1
|
Disciglio V, Sanese P, Fasano C, Lotesoriere C, Valentini AM, Forte G, Lepore Signorile M, De Marco K, Grossi V, Lolli I, Cariola F, Simone C. Identification and Somatic Characterization of the Germline PTEN Promoter Variant rs34149102 in a Family with Gastrointestinal and Breast Tumors. Genes (Basel) 2022; 13:644. [PMID: 35456450 PMCID: PMC9025445 DOI: 10.3390/genes13040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic variants located in non-coding regions can affect processes that regulate protein expression, functionally contributing to human disease. Germline heterozygous mutations in the non-coding region of the PTEN gene have been previously identified in patients with PTEN hamartoma tumor syndrome (PHTS) diagnosed with breast, thyroid, and/or endometrial cancer. In this study, we report a PTEN promoter variant (rs34149102 A allele) that was identified by direct sequencing in an Italian family with a history of gastroesophageal junction (GEJ) adenocarcinoma and breast cancer. In order to investigate the putative functional role of the rs34149102 A allele variant, we evaluated the status of PTEN alterations at the somatic level. We found that PTEN protein expression was absent in the GEJ adenocarcinoma tissue of the index case. Moreover, we detected the occurrence of copy number loss involving the PTEN rs34149102 major C allele in tumor tissue, revealing that the second allele was somatically inactivated. This variant is located within an active regulatory region of the PTEN core promoter, and in silico analysis suggests that it may affect the binding of the nuclear transcription factor MAZ and hence PTEN expression. Overall, these results reveal the functional role of the PTEN promoter rs34149102 A allele variant in the modulation of PTEN protein expression and highlight its contribution to hereditary cancer risk.
Collapse
Affiliation(s)
- Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Claudio Lotesoriere
- Oncology Unit, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (C.L.); (I.L.)
| | - Anna Maria Valentini
- Department of Pathology, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy;
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Ivan Lolli
- Oncology Unit, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (C.L.); (I.L.)
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
2
|
Arumugam T, Ghazi T, Chuturgoon A. Fumonisin B 1 Epigenetically Regulates PTEN Expression and Modulates DNA Damage Checkpoint Regulation in HepG2 Liver Cells. Toxins (Basel) 2020; 12:toxins12100625. [PMID: 33007920 PMCID: PMC7601513 DOI: 10.3390/toxins12100625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Fumonisin B1 (FB1), a Fusarium-produced mycotoxin, is found in various foods and feeds. It is a well-known liver carcinogen in experimental animals; however, its role in genotoxicity is controversial. The current study investigated FB1-triggered changes in the epigenetic regulation of PTEN and determined its effect on DNA damage checkpoint regulation in human liver hepatoma G2 (HepG2) cells. Following treatment with FB1 (IC50: 200 µM; 24 h), the expression of miR-30c, KDM5B, PTEN, H3K4me3, PI3K, AKT, p-ser473-AKT, CHK1, and p-ser280-CHK1 was measured using qPCR and/or Western blot. H3K4me3 enrichment at the PTEN promoter region was assayed via a ChIP assay and DNA damage was determined using an ELISA. FB1 induced oxidative DNA damage. Total KDM5B expression was reduced, which subsequently increased the total H3K4me3 and the enrichment of H3K4me3 at PTEN promoters. Increased H3K4me3 induced an increase in PTEN transcript levels. However, miR-30c inhibited PTEN translation. Thus, PI3K/AKT signaling was activated, inhibiting CHK1 activity via phosphorylation of its serine 280 residue preventing the repair of damaged DNA. In conclusion, FB1 epigenetically modulates the PTEN/PI3K/AKT signaling cascade, preventing DNA damage checkpoint regulation, and induces significant DNA damage.
