1
|
Li Y, Zhang L, Wang L, Li J, Zhao Y, Liu F, Wang Q. Structure and function of type IV IRES in picornaviruses: a systematic review. Front Microbiol 2024; 15:1415698. [PMID: 38855772 PMCID: PMC11157119 DOI: 10.3389/fmicb.2024.1415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The Picornaviridae is a family of icosahedral viruses with single-stranded, highly diverse positive-sense RNA genomes. Virions consist of a capsid, without envelope, surrounding a core of RNA genome. A typical genome of picornavirus harbors a well-conserved and highly structured RNA element known as the internal ribosome entry site (IRES), functionally essential for viral replication and protein translation. Based on differences in their structures and mechanisms of action, picornaviral IRESs have been categorized into five types: type I, II, III, IV, and V. Compared with the type IV IRES, the others not only are structurally complicated, but also involve multiple initiation factors for triggering protein translation. The type IV IRES, often referred to as hepatitis C virus (HCV)-like IRES due to its structural resemblance to the HCV IRES, exhibits a simpler and more compact structure than those of the other four. The increasing identification of picornaviruses with the type IV IRES suggests that this IRES type seems to reveal strong retention and adaptation in terms of viral evolution. Here, we systematically reviewed structural features and biological functions of the type IV IRES in picornaviruses. A comprehensive understanding of the roles of type IV IRESs will contribute to elucidating the replication mechanism and pathogenesis of picornaviruses.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Lei Zhang
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Market Supervision Administration of Huangdao District, Qingdao, China
| | - Yanwei Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
AlMalki WH, Shahid I, Abdalla AN, Johargy AK, Ahmed M, Hassan S. Virological surveillance, molecular phylogeny, and evolutionary dynamics of hepatitis C virus subtypes 1a and 4a isolates in patients from Saudi Arabia. Saudi J Biol Sci 2021; 28:1664-1677. [PMID: 33732052 PMCID: PMC7938134 DOI: 10.1016/j.sjbs.2020.11.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
Hepatitis C virus (HCV) subtypes are pre-requisite to predict endemicity, epidemiology, clinical pathogenesis, diagnosis, and treatment of chronic hepatitis C infection. HCV genotypes 4 and 1 are the most prevalent in Saudi Arabia, however; less consensus data exist on circulating HCV subtypes in infected individuals. This study was aimed to demonstrate the virological surveillance, phylogenetic analysis, and evolutionary relationship of HCV genotypes 4 and 1 subtypes in the Saudi population with the rest of the world. Fifty-five clinical specimens from different parts of the country were analyzed based on 5′ untranslated region (5′ UTR) amplification, direct sequencing, and for molecular evolutionary genetic analysis. Pair-wise comparison and multiple sequence alignment were performed to determine the nucleotide conservation, nucleotide variation, and positional mutations within the sequenced isolates. The evolutionary relationship of sequenced HCV isolates with referenced HCV strains from the rest of the world was established by computing pairwise genetic distances and generating phylogenetic trees. Twelve new sequences were submitted to GenBank, NCBI database. The results revealed that HCV subtype 4a is more prevalent preceded by 1a in the Saudi population. Molecular phylogeny predicts the descendants’ relationship of subtype 4a isolates very close to Egyptian prototype HCV strains, while 1a isolates were homogeneous and clustering to the European and North American genetic lineages. The implications of this study highlight the importance of HCV subtyping as an indispensable tool to monitor the distribution of viral strains, to determine the risk factors of infection prevalence, and to investigate clinical differences of treatment outcomes among intergenotypic and intragenotypic isolates in the treated population.
