages by MSP were 38.8% ± 9.0%, 43.1% ± 9.4%, 56.5% ± 3.1%, 64.4% ± 9.7%, 72.5% ± 4.2% and 79.6% ± 6.8% for Cx32; and 49.0% ± 3.9%, 58.1% ± 5.0%, 66.5% ± 7.9%, 74.0% ± 8.8%, 78.3% ± 3.6% and 88.7% ± 6.2% for Cx43, respectively, which were gradually increasing and significantly different (P = 0.039, P = 0.019). The promoter methylation levels by BSP and MassArray exhibited similar trends. Cx32 and Cx43 mRNA expression was negatively correlated with promoter methylation status and gastric carcinogenesis stages (P < 0.001, P = 0.016). CONCLUSION Cx32 and Cx43 mRNA expression decreased gradually during H. pylori infection-associated gastric carcinogenesis, and it is associated with hypermethylation of these genes' promoter.
Collapse
|
11
|
Dastjerdi MN, Babazadeh Z, Salehi M, Hashemibeni B, Kazemi M. Comparison of the anti-cancer effect of Disulfiram and 5-Aza-CdR on pancreatic cancer cell line PANC-1. Adv Biomed Res 2014; 3:156. [PMID: 25221759 PMCID: PMC4162084 DOI: 10.4103/2277-9175.137866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 02/02/2014] [Indexed: 01/31/2023] Open
Abstract
Background: Pancreatic cancer has poor prognosis by surgical and chemotherapy when it is diagnosed, so other anti-cancerous assistant therapeutic drugs are suggested e.g. epigenetic reversal of tumor-suppressor genes on promoter hypermethylation. 5-Aza-CdR is a nucleoside analog of DNMTi but it has long-term cytotoxicity effects. This study compares the anticancer effect of 5-Aza-CdR and Disulfiram potencies on PANC-1 cell line and up-regulation of p21. Materials and Methods: PANC-1 cell line was cultured in DMEM high glucose and treated by 5-Aza-CdR with 5 and 10 μM concentration for four days and 13 μM DSF (Diulfiram) for 24 hours. MS-PCR and RT-PCR were carried out to detect the methylation pattern and estimate the mRNA expression of RASSF1A and p21 in PANC-1. Result: MS-PCR demonstrated partial unmethylation after treatment with 5-Aza-CdR while there was no unmethylated band after DSF treatment. RT-PCR showed significant differences between re-expression of RASSF1A before and after treatment with 10 μM 5-Aza-CdR (P < 0.01) but not after treatment with 13 μM DSF (P > 0.05). The significant correlation was observed between RASSF1A re-expression and p21 up-regulation before and after treatment with 10 μM 5-Aza-CdR (P < 0.01) but not after treatment with 13 μM DSF (P > 0.05), while p21 up-regulation was significantly higher after DSF treatment (P < 0.01). Conclusion: Our findings indicated that 5-Aza-CdR induces the re-expression of RASSF1A and p21 up-regulation in PANC-1. DSF showed no epigenetic reversion while it affected p21 up-regulation.