Collapse
|
3
|
Han JJ, Xue DW, Han QR, Liang XH, Xie L, Li S, Wu HY, Song B. Induction of apoptosis by IGFBP3 overexpression in hepatocellular carcinoma cells. Asian Pac J Cancer Prev 2015; 15:10085-9. [PMID: 25556430 DOI: 10.7314/apjcp.2014.15.23.10085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The insulin-like growth factor (IGF) system comprises a group of proteins that play key roles in regulating cell growth, differentiation, and apoptosis in a variety of cellular systems. The aim of this study was to investigate the role of insulin-like growth factor binding protein 3 (IGFBP3) in hepatocellular carcinoma. MATERIALS AND METHODS Expression of IGF2, IGFBP3, and PTEN was analyzed by qRT-PCR. Lentivirus vectors were used to overexpress IGFBP3 in hepatocellular carcinoma cell (HCC) lines. The effect of IGFBP3 on proliferation was investigated by MTT and colony formation assays. RESULTS Expression of IGF2, IGFBP3, and PTEN in several HCC cell lines was lower than in normal cell lines. After 5-aza-2'-deoxycytidine/trichostatin A treatment, significant demethylation of the promoter region of IGFBP3 was observed in HCC cells. Overexpression of IGFBP3 induced apoptosis and reduced colony formation in HUH7 cells. CONCLUSIONS Expression of IGF2, IGFBP3, and PTEN in several HCC cell lines was lower than in normal cell lines. After 5-aza-2'-deoxycytidine/ trichostatin A treatment, significant demethylation of the promoter region of IGFBP3 was observed in HCC cells. Overexpression of IGFBP3 induced apoptosis and reduced colony formation in HUH7 cells.
Collapse
Affiliation(s)
- Jian-Jun Han
- Department of Cancer Intervention Treatment Center, Shandong Cancer Hospital and Institute, Jinan, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
4
|
De Amicis F, Aquila S, Morelli C, Guido C, Santoro M, Perrotta I, Mauro L, Giordano F, Nigro A, Andò S, Panno ML. Bergapten drives autophagy through the up-regulation of PTEN expression in breast cancer cells. Mol Cancer 2015; 14:130. [PMID: 26148846 PMCID: PMC4498523 DOI: 10.1186/s12943-015-0403-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
Background Bergapten (5-methoxypsoralen), a natural psoralen derivative present in many fruits and vegetables, has shown antitumoral effects in a variety of cell types. In this study, it has been addressed how Bergapten in breast cancer cells induces autophagic process. Results In MCF7 and ZR-75 breast cancer cells Bergapten exhibited anti-survival response by inducing the autophagic process increasing Beclin1, PI3KIII, UVRAG, AMBRA expression and conversion of LC3-I to LC3-II. LC3-GFP, Acridine orange assay and transmission electron microscopy even confirmed the increased autophagosome formations in treated cells. Bergapten-induced autophagy is dependent by PTEN up-regulation, since silencing this gene, the induction of Beclin1 and the p-AKT/p-mTOR signal down-regulation were reversed. PTEN is transcriptionally regulated by Bergapten through the involvement of p38MAPK/NF-Y, as evidenced by the use of p38MAPK inhibitor SB203580, site-direct mutagenesis of NF-Y element and NF-Y siRNA. Furthermore NF-Y knockdown prevented Bergapten-induced acid vesicular organelle accumulations (AVOs), strengthening the role of this element in mediating autophagy. Conclusions Our data indicate PTEN as a key target of Bergapten action in breast cancer cells for the induction of autophagy. These findings add further details on the mechanism of action of Bergapten, therefore suggesting that phytochemical compounds may be implemented in the novel strategies for breast cancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0403-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy. .,Health Center, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy. .,Health Center, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Carmela Guido
- Health Center, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Marta Santoro
- Health Center, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Ida Perrotta
- Department of Biology, Ecology and Earth Science (Di.B.E.S.T.), University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Alessandra Nigro
- Department of Biology, Ecology and Earth Science (Di.B.E.S.T.), University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy. .,Health Center, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Maria L Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata di Rende, Cosenza, Italy.