Collapse
Affiliation(s)
- Waleed H AlMalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Medicine, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ayman K Johargy
- Medical Microbiology Department, Faculty of Medicine, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Muhammad Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Sajida Hassan
- Viral Hepatitis Program, Laboratory of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Vopálenský V, Khawaja A, Rožnovský L, Mrázek J, Mašek T, Pospíšek M. Characterization of Hepatitis C Virus IRES Quasispecies - From the Individual to the Pool. Front Microbiol 2018; 9:731. [PMID: 29740402 PMCID: PMC5928756 DOI: 10.3389/fmicb.2018.00731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded positive-sense RNA virus from the genus Hepacivirus. The viral genomic +RNA is 9.6 kb long and contains highly structured 5′ and 3′ untranslated regions (UTRs) and codes for a single large polyprotein, which is co- and post-translationally processed by viral and cellular proteases into at least 11 different polypeptides. Most of the 5′ UTR and an initial part of the polyprotein gene are occupied by an internal ribosome entry site (IRES), which mediates cap-independent translation of the viral proteins and allows the virus to overcome cellular antiviral defense based on the overall reduction of the cap-dependent translation initiation. We reconsidered published results concerning a search for possible correlation between patient response to interferon-based antiviral therapy and accumulation of nucleotide changes within the HCV IRES. However, we were unable to identify any such correlation. Rather than searching for individual mutations, we suggest to focus on determination of individual and collective activities of the HCV IRESs found in patient specimens. We developed a combined, fast, and undemanding approach based on high-throughput cloning of the HCV IRES species to a bicistronic plasmid followed by determination of the HCV IRES activity by flow cytometry. This approach can be adjusted for measurement of the individual HCV IRES activity and for estimation of the aggregate ability of the whole HCV population present in the specimen to synthesize viral proteins. To detect nucleotide variations in the individual IRESs, we used denaturing gradient gel electrophoresis (DGGE) analysis that greatly improved identification and classification of HCV IRES variants in the sample. We suggest that determination of the collective activity of the majority of HCV IRES variants present in one patient specimen in a given time represents possible functional relations among variant sequences within the complex population of viral quasispecies better than bare information about their nucleotide sequences. A similar approach might be used for monitoring of sequence variations in quasispecies populations of other RNA viruses in all cases when changes in primary sequence represent changes in measurable and easily quantifiable phenotypes.
Collapse
Affiliation(s)
- Václav Vopálenský
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Anas Khawaja
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Luděk Rožnovský
- Clinic of Infectious Medicine, University Hospital Ostrava, Ostrava, Czechia
| | - Jakub Mrázek
- Institute of Public Health in Ostrava, Ostrava, Czechia
| | - Tomáš Mašek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
4
|
El-Tahan RR, Ghoneim AM, Zaghloul H. 5' UTR and NS5B-based genotyping of hepatitis C virus in patients from Damietta governorate, Egypt. J Adv Res 2018; 10:39-47. [PMID: 30046475 PMCID: PMC6057237 DOI: 10.1016/j.jare.2018.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a main health problem in Egypt causing high rates of mortalities. Egypt has the highest HCV prevalence in the world, with specific HCV subtypes epidemic and circulating extensively in the country. Different antiviral therapy protocols have been implemented for treating Egyptian HCV patients. Due to the limited data about HCV in Egypt, this study aimed to genotype HCV strains circulating in the Nile Delta Damietta governorate and to investigate the variation in the nonstructural 5B (NS5B) region targeted by the newly approved antiviral drugs. Thirty HCV samples from treatment-naïve patients were genotyped by restriction fragment length polymorphism. Some samples were genotyped by direct sequencing of their 5' untranslated region (UTR) and NS5B regions. Phylogenetic analysis was also performed on the sequences of their NS5B regions. Fourteen new sequences have been deposited in the GenBank database. Results showed that subtype 4a was prevalent in addition to subtype 1g. None of the previously reported NS5B substitutions were detected in the sequenced isolates from treatment-naïve patients, which may be a good predictor for efficient treatment of HCV Egyptian patients with Sofosbuvir. Further studies on Sofosbuvir treated-HCV Egyptian patients are required to investigate whether any NS5B substitutions can confer resistance to treatment.
Collapse
Affiliation(s)
- Radwa R. El-Tahan
- Zoology Department, Faculty of Science, Damietta University, New Damietta, P.O. 34517, Damietta, Egypt
| | - Ahmed M. Ghoneim
- Zoology Department, Faculty of Science, Damietta University, New Damietta, P.O. 34517, Damietta, Egypt
| | - Hosam Zaghloul
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Shawky SM, Awad AM, Allam W, Alkordi MH, El-Khamisy SF. Gold aggregating gold: A novel nanoparticle biosensor approach for the direct quantification of hepatitis C virus RNA in clinical samples. Biosens Bioelectron 2017; 92:349-356. [PMID: 27836599 PMCID: PMC5345390 DOI: 10.1016/j.bios.2016.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022]
Abstract
The affordable and reliable detection of Hepatitis C Virus (HCV) RNA is a cornerstone in the management and control of infection, affecting approximately 3% of the global population. However, the existing technologies are expensive, labor intensive and time consuming, posing significant limitations to their wide-scale exploitation, particularly in economically deprived populations. Here, we utilized the unique optical and physicochemical properties of gold nanoparticles (AuNPs) to develop a novel assay platform shown to be rapid and robust in sensing and quantifying unamplified HCV RNA in clinical samples. The assay is based on inducing aggregation of citrate AuNPs decorated with a specific nucleic acid probe. Two types of cationic AuNPs, cysteamine and CTAB capped, were compared to achieve maximum assay performance. The technology is simple, rapid, cost effective and quantitative with 93.3% sensitivity, high specificity and detection limit of 4.57IU/µl. Finally, our data suggest that RNA folding impact the aggregation behavior of the functionalized AuNPs, with broader applications in other nucleic acid detection technologies.