Collapse
Affiliation(s)
- Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Babazadeh
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Salehi
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Xiang J, Luo F, Chen Y, Zhu F, Wang J. si-DNMT1 restore tumor suppressor genes expression through the reversal of DNA hypermethylation in cholangiocarcinoma. Clin Res Hepatol Gastroenterol 2014; 38:181-9. [PMID: 24361215 DOI: 10.1016/j.clinre.2013.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/10/2013] [Accepted: 11/15/2013] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The aim of our study was to evaluate the effect of shorthairpin RNA plasmid vector knockdown of human DNA methyltransferase 1 on proliferation and the methylation status and expression of tumor suppressor genes in hilar cholangiocarcinoma. METHODS The hilar cholangiocarcinoma cell line QBC939 was utilized for this study. QBC939 cells were transfected with a shorthairpin RNA plasmid vector targeting human DNA methyltransferase 1. Control and human DNA methyltransferase 1 shorthairpin RNA plasmid vector-transfected cells were collected at different time points, and the expression levels of human DNA methyltransferase 1 and tumor suppressor genes (cyclin-dependent kinase inhibitor 2B, cyclin-dependent kinase inhibitor 2A, RAS association domain family 1, and cadherin-1) were detected by reverse transcription-polymerase chain reaction. Furthermore, interfering efficiency was confirmed by Western blotting. The methylation status of tumor suppressor genes was detected using methylation-specific polymerase chain reaction. Furthermore, the effect of human DNA methyltransferase 1 knockdown on proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS Targeted gene knockout of human DNA methyltransferase 1 restored the expression levels of tumor suppressor genes cyclin-dependent kinase inhibitor 2B, cyclin-dependent kinase inhibitor 2A, RAS association domain family 1, and cadherin-1, indicating that the silencing of these tumor suppressor genes is associated with promoter hypermethylation. In addition, knockdown of human DNA methyltransferase 1 expression significantly inhibited the proliferation of QBC939 cells. CONCLUSIONS Targeted knockdown of human DNA methyltransferase 1 expression restores the expression levels of tumor suppressor genes, thus inhibiting the proliferation of QBC939 cells. These results may provide insight for the development of novel therapies for cholangiocarcinoma.
Collapse
Affiliation(s)
- Jifeng Xiang
- Department of Hepatobiliary Sugery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Fang Luo
- Department of Hepatobiliary Sugery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yong Chen
- Department of Hepatobiliary Sugery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Fangyu Zhu
- Department of Hepatobiliary Sugery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jiming Wang
- Department of Hepatobiliary Sugery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Chen C, Wang L, Liao Q, Huang Y, Ye H, Chen F, Xu L, Ye M, Duan S. Hypermethylation of EDNRB promoter contributes to the risk of colorectal cancer. Diagn Pathol 2013; 8:199. [PMID: 24326135 PMCID: PMC4029727 DOI: 10.1186/1746-1596-8-199] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/06/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is one of the most common digestive malignancies in the world. EDNRB is a new candidate tumor suppressor gene which is often down-regulated or even silenced by promoter hypermethylation in various human cancers. However, the function of EDNRB gene in CRC remains unknown. In this study, we examined the expression and DNA methylation of EDNRB in CRC tissues. METHODS A total of 42 paired CRC and adjacent normal tissue samples were used to determine mRNA levels and DNA methylation status of EDNRB gene by qRT-PCR and methylation-specific PCR (MSP), respectively. RESULTS Our study showed that EDNRB promoter hypermethylation was more frequently in CRC tissues than in the normal tissues (92.86 versus 59.52, p = 0.001). Consequently, significantly lower level of EDNRB mRNA was found in CRC tumor samples than in normal samples (0.31 ± 0.91 versus 0.70 ± 1.18, p = 0.032). CONCLUSIONS Our results suggested that EDNRB promoter hypermethylation might downregulate its gene expression in CRC, and thus played an important role in the development of CRC. THE VIRTUAL SLIDE The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7420980471113303.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Meng Ye
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | | |
Collapse
|
14
|
FIOLKA ROMAN, ZUBOR PAVOL, JANUSICOVA VERONIKA, VISNOVSKY JOZEF, MENDELOVA ANDREA, KAJO KAROL, LASABOVA ZORA, PLANK LUKAS, DANKO JAN. Promoter hypermethylation of the tumor-suppressor genes RASSF1A, GSTP1 and CDH1 in endometrial cancer. Oncol Rep 2013; 30:2878-86. [DOI: 10.3892/or.2013.2752] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/24/2013] [Indexed: 11/05/2022] Open