| |
Collapse
|
5
|
De Amicis F, Guido C, Santoro M, Lanzino M, Panza S, Avena P, Panno ML, Perrotta I, Aquila S, Andò S. A novel functional interplay between Progesterone Receptor-B and PTEN, via AKT, modulates autophagy in breast cancer cells. J Cell Mol Med 2014; 18:2252-65. [PMID: 25216078 PMCID: PMC4224558 DOI: 10.1111/jcmm.12363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/02/2014] [Indexed: 12/20/2022] Open
Abstract
The tumour suppressor activity of the phosphatase and tensin homologue on chromosome 10 (PTEN) is subject of intense investigative efforts, although limited information on its regulation in breast cancer is available. Herein, we report that, in breast cancer cells, progesterone (OHPg), through its cognate receptor PR-B, positively modulates PTEN expression by inducing its mRNA and protein levels, and increasing PTEN-promoter activity. The OHPg-dependent up-regulation of PTEN gene activity requires binding of the PR-B to an Sp1-rich region within the PTEN gene promoter. Indeed, ChIP and EMSA analyses showed that OHPg treatment induced the occupancy of PTEN promoter by PR and Sp1 together with transcriptional coactivators such as SRC1 and CBP. PR-B isoform knockdown abolished the complex formation indicating its specific involvement. The OHPg/PR-B dependent induction of PTEN causes the down-regulation of PI3K/AKT signal, switching on the autophagy process through an enhanced expression of UVRAG and leading to a reduced cell survival. Altogether these findings highlight a novel functional connection between OHPg/PR-B and tumour suppressor pathways in breast cancer.
Collapse
Affiliation(s)
- Francesca De Amicis
- Centro Sanitario, University of Calabria, Arcavacata di Rende (CS), Italy; Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Saha P, Ghosh I, Datta K. Increased hyaluronan levels in HABP1/p32/gC1qR overexpressing HepG2 cells inhibit autophagic vacuolation regulating tumor potency. PLoS One 2014; 9:e103208. [PMID: 25061661 PMCID: PMC4111551 DOI: 10.1371/journal.pone.0103208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022] Open
Abstract
Tumor growth and development is influenced by its microenvironment. A major extracellular matrix molecule involved in cancer progression is hyaluronan (HA). Hyaluronan and expression of a number of hyaladherin family proteins are dramatically increased in many cancer malignancies. One such hyaladherin, hyaluronan-binding protein 1 (HABP1/p32/gC1qR) has been considered to be a biomarker for tumor progression. Interestingly, overexpression of HABP1 in fibroblast has been shown to increase autophagy via generation of excess reactive oxygen species (ROS) and depletion of HA leading to apoptosis. Cancerous cells are often found to exhibit decreased rate of proteolysis/autophagy in comparison to their normal counterparts. To determine if HABP1 levels alter tumorigenicity of cancerous cells, HepR21, the stable transfectant overexpressing HABP1 in HepG2 cell line was derived. HepR21 has been shown to have increased proliferation rate than HepG2, intracellular HA cable formation and enhanced tumor potency without any significant alteration of intracellular ROS. In this paper we have observed that HepR21 cells containing higher endogenous HA levels, have downregulated expression of the autophagic marker, MAP-LC3, consistent with unaltered levels of endogenous ROS. In fact, HepR21 cells seem to have significant resistance to exogenous ROS stimuli and glutathione depletion. HepR21 cells were also found to be more resilient to nutrient starvation in comparison to its parent cell line. Decline in intracellular HA levels and HA cables in HepR21 cells upon treatment with HAS inhibitor (4-MU), induced a surge in ROS levels leading to increased expression of MAP-LC3 and tumor suppressors Beclin 1 and PTEN. This suggests the importance of HABP1 induced HA cable formation in enhancing tumor potency by maintaining the oxidant levels and subsequent autophagic vacuolation.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilora Ghosh
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (IG); (KD)
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (IG); (KD)
| |
Collapse
|
7
|