Collapse
Affiliation(s)
- Sherif M Shawky
- Center of Genomics, Helmy institute, Zewail City of Science and Technology, Sheikh Zayed Dist., 12588 Giza, Egypt; Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK; Misr University for Science and Technology, Faculty of Pharmacy, Biochemistry Department, Giza, Egypt
| | - Ahmed M Awad
- Center of Genomics, Helmy institute, Zewail City of Science and Technology, Sheikh Zayed Dist., 12588 Giza, Egypt
| | - Walaa Allam
- Center of Genomics, Helmy institute, Zewail City of Science and Technology, Sheikh Zayed Dist., 12588 Giza, Egypt
| | - Mohamed H Alkordi
- Center for Materials Science, Zewail City of Science and Technology, Sheikh Zayed Dist., 12588 Giza, Egypt
| | - Sherif F El-Khamisy
- Center of Genomics, Helmy institute, Zewail City of Science and Technology, Sheikh Zayed Dist., 12588 Giza, Egypt; Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
6
|
Singh A, Mankotia DS, Irshad M. A Single-step Multiplex Quantitative Real Time Polymerase Chain Reaction Assay for Hepatitis C Virus Genotypes. J Transl Int Med 2017; 5:34-42. [PMID: 28680837 PMCID: PMC5490960 DOI: 10.1515/jtim-2017-0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The variable response of hepatitis C virus (HCV) genotypes towards anti-viral treatment requires prior information on the genotype status before planning a therapeutic strategy. Although assays for typing or subtyping of HCV are available, however, a fast and reliable assay system is still needed. The present study was planned to develop a single-step multiplex quantitative real time polymerase chain reaction (qPCR) assay to determine HCV genotypes in patients' sera. METHODS The conserved sequences from 5' UTR, core and NS5b regions of HCV genome were used to design primers and hydrolysis probes labeled with fluorophores. Starting with the standardization of singleplex (qPCR) for each individual HCV-genotype, the experimental conditions were finally optimized for the development of multiplex assay. The sensitivity and specificity were assessed both for singleplex and multiplex assays. Using the template concentration of 102 copies per microliter, the value of quantification cycle (Cq) and the limit of detection (LOD) were also compared for both singleplex and multiplex assays. Similarly, the merit of multiplex assay was also compared with sequence analysis and restriction fragment length polymorphism (RFLP) techniques used for HCV genotyping. In order to find the application of multiplex qPCR assay, it was used for genotyping in a panel of 98 sera positive for HCV RNA after screening a total number of 239 patients with various liver diseases. RESULTS The results demonstrated the presence of genotype 1 in 26 of 98 (26.53%) sera, genotype 3 in 65 (66.32%) and genotype 4 in 2 (2.04%) sera samples, respectively. One sample showed mixed infection of genotype 1 and 3. Five samples could not show the presence of any genotype. Genotypes 2, 5 and 6 could not be detected in these sera samples. The analysis of sera by singleplex and RFLP indicated the results of multiplex to be comparable with singleplex and with clear merit of multiplex over RFLP. In addition, the results of multiplex assay were also found to be comparable with those from sequence analysis. The sensitivity, specificity, Cq values and LOD values were compared and found to be closely associated both for singleplex and multiplex assays. CONCLUSION The multiplex qPCR assay was found to be a fast, specific and sensitive method that can be used as a technique of choice for HCV genotyping in all routine laboratories.
Collapse
Affiliation(s)
- Akanksha Singh
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Dhananjay Singh Mankotia
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Mohammad Irshad
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
7
|
Ashraf A, Chakravarti A, Roy P, Kar P, Siddiqui O. Frequency of nucleotide sequence variations in the internal ribosome entry site region of hepatitis C virus RNA isolated from responding and non-responding patients with hepatitis C virus genotype 3 infection. Virusdisease 2016; 27:251-259. [PMID: 28466036 PMCID: PMC5394696 DOI: 10.1007/s13337-016-0335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023] Open
Abstract
Located within 5' untranslated region of HCV RNA is internal ribosome entry site (IRES) which directs cap-independent translation of viral polyprotein. Mutations in IRES sequence have been shown to cause changes in efficiency of protein translation in vitro in few instances. No study has been done to investigate association between frequency of nucleotide sequence variations in IRES region of HCV-3 RNA and response to pegylated interferon-α plus ribavirin therapy. Hence, this study was planned to analyze relationship between frequency of nucleotide sequence variations of HCV-3 IRES region and response to therapy. Twenty-seven HCV-3 patients were studied, of whom 19 responded to therapy and 8 did not. Alanine aminotransferase and aspartate aminotransferase levels were significantly lower in responders compared to non-responders. HCV RNA detection and genotyping was performed by nested-PCR and RFLP respectively. Viral load quantification in pre and post therapy samples was done by real time PCR. The viral load was significantly lower in the patients after treatment as compared to before treatment. HCV IRES region from pre-treatment sera of 27 HCV-3 infected patients was amplified by nested PCR and sequenced. Secondary structure of IRES region of HCV-3 was predicted using the M fold Web Server. Mutational analysis revealed hot spot of mutations in HCV-3 IRES region from 40-80 and 210-280 nucleotides. Though more mutations were found in non-responders as compared to responders, this difference was statistically insignificant. Therefore, in addition to IRES region of HCV-3, some other host and viral factors may contribute to therapy outcome.