|
15
|
Chang X, Li Z, Ma J, Deng P, Zhang S, Zhi Y, Chen J, Dai D. DNA methylation of NDRG2 in gastric cancer and its clinical significance. Dig Dis Sci 2013; 58:715-23. [PMID: 23010743 DOI: 10.1007/s10620-012-2393-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric cancer is one of the most common digestive malignancies worldwide. N-myc downstream-regulated gene 2 (NDRG2) is a differentiation-related gene that is considered to be a metastasis suppressor gene. In this study, we examined the expression and DNA methylation of NDRG2 in gastric cancer cell lines and tissues, as well as its clinical significance. METHODS Six gastric cancer cell lines and 42 paired normal and gastric cancer tissue samples were used to assess NDRG2 mRNA expression using RT-PCR. NDRG2 DNA methylation status was evaluated by methylation-specific PCR (MSP) in gastric cancer cell lines and tissues. The suppression of NDRG2 in BGC823 cells by siRNA transfection was utilized to detect the role of NDRG2 in gastric cancer progression. RESULTS NDRG2 mRNA was down-regulated in gastric cancer cell lines and tissues, and its expression was just related to lymph node metastasis (p = 0.032). MSP showed methylation of NDRG2 in 54.0 % (47/87) of primary gastric cancer specimens and in 20.0 % (16/80) of corresponding nonmalignant gastric tissues. NDRG2 methylation was related to depth of tumor invasion, Borrmann classification and TNM stage (p < 0.05). Upon treatment with 5-aza-2'-deoxycytidine and trichostatin A, NDRG2 expression was upregulated in HGC27 cells, and demethylation of the highly metastatic cell line, MKN45, inhibited cell invasion. Furthermore, the suppression of NDRG2 by siRNA transfection enhanced BGC823 cells invasion. CONCLUSIONS Our results suggest that the aberrant methylation of NDRG2 may be mainly responsible for its downregulation in gastric cancer, and may play an important role in the metastasis of gastric cancer.
Collapse
Affiliation(s)
- Xiaojing Chang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Aberrant genes promoter methylation in neural crest-derived tumors. Int J Biol Markers 2012; 27:e389-94. [PMID: 23125005 DOI: 10.5301/jbm.2012.9766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2012] [Indexed: 11/20/2022]
Abstract
Disturbances in the epigenetic landscape by aberrant methylation of CpG islands can lead to inactivation of cancer-related genes in solid tumors. We analyzed the promoter methylation status of 6 genes previously reported as cancer-specific methylated (MCAM, SSBP2, NISCH, B4GALT1, KIF1A and RASSF1A) in 38 neural crest-derived tumors by quantitative methylation-specific real-time PCR (QMSP). The results demonstrated that the determination of the methylation status of RASSF1A is able to distinguish between normal and tumor samples in cutaneous melanomas, lung carcinoids and small bowel carcinoids. MCAM methylation levels were significantly higher in lung carcinoids tumors (p=0.001), suggesting that this alteration may represent a molecular biomarker in this tumor type.
Collapse
|
17
|
Ong TP, Moreno FS, Ross SA. Targeting the epigenome with bioactive food components for cancer prevention. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2012; 4:275-92. [PMID: 22353664 DOI: 10.1159/000334585] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic processes participate in cancer development and likely influence cancer prevention. Global DNA hypomethylation, gene promoter hypermethylation and aberrant histone post-translational modifications are hallmarks of neoplastic cells which have been associated with genomic instability and altered gene expression. Because epigenetic deregulation occurs early in carcinogenesis and is potentially reversible, intervention strategies targeting the epigenome have been proposed for cancer prevention. Bioactive food components (BFCs) with anticancer potential, including folate, polyphenols, selenium, retinoids, fatty acids, isothiocyanates and allyl compounds, influence DNA methylation and histone modification processes. Such activities have been shown to affect the expression of genes involved in cell proliferation, death and differentiation that are frequently altered in cancer. Although the epigenome represents a promising target for cancer prevention with BFCs, few studies have addressed the influence of dietary components on these mechanisms in vivo, particularly on the phenotype of humans, and thus the exact mechanisms whereby diet mediates an effect on cancer prevention remains unclear. Primary factors that should be elucidated include the effective doses and dose timing of BFCs to attain epigenetic effects. Because diet-epigenome interactions are likely to occur in utero, the impact of early-life nutrition on cancer risk programming should be further investigated.