Collapse
Affiliation(s)
- Anzar Ashraf
- Virology Laboratory, Department of Microbiology, Maulana Azad Medical College, New Delhi, Delhi 110002 India
| | - Anita Chakravarti
- Virology Laboratory, Department of Microbiology, Maulana Azad Medical College, New Delhi, Delhi 110002 India
- 79, South Park Apartment, Kalkaji, New Delhi, Delhi 110019 India
| | - Priyamvada Roy
- Virology Laboratory, Department of Microbiology, Maulana Azad Medical College, New Delhi, Delhi 110002 India
| | - Premashish Kar
- Department of Medicine, Maulana Azad Medical College and Associated Lok Nayak Hospital, New Delhi, Delhi 110002 India
| | - Oves Siddiqui
- Virology Laboratory, Department of Microbiology, Maulana Azad Medical College, New Delhi, Delhi 110002 India
| |
Collapse
|
8
|
Genetic Variability of Hepatitis C Virus (HCV) 5' Untranslated Region in HIV/HCV Coinfected Patients Treated with Pegylated Interferon and Ribavirin. PLoS One 2015; 10:e0125604. [PMID: 25932941 PMCID: PMC4416933 DOI: 10.1371/journal.pone.0125604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/24/2015] [Indexed: 01/03/2023] Open
Abstract
Association between hepatitis C virus (HCV) quasispecies and treatment outcome among patients with chronic hepatitis C has been the subject of many studies. However, these studies focused mainly on viral variable regions (E1 and E2) and usually did not include human immunodeficiency virus (HIV)-positive patients. The aim of the present study was to analyze heterogeneity of the 5' untranslated region (5'UTR) in HCV/HIV coinfected patients treated with interferon and ribavirin. The HCV 5'UTR was amplified from serum and peripheral blood mononuclear cells (PBMC) samples in 37 HCV/HIV coinfected patients treated for chronic hepatitis C. Samples were collected right before treatment, and at 2, 4, 6, 8, 12, 20, 24, 36, 44, 48, 60, and 72 weeks. Heterogeneity of the 5'UTR was analyzed by single strand conformational polymorphism (SSCP), cloning and sequencing. Sustained virological response (SVR) was achieved in 46% of analyzed HCV/HIV co-infected patients. Stable SSCP band pattern was observed in 22 patients (62.9%) and SVR rate among these patients was 23%. Decline in the number of bands and/or shift in band positions were found in 6 patients (17.1%), 5 (83%) of whom achieved SVR (p=0.009). A novel viral genotype was identified in all but one of these patients. In 5 of these 6 patients a new genotype was dominant. 5'UTR heterogeneity may correlate with interferon and ribavirin treatment outcome. In the analyzed group of HCV/HIV coinfected patients, viral quasispecies stability during treatment favored viral persistence, whereas decrease in the number of variants and/or emergence of new variants was associated with SVR. Among injection drug users (IDU) patients, a new genotype may become dominant during treatment, probably due to the presence of mixed infections with various strains, which have different susceptibility to treatment.
Collapse
|
9
|
Hussein N, Zekri ARN, Abouelhoda M, Alam El-Din HM, Ghamry AA, Amer MA, Sherif GM, Bahnassy AA. New insight into HCV E1/E2 region of genotype 4a. Virol J 2014; 11:231. [PMID: 25547228 PMCID: PMC4304183 DOI: 10.1186/s12985-014-0231-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/17/2014] [Indexed: 01/21/2023] Open
Abstract
Introduction Hepatitis C virus (HCV) genome contains two envelope proteins (E1 and E2) responsible for the virus entry into the cell. There is a substantial lack of sequences covering the full length of E1/E2 region for genotype 4. Our study aims at providing new sequences as well as characterizing the genetic divergence of the E1/E2 region of HCV 4a using our new sequences along with all publicly available datasets. Methods The genomic segments covering the whole E1/E2 region were isolated from Egyptian HCV patients and sequenced. The resulting 36 sequences 36 were analyzed using sequence analysis techniques to study variability within and among hosts in the same time point. Furthermore, previously published HCV E1/E2 sequence datasets for genotype 4a were retrieved and categorized according to the geographical location and date of isolation and were used for further analysis of variability among Egyptian over a period of 15 years, also compared with non-Egyptian sequences to figure out region-specific variability. Results Phylogenetic analysis of the new sequences has shown variability within the host and among different individuals in the same time point. Analysis of the 36 sequences along with the Egyptian sequences (254 sequences in E1 in the period from 1997 to 2010 and 8 E2 sequences in the period from 2006 to 2010) has shown temporal change over time. Analysis of the new HCV sequences with the non-Egyptian sequences (182 sequences in E1 and 155 sequences in the E2) has shown region specific variability. The molecular clock rate of E1 was estimated to be 5E-3 per site per year for Egyptian and 5.38E-3 for non-Egyptian. The clock rate of E2 was estimated to be 8.48E per site per year for Egyptian and 6.3E-3 for non-Egyptian. Conclusion The results of this study support the high rate of evolution of the Egyptian HCV genotype 4a. It has also revealed significant level of genetic variability among sequences from different regions in the world. Electronic supplementary material The online version of this article (doi:10.1186/s12985-014-0231-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nehal Hussein
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Fom El-Khalig, Cairo, 11796, Egypt.
| | - Abdel-Rahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Fom El-Khalig, Cairo, 11796, Egypt.
| | - Mohamed Abouelhoda
- Faculty of Engineering, Cairo University, Giza, Egypt. .,Center for Informatics Sciences, Nile University, Giza, Egypt.
| | - Hanaa M Alam El-Din
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Fom El-Khalig, Cairo, 11796, Egypt.
| | | | - Mahmoud A Amer
- Faculty of Science, Zoology Department, Cairo University, Giza, Egypt.
| | - Ghada M Sherif
- Biostatistic & Epidemiology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Abeer A Bahnassy
- Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
10
|
Analysis of genotype 1b hepatitis C virus IRES in serum and peripheral blood mononuclear cells in patients treated with interferon and ribavirin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:175405. [PMID: 25136559 PMCID: PMC4106116 DOI: 10.1155/2014/175405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/16/2014] [Indexed: 02/05/2023]
Abstract
Hepatitis C virus (HCV) highly conserved IRES (internal ribosome entry site) sequence, localized within the 5(')-untranslated region (5(')UTR), may determine viral properties like replication efficiency and cell tropism. The aim of the present study was to characterize newly emerging 5(')UTR variants in serum and peripheral blood mononuclear cells (PBMC) in chronic hepatitis C patients treated with interferon (IFN) and ribavirin and to identify their effect on IRES secondary structures. The study group consisted of 87 patients infected with genotype 1b from whom serum and PBMC samples were collected at 9 time points (before, during, and after treatment). New 5(')UTR variants developed in 9 patients. Out of the overall 14 new variants, 9 (64%) were found in PBMC. HCV variants with decreased thermodynamic stability were identified only in PBMC and C183U mutation was the most common one in this compartment. In conclusion, antiviral treatment may favor emergence of new 5(')UTR variants both in blood and in PBMC compartments. However, variants developing in the latter compartment were predicted to have lower thermodynamic stability of the IRES secondary structures compared to serum strains. C-U change in position 183, which has not been described previously, might indicate viral adaptation to lymphoid cells.
Collapse
|
11
|
Youssef SS, Fahmy AM, Omran MH, Mohamed AS, El Desouki MA, El-Awady MK. In vitro inhibition of hepatitis C virus by antisense oligonucleotides in PBMC compared to hepatoma cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:196712. [PMID: 24991538 PMCID: PMC4058683 DOI: 10.1155/2014/196712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 12/27/2022]
Abstract
AIM To assess the efficiency of phosphorothioate antisense oligodeoxynucleotide 1 (S-ODN1) on HCV translation inhibition in PBMC compared to hepatoma cells in vitro for the first time. MATERIALS AND METHODS The study included 34 treatment naive HCV patients. IRES domain III and IV sequence variations were tested in 45 clones from 9 HCV patients. PBMC of HCV positive patients were subjected to S-ODN in vitro. Concomitantly HepG2 cells infected by the same patient's serum were also treated with S-ODN1 for 24 and 48 hours. Cellular RNA was tested for HCV plus and minus strands by reverse transcription polymerase chain reaction (RT-PCR). RESULTS Sequence variations were seen in HCV IRES domain III only while domain IV was conserved among all the tested patient's clones. S-ODN1 successfully inhibited HCV translation in HepG2 cells, while in PBMC inhibition was partial. CONCLUSION HCV IRES domain IV is more conserved than domain IIId in genotype 4 HCV patients. S-ODN against HCV IRES domain IV was not efficient to inhibit HCV translation in PBMC under the study conditions. Further studies testing other S-ODN targeting other HCV IRES domains in PBMC should be done.