Collapse
Affiliation(s)
- Thomas Prates Ong
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
18
|
Koutsimpelas D, Pongsapich W, Heinrich U, Mann S, Mann WJ, Brieger J. Promoter methylation of MGMT, MLH1 and RASSF1A tumor suppressor genes in head and neck squamous cell carcinoma: pharmacological genome demethylation reduces proliferation of head and neck squamous carcinoma cells. Oncol Rep 2012; 27:1135-41. [PMID: 22246327 PMCID: PMC3583513 DOI: 10.3892/or.2012.1624] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/02/2011] [Indexed: 01/19/2023] Open
Abstract
Promoter hypermethylation of tumor suppressor genes (TSGs) is a common feature of primary cancer cells. However, to date the somatic epigenetic events that occur in head and neck squamous cell carcinoma (HNSCC) tumorigenesis have not been well-defined. In the present study, we analyzed the promoter methylation status of the genes mutL homolog 1 (MLH1), Ras-association domain family member 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in 23 HNSCC samples, three control tissues and one HNSCC cell line (UM-SCC 33) using methylation-specific PCR (MSP). The expression of the three proteins was quantified by semi-quantitative immunohistochemical analysis. The cell line was treated with the demethylating agent 5-azacytidine (5-Aza) and the methylation status after 5-Aza treatment was analyzed by MSP and DNA sequencing. Proliferation was determined by Alamar blue staining. We found that the MGMT promoter in 57% of the analyzed primary tumor samples and in the cell line was hypermethylated. The MLH promoter was found to be methylated in one out of 23 (4%) tumor samples while in the examined cell line the MLH promoter was unmethylated. The RASSF1A promoter showed methylation in 13% of the tumor samples and in the cell line. MGMT expression in the group of tumor samples with a hypermethylated promoter was statistically significantly lower compared to the group of tumors with no measured hypermethylation of the MGMT promoter. After treatment of the cell line with the demethylating agent 5-Aza no demethylation of the methylated MGMT and RASSF1A genes were determined by MSP. DNA sequencing verified the MSP results, however, increased numbers of unmethylated CpG islands in the promoter region of MGMT and RASSF1A were observed. Proliferation was significantly (p<0.05) reduced after treatment with 5-Aza. In summary, we have shown promoter hypermethylation of the tumor suppressor genes MGMT and RASSF1A in HNSCC, suggesting that this epigenetic inactivation of TSGs may play a role in the development of HNSCC. 5-Aza application resulted in partial demethylation of the MGMT and RASSF1A TSGs and reduced proliferation of the tumor cells suggesting further evaluation of 5-Aza for HNSCC treatment.
Collapse
Affiliation(s)
- Dimitrios Koutsimpelas
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Fang ZL, Shen G, Hu SL, Sun YB, Xu WP, Huang DB, Jiang XD, Wang H, Huang BL. Effect of 5-Aza-2'-deoxycytidine and trichostatin A on expression and methylation of the Runx3 gene in human gastric carcinoma line SGC-7901. Shijie Huaren Xiaohua Zazhi 2011; 19:3562-3567. [DOI: 10.11569/wcjd.v19.i35.3562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of 5-Aza-2'-deoxy-citydine (5-Aza-dC) and trichostatin A (TSA) on the methylation and expression of the Runx3 gene in human gastric cancer cell line SGC-7901.
METHODS: After cultured SGC-7901 cells were treated with 5-Aza-dC and TSA, the methylation levels of the promoter region of the Runx3 gene were detected by quantitative real-time methylation-specific polymerase chain reaction (QMSP), and Runx3 mRNA and protein expression was detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively.
RESULTS: Treatment with 5-Aza-dC or TSA alone reduced the methylation levels of the promoter region of the Runx3 gene (70%, 63% vs 100%) and increased Runx3 mRNA (0.29 ± 0.01, 0.28 ± 0.03 vs 0.14 ± 0.03, both P < 0.05) and protein expression levels (0.35 ± 0.02, 0.37 ± 0.02 vs 0.09 ± 0.01, P < 0.05) compared to control cells. Treatment with 5-Aza-dC in combination with TSA could more significantly reduce Runx3 gene promoter methylation levels (37%) and increase Runx3 mRNA (0.45 ± 0.02) and protein expression levels (0.50 ± 0.01) compared to cells treated with 5-Aza-dC or TSA alone (all P < 0.05).