Collapse
Affiliation(s)
- Samar Samir Youssef
- Microbial Biotechnology Department, National Research Center, Cairo 12311, Egypt
| | - Ahmed Mohamed Fahmy
- Reproductive Health and Family Planning Department, National Research Center, Cairo, Egypt
- INRS-Institut Armand Frappier, Laval, QC, Canada H7V 1B7
| | - Moataza Hassan Omran
- Microbial Biotechnology Department, National Research Center, Cairo 12311, Egypt
| | - Amr Saad Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | | | - Mostafa K. El-Awady
- Microbial Biotechnology Department, National Research Center, Cairo 12311, Egypt
| |
Collapse
|
12
|
Chan SW. Establishment of chronic hepatitis C virus infection: Translational evasion of oxidative defence. World J Gastroenterol 2014; 20:2785-2800. [PMID: 24659872 PMCID: PMC3961964 DOI: 10.3748/wjg.v20.i11.2785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes a clinically important disease affecting 3% of the world population. HCV is a single-stranded, positive-sense RNA virus belonging to the genus Hepacivirus within the Flaviviridae family. The virus establishes a chronic infection in the face of an active host oxidative defence, thus adaptation to oxidative stress is key to virus survival. Being a small RNA virus with a limited genomic capacity, we speculate that HCV deploys a different strategy to evade host oxidative defence. Instead of counteracting oxidative stress, it utilizes oxidative stress to facilitate its own survival. Translation is the first step in the replication of a plus strand RNA virus so it would make sense if the virus can exploit the host oxidative defence in facilitating this very first step. This is particularly true when HCV utilizes an internal ribosome entry site element in translation, which is distinctive from that of cap-dependent translation of the vast majority of cellular genes, thus allowing selective translation of genes under conditions when global protein synthesis is compromised. Indeed, we were the first to show that HCV translation was stimulated by an important pro-oxidant-hydrogen peroxide in hepatocytes, suggesting that HCV is able to adapt to and utilize the host anti-viral response to facilitate its own translation thus allowing the virus to thrive under oxidative stress condition to establish chronicity. Understanding how HCV translation is regulated under oxidative stress condition will advance our knowledge on how HCV establishes chronicity. As chronicity is the initiator step in disease progression this will eventually lead to a better understanding of pathogenicity, which is particularly relevant to the development of anti-virals and improved treatments of HCV patients using anti-oxidants.
Collapse
|
13
|
Imran M, Manzoor S, Ashraf J, Khalid M, Tariq M, Khaliq HM, Azam S. Role of viral and host factors in interferon based therapy of hepatitis C virus infection. Virol J 2013; 10:299. [PMID: 24079723 PMCID: PMC3849893 DOI: 10.1186/1743-422x-10-299] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023] Open
Abstract
The current standard of care (SOC) for hepatitis C virus (HCV) infection is the combination of pegylated interferon (PEG-IFN), Ribavirin and protease inhibitor for HCV genotype 1. Nevertheless, this treatment is successful only in 70-80% of the patients. In addition, the treatment is not economical and is of immense physical burden for the subject. It has been established now, that virus-host interactions play a significant role in determining treatment outcomes. Therefore identifying biological markers that may predict the treatment response and hence treatment outcome would be useful. Both IFN and Ribavirin mainly act by modulating the immune system of the patient. Therefore, the treatment response is influenced by genetic variations of the human as well as the HCV genome. The goal of this review article is to summarize the impact of recent scientific advances in this area regarding the understanding of human and HCV genetic variations and their effect on treatment outcomes. Google scholar and PubMed have been used for literature research. Among the host factors, the most prominent associations are polymorphisms within the region of the interleukin 28B (IL28B) gene, but variations in other cytokine genes have also been linked with the treatment outcome. Among the viral factors, HCV genotypes are noteworthy. Moreover, for sustained virological responses (SVR), variations in core, p7, non-structural 2 (NS2), NS3 and NS5A genes are also important. However, all considered single nucleotide polymorphisms (SNPs) of IL28B and viral genotypes are the most important predictors for interferon based therapy of HCV infection.