CONCLUSION: 5-Aza-dC and TSA can synergistically reverse Runx3 gene methylation and recover Runx3 mRNA and protein expression in SGC-7901 cells.
Collapse
|
20
|
Foltz G, Yoon JG, Lee H, Ma L, Tian Q, Hood L, Madan A. Epigenetic regulation of wnt pathway antagonists in human glioblastoma multiforme. Genes Cancer 2011; 1:81-90. [PMID: 21779426 DOI: 10.1177/1947601909356103] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Epigenetic inactivation of tumor suppressor genes is common in human cancer. Using a large-scale whole-genome approach in an earlier study, the authors identified epigenetically silenced genes with potential tumor suppressor function in glioblastoma (GBM). Three genes identified in this analysis-DKK1, SFRP1, and WIF1-are potent inhibitors of the Wnt signal transduction pathway. Here, the authors confirm decreased expression of these genes in GBM tumor tissue samples relative to nontumor brain tissue samples using real-time PCR. They then show that expression of all 3 genes is restored in T98 GBM cells by treatment with the histone deacetylase inhibitor Trichostatin A (TSA), but only DKK1 expression is restored by treatment with the demethylating agent 5-azacytidine. Bisulfite sequencing did not reveal significant methylation in the promoter region of DKK1, whereas histone acetylation and chromatin accessibility increased significantly for all 3 genes after TSA treatment. Ectopic expression of DKK1 significantly reduces colony formation and increases chemotherapy-induced apoptosis in T98 cells. Ectopic expression of the canonical Wnt pathway inhibitors WIF1 and SFRP1 shows a relative lack of response. Chronic Wnt3a stimulation only partially reverses growth suppression after DKK1 reexpression, whereas a specific inhibitor of the JNK pathway significantly reverses the effect of DKK1 reexpression on colony formation and apoptosis in T98 cells. These results support a potential growth-suppressive function for epigenetically silenced DKK1 in GBM and suggest that DKK1 restoration could modulate Wnt signaling through both canonical and noncanonical pathways.
Collapse
Affiliation(s)
- Greg Foltz
- Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Promoter hypermethylation of KiSS-1 gene in gastric cancer. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
22
|
Frequent promoter hypermethylation of the APC and RASSF1A tumour suppressors in parathyroid tumours. PLoS One 2010; 5:e9472. [PMID: 20208994 PMCID: PMC2830427 DOI: 10.1371/journal.pone.0009472] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 02/09/2010] [Indexed: 11/25/2022] Open
Abstract
Background Parathyroid adenomas constitute the most common entity in primary hyperparathyroidism, and although recent advances have been made regarding the underlying genetic cause of these lesions, very little data on epigenetic alterations in this tumour type exists. In this study, we have determined the levels of promoter methylation regarding the four tumour suppressor genes APC, RASSF1A, p16INK4A and RAR-β in parathyroid adenomas. In addition, the levels of global methylation were assessed by analyzing LINE-1 repeats. Methodology/Principal Findings The sample collection consisted of 55 parathyroid tumours with known HRPT2 and/or MEN1 genotypes. Using Pyrosequencing analysis, we demonstrate APC promoter 1A and RASSF1A promoter hypermethylation in the majority of parathyroid tumours (71% and 98%, respectively). Using TaqMan qRT-PCR, all tumours analyzed displayed lower RASSF1A mRNA expression and higher levels of total APC mRNA than normal parathyroid, the latter of which was largely conferred by augmented APC 1B transcription levels. Hypermethylation of p16INK4A was demonstrated in a single adenoma, whereas RAR-β hypermethylation was not observed in any sample. Moreover, based on LINE-1 analyses, parathyroid tumours exhibited global methylation levels within the range of non-neoplastic parathyroid tissues. Conclusions/Significance The results demonstrate that APC and RASSF1A promoter hypermethylation are common events in parathyroid tumours. While RASSF1A mRNA levels were found downregulated in all tumours investigated, APC gene expression was retained through APC 1B mRNA levels. These findings suggest the involvement of the Ras signaling pathway in parathyroid tumorigenesis. Additionally, in contrast to most other human cancers, parathyroid tumours were not characterized by global hypomethylation, as parathyroid tumours exhibited LINE-1 methylation levels similar to that of normal parathyroid tissues.
Collapse
|
23
|
Abstract
AIM: To investigate the relation between RECK methylation and clinicopathological characteristics of gastric cancer patients and evaluate the role of RECK methylation in peritoneal metastasis of gastric cancer.
METHODS: Methylation of RECK gene in 40 paired samples of gastric cancer and its corresponding adjacent normal mucosa, lymph nodes and peritoneal irrigation fluid was detected by methylation-specific polymerase chain reaction.
RESULTS: Aberrant methylation of RECK gene was detected in 27.5% (11/40) of the adjacent normal mucosa samples, in 47.5% (19/40) of gastric cancer samples, in 57.1% (12/21) of the lymph node samples, and in 35% (14/40) of peritoneal irrigation fluid samples, respectively, with a significant difference between the adjacent normal mucosa and lymph node samples (P = 0.023). Presence of RECK methylation in the primary tumor samples was significantly correlated with tumor invasion (P = 0.023). The accuracy of RECK methylation in peritoneal lavage fluid samples for the diagnosis of peritoneal metastasis of gastric cancer was 72.5% (26/40), with a sensitivity of 66.7% (6/9) and a specificity of 74.2% (23/31).
CONCLUSION: Aberrant methylation of RECK gene may provide useful information for the early diagnosis and treatment of peritoneal metastasis of gastric cancer.
Collapse
|
24
|
Qiao W, Yang XD, Wang D. Trichostatin A inhibits the growth of human gastric cancer SGC-7901 cells. Shijie Huaren Xiaohua Zazhi 2009; 17:3611-3614. [DOI: 10.11569/wcjd.v17.i35.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effects of trichostatin A (TSA) on the growth of human gastric cancer SGC-7901 cells and explore potential mechanisms involved.
METHODS: SGC-7901 cells were treated with different concentrations (0.2, 0.4 and 0.8 mg/L) of TSA for different durations (24, 48 and 72 h). Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) assay. Cell cycle distribution and apoptotic rate were detected by flow cytometry. Cell ultrastructure was observed using transmission electron microscopy (TEM).
RESULTS: SGC-7901 cells were very sensitive to TSA. TSA inhibited the growth of SGC-7901 cells in a concentration- and time-dependent manner. The reduced rates of growth in cells treated with TSA at concentrations of 0.4 and 0.8 mg/L for 72 h were significantly higher than that in cells treated with TSA at a concentration of 0.2 mg/L for the same duration (45% ± 1.4% and 73% ± 1.7% vs 25% ± 1.2%, respectively; both P < 0.05). The reduced rates of growth in cell treated with TSA at concentrations of 0.8 mg/L for 48 and 72 h were significantly higher than that in cells treated with TSA at the same concentration for 24 hours (37% ± 2.0% and 73% ± 1.7% vs 21% ± 1.1%, respectively; both P < 0.05). TSA could induce apoptosis of SGC-7901 cells. The ultrastructure changes in SGC-7901 cells treated with TSA included nuclear fragmentation, nuclear membrane rupture, membrane and organelle dissolution, and formation of vacuoles and apoptotic bodies.
CONCLUSION: TSA can inhibit cell growth and induce apoptosis in human gastric cancer cell line SGC-7901 in a concentration- and time-dependent manner.