Collapse
Affiliation(s)
- Muhammad Imran
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Novel nucleotide and amino acid covariation between the 5'UTR and the NS2/NS3 proteins of hepatitis C virus: bioinformatic and functional analyses. PLoS One 2011; 6:e25530. [PMID: 21980483 PMCID: PMC3182228 DOI: 10.1371/journal.pone.0025530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/06/2011] [Indexed: 01/02/2023] Open
Abstract
Molecular covariation of highly polymorphic viruses is thought to have crucial effects on viral replication and fitness. This study employs association rule data mining of hepatitis C virus (HCV) sequences to search for specific evolutionary covariation and then tests functional relevance on HCV replication. Data mining is performed between nucleotides in the untranslated regions 5′ and 3′UTR, and the amino acid residues in the non-structural proteins NS2, NS3 and NS5B. Results indicate covariance of the 243rd nucleotide of the 5′UTR with the 14th, 41st, 76th, 110th, 211th and 212th residues of NS2 and with the 71st, 175th and 621st residues of NS3. Real-time experiments using an HCV subgenomic system to quantify viral replication confirm replication regulation for each covariant pair between 5′UTR243 and NS2-41, -76, -110, -211, and NS3-71, -175. The HCV subgenomic system with/without the NS2 region shows that regulatory effects vanish without NS2, so replicative modulation mediated by HCV 5′UTR243 depends on NS2. Strong binding of the NS2 variants to HCV RNA correlates with reduced HCV replication whereas weak binding correlates with restoration of HCV replication efficiency, as determined by RNA-protein immunoprecipitation assay band intensity. The dominant haplotype 5′UTR243-NS2-41-76-110-211-NS3-71-175 differs according to the HCV genotype: G-Ile-Ile-Ile-Gly-Ile-Met for genotype 1b and A-Leu-Val-Leu-Ser-Val-Leu for genotypes 1a, 2a and 2b. In conclusion, 5′UTR243 co-varies with specific NS2/3 protein amino acid residues, which may have significant structural and functional consequences for HCV replication. This unreported mechanism involving HCV replication possibly can be exploited in the development of advanced anti-HCV medication.
Collapse
|
15
|
Shawky SM, Bald D, Azzazy HME. Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clin Biochem 2010; 43:1163-8. [PMID: 20627095 DOI: 10.1016/j.clinbiochem.2010.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/22/2010] [Accepted: 07/01/2010] [Indexed: 12/29/2022]
Abstract
BACKGROUND Gold nanoparticles (AuNPs) exhibit a unique phenomenon known as Surface Plasmon Resonance, which is responsible for their intense red color. This color changes to blue upon aggregation of AuNPs. OBJECTIVE This work aims to develop a rapid, simple and cheap assay for direct detection of unamplified HCV RNA extracted from clinical samples using unmodified AuNPs. METHODS Serum samples were collected from healthy volunteers (n=45) and chronic HCV patients (n=30). Extracted RNA, hybridization buffer containing PBS, and a primer targeting the 5'UTR of HCV were mixed. The mixture was denatured, annealed, and then cooled to room temperature for 10 min followed by addition of AuNPs. RESULTS Salt, primer, AuNPs concentrations and annealing temperature and time were all optimized. In HCV positive specimens, the color of the solution changed from red to blue within 1 min. The assay has a sensitivity of 92%, a specificity of 88.9%, and a detection limit of 50 copies/reaction. CONCLUSIONS To our knowledge, this is the first assay that allows the detection of unamplified HCV RNA in clinical specimens using unmodified AuNPs. The developed assay is highly sensitive, has a turnaround time of 30 min, and eliminates the need for thermal cycling and detection instruments.
Collapse
Affiliation(s)
- Sherif M Shawky
- Department of Chemistry & Yousef Jameel Science & Technology Research Center, the American University in Cairo, PO Box 74 New Cairo 11835, Egypt
| | | | | |
Collapse
|
16
|
Meng S, Li J. A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control. Virol J 2010; 7:117. [PMID: 20529244 PMCID: PMC2903557 DOI: 10.1186/1743-422x-7-117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/07/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The hepatitis C virus (HCV) genome is extremely heterogeneous. Several HCV infections can not be detected using currently available commercial assays, probably because of mismatches between the template and primers/probes. By aligning the HCV sequences, we developed a duplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay using 2 sets of primers/probes and a specific armored RNA as internal control. The 2 detection probes were labelled with the same fluorophore, namely, 6-carboxyfluorescein (FAM), at the 5' end; these probes could mutually combine, improving the power of the test. RESULTS The limit of detection of the duplex primer/probe assay was 38.99 IU/ml. The sensitivity of the assay improved significantly, while the specificity was not affected. All HCV genotypes in the HCV RNA Genotype Panel for Nucleic Acid Amplification Techniques could be detected. In the testing of 109 serum samples, the performance of the duplex real-time RT-PCR assay was identical to that of the COBAS AmpliPrep (CAP)/COBAS TaqMan (CTM) assay and superior to 2 commercial HCV assay kits. CONCLUSIONS The duplex real-time RT-PCR assay is an efficient and effective viral assay. It is comparable with the CAP/CTM assay with regard to the power of the test and is appropriate for blood-donor screening and laboratory diagnosis of HCV infection.