Collapse
|
25
|
Cho HJ, Kim SY, Kim KH, Kang WK, Kim JI, Oh ST, Kim JS, An CH. The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines. World J Surg Oncol 2009; 7:49. [PMID: 19460134 PMCID: PMC2692973 DOI: 10.1186/1477-7819-7-49] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/21/2009] [Indexed: 12/31/2022] Open
Abstract
Background The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC) inhibitor, and the two agents combined on radiosensitivity in human colon and breast cancer cell lines. Methods In this study, we used RKO colorectal cancer cell line and MCF-7 breast cancer cell lines and normal colon cell lines. On each of the cell lines, we used three different agents: the HDAC inhibitor sodium butyrate(SB), the demethylating agent 5-Aza-2'-deoxycytidine(5-aza-DC), and radiation. We then estimated the percentage of the cell survival using the XTT method and experimented to determine if there was an augmentation in the therapeutic effect by using different combinations of the two or three of the treatment methods. Results After treatment of each cell lines with 5-aza-DC, SB and 6 grays of radiation, we observed that the survival fraction was lower after the treatment with 5-aza-DC or SB than with radiation alone in RKO and MCF-7 cell lines(p < 0.001). The survival fraction was lowest when the two agents, 5-aza-DC and SB were combined with radiation in both RKO and MCF-cell lines. Conclusion In conclusion, 5-aza-DC and SB can enhance radiosensitivity in both MCF-7 and RKO cell lines. The combination effect of a demethylating agent and an HDAC inhibitor is more effective than that of single agent treatment in both breast and colon cancer cell lines.
Collapse
Affiliation(s)
- Hang Joo Cho
- Department of Surgery, Uijongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Qiu XQ, Chen G, Yu HP, Hu L. Detection of RASSF1A promoter hypermethylation in plasma of patients with primary hepatocellular carcinoma and its clinical significance. Shijie Huaren Xiaohua Zazhi 2009; 17:90-93. [DOI: 10.11569/wcjd.v17.i1.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the promoter methylation of Ras association domain family 1A (RASSF1A) in the serum of HCC and to explore the significance and value of the promoter methylation of RASSF1A as a new tumor molecular marker in early stage noninvasive diagnosis of HCC.
METHODS: Promoter methylation of RASSF1A status in the serum of HCC patients (n = 35) and normal controls (n = 10) were detected by methylation-specific PCR (MSP).
RESULTS: RASSF1A promoter methylation was detected in 14 cases (40%) in the serum from 35 HCC patients, while no RASSF1A methylation was detected in 10 normal controls. No association was found between serum RASSF1A methylation and the clinicopathological parameters, such as sex, para-cirrhosis, HBV, AFP, tumor size, tumor capsular, portal vein tumor embolus or pathological grade.
CONCLUSION: The promoter methylation of RASSF1A may play an important role in tumor genesis of HCC and act as a new tumor molecular marker for HCC.
Collapse
|
27
|
Cho HJ, Park SC, Kim KW, Kang WK, Cho HM, Kim JS, Kim YA, An CH. The Combination Effect of Sodium Butyrate, 5-aza-2'-deoxycytidine on the Tumor Suppressive Activity in RKO Colorectal Cancer and MCF-7 Breast Cancer Cell Lines. JOURNAL OF THE KOREAN SURGICAL SOCIETY 2009. [DOI: 10.4174/jkss.2009.76.5.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hang Joo Cho
- Department of Surgery, The Catholic University of Korea College of Medicine, Uijeongbu, Korea
| | - Sun Cheol Park
- Department of Surgery, The Catholic University of Korea College of Medicine, Uijeongbu, Korea
| | - Kee Whan Kim
- Department of Surgery, The Catholic University of Korea College of Medicine, Uijeongbu, Korea
| | - Won Kyung Kang
- Department of Surgery, The Catholic University of Korea College of Medicine, Uijeongbu, Korea
| | - Hyun Min Cho
- Department of Surgery, The Catholic University of Korea College of Medicine, Uijeongbu, Korea
| | - Jeong Soo Kim
- Department of Surgery, The Catholic University of Korea College of Medicine, Uijeongbu, Korea
| | - Young Ae Kim
- Department of Surgery, The Catholic University of Korea College of Medicine, Uijeongbu, Korea
| | - Chang Hyeok An
- Department of Surgery, The Catholic University of Korea College of Medicine, Uijeongbu, Korea
| |
Collapse
|