Collapse
Affiliation(s)
- Shuang Meng
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, China
| | - Jinming Li
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, China
| |
Collapse
|
17
|
Salem ML, El-Demellawy M, El-Azm ARA. The potential use of Toll-like receptor agonists to restore the dysfunctional immunity induced by hepatitis C virus. Cell Immunol 2010; 262:96-104. [PMID: 20338549 DOI: 10.1016/j.cellimm.2010.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/02/2010] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a major public health concern with approximately 3% of the world's population is infected, posing social, economical and health burden. Less than 20% of the infected individuals clear the virus during the acute infection, while the rest develop chronic infection. The treatment of choice for HCV infection is pegylated interferon-alpha (IFN-alpha) in combination with ribavarin. Despite the cost and side effects of this treatment regimen, many patients fail this therapy and develop persistent HCV infection, leading to cirrhosis and hepatocellular carcinoma. Although the mechanisms underlying the failure to resolve HCV infection are poorly understood, the incapability of patients to develop effective anti-HCV immunity is a potential cause. We hypothesize that the dysfunctional anti-HCV immunity is due to the emergence of immunosuppressive cells coinciding with a decrease in the stimulatory dendritic cells (DCs) and natural killer (NK) cells. We further hypothesize that applying agents that can correct the imbalance between the immunosuppressive cells and stimulatory cells can results in resolution of chronic HCV. In this review article, we will discuss potential approaches, focusing on the use of Toll-like receptor agonists, to block the suppressive effects of the regulatory cells and restore the stimulatory effects of DCs and NK cells.
Collapse
MESH Headings
- Adjuvants, Immunologic/therapeutic use
- Antiviral Agents/therapeutic use
- Dendritic Cells/immunology
- Enzyme Inhibitors/therapeutic use
- Hepacivirus/immunology
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/epidemiology
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Humans
- Immunity, Innate
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Interferon-alpha/therapeutic use
- Killer Cells, Natural/immunology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Ribavirin/therapeutic use
- T-Lymphocytes, Regulatory/immunology
- Toll-Like Receptors/agonists
- Toll-Like Receptors/immunology
Collapse
Affiliation(s)
- Mohamed L Salem
- Surgery Department and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| | | | | |
Collapse
|
18
|
Viral factors influencing the response to the combination therapy of peginterferon plus ribavirin in chronic hepatitis C. J Gastroenterol 2009; 44:1009-15. [PMID: 19756352 DOI: 10.1007/s00535-009-0126-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 08/13/2009] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) is a single-stranded RNA virus known for its high genetic variability owing to the lack of a proofreading mechanism of its RNA dependent RNA polymerase. Until now, numerous studies have been undertaken to clarify the correlation between pretreatment HCV genetic variability and the therapeutic response. Even with the recent combination therapy of peginterferon plus ribavirin for chronic hepatitis C, viral response is variable, and only half of treated patients could clear the virus [sustained viral response (SVR)]. In this review, the contribution of viral genetic variability affecting the treatment outcome is discussed according to each HCV genomic region.
Collapse
|
19
|
McClelland S, Shrivastava R, Medh JD. Regulation of Translational Efficiency by Disparate 5' UTRs of PPARgamma Splice Variants. PPAR Res 2009; 2009:193413. [PMID: 20016806 PMCID: PMC2792960 DOI: 10.1155/2009/193413] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/01/2009] [Indexed: 01/11/2023] Open
Abstract
The PPAR-gamma gene encodes for at least 7 unique transcripts due to alternative splicing of five exons in the 5'-untranslated region (UTR). The translated region is encoded by exons 1-6, which are identical in all isoforms. This study investigated the role of the 5'-UTR in regulating the efficiency with which the message is translated to protein. A coupled in vitro transcription-translation assay demonstrated that PPAR-gamma1, -gamma2, and -gamma5 are efficiently translated, whereas PPAR-gamma4 and -gamma7 are poorly translated. An in vivo reporter gene assay using each 5'-UTR upstream of the firefly luciferase gene showed that the 5'-UTRs for PPAR-gamma1, -gamma2, and -gamma4 enhanced translation, whereas the 5'-UTRs for PPAR-gamma5 and -gamma7 inhibited translation. Models of RNA secondary structure, obtained by the mfold software, were used to explain the mechanism of regulation by each 5'-UTR. In general, it was found that the translational efficiency was inversely correlated with the stability of the mRNA secondary structure, the presence of base-pairing in the consensus Kozak sequence, the number of start codons in the 5'-UTR, and the length of the 5'-UTR. A better understanding of posttranscriptional regulation of translation will allow modulation of protein levels without altering transcription.
Collapse
Affiliation(s)
- Shawn McClelland
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA
| | - Roopali Shrivastava
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA
| | - Jheem D. Medh
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA
| |
Collapse
|