Zhong Y, Yan J, Deng M, Hu K, Yao Z, Zou Y, Xu R. Impaired phosphate and tension homologue deleted on chromosome 10 expression and its prognostic role in radical surgery for hepatocellular carcinoma with family aggregation resulting from hepatitis B and liver cirrhosis. Exp Biol Med (Maywood) 2013; 238:866-73. [PMID: 23828588 DOI: 10.1177/1535370213494654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This study aimed to retrospectively investigate the expression of the phosphate and tension homologue deleted on chromosome 10 (PTEN) protein and its prognostic role in hepatocellular carcinoma (HCC) with family aggregation resulting from hepatitis B and liver cirrhosis, which have not been established. Immunohistochemical analysis was performed to evaluate the PTEN protein expression in HCC and paired para-cancerous tissues from 79 patients with HCC caused by hepatitis B and liver cirrhosis. Of these cases, 34 represented HCC with family aggregation (HCCF group), and 45 represented HCC with no family aggregation (HCCN group). Follow-up data were collected for 3 months to 10 years and analysed for HCC recurrence, survival time and prognostic risk factors. The expression of the PTEN protein in the HCC tissue was dramatically lower in the HCCF group than in the HCCN group. The six-month, one-year and two-year overall recurrence (OR) rates of the HCCF group were significantly higher than those of the HCCN group. The one-year, two-year and five-year overall survival (OS) rates of the HCCF group were lower than those of the HCCN group. Impaired PTEN protein expression was an independent prognostic risk factor that was significantly correlated with OR and OS in HCC patients. Dramatically impaired PTEN protein expression in HCC patients with family aggregation resulting from hepatitis B and liver cirrhosis was correlated with OR and OS, and impaired PTEN expression was an independent risk factor for prognosis after radical surgery.
Collapse
Affiliation(s)
- Yuesi Zhong
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Guido C, Panza S, Santoro M, Avena P, Panno ML, Perrotta I, Giordano F, Casaburi I, Catalano S, De Amicis F, Sotgia F, Lisanti MP, Andò S, Aquila S. Estrogen receptor beta (ERβ) produces autophagy and necroptosis in human seminoma cell line through the binding of the Sp1 on the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) promoter gene. Cell Cycle 2012; 11:2911-21. [PMID: 22810004 DOI: 10.4161/cc.21336] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumors are the most common tumor in male and the least studied. We focused on human seminoma using the TCAM2 cell line. Through ERβ, 10 nM estradiol (E2) was able to induce PTEN gene expression and promoter transactivation. Transient transfections, ChIP and EMSA assays evidenced the 5'-flanking region of PTEN gene promoter E2-responsive. The ERβ binding to the Sp1 on PTEN promoter decreased cell survival. The presence of ERβ or PTEN is necessary to induce the loss of cell survival upon E2, addressing their cooperation in this action. pAKT and AKT expression decreased under E2 and DPN, while known apoptotic markers appeared to be unchanged. The PI3K/AKT pathway inhibition also leads to autophagy: E2 and DPN enhanced the expression of autophagy-related markers such as PI3III, Beclin 1, AMBRA and UVRAG. MDC and TEM assays confirmed E2-induced autophagy. The absence of DNA fragmentation, caspase 9 and PARP1 cleavages suggested that necroptosis and/or parthanatos may occur. FACS analysis, LDH assay and RIP1 expression attested this hypothesis. Our study reveals a unique mechanism through which ERβ/PTEN signaling induces cell death in TCAM2 by autophagy and necroptosis. These data, supporting estrogen-dependency of human seminoma, propose ERβ ligands for therapeutic use in the treatment of this pathological condition.
Collapse
Affiliation(s)
- Carmela Guido
- Department of Pharmaco-Biology, Post-Graduate School of Clinical Pathology, University of Calabria, Rende, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ding J, Gao Y, Liu R, Xu F, Liu H. Association ofPTENPolymorphisms with Susceptibility to Hepatocellular Carcinoma in a Han Chinese Population. DNA Cell Biol 2011; 30:229-34. [DOI: 10.1089/dna.2010.1126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jun Ding
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Yuzhen Gao
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Rengyu Liu
- Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, P.R. China
| | - Fei Xu
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Haiyan Liu
- Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, P.R. China
| |
Collapse
|
10
|
Non-genomic loss of PTEN function in cancer: not in my genes. Trends Pharmacol Sci 2011; 32:131-40. [PMID: 21236500 DOI: 10.1016/j.tips.2010.12.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 12/30/2022]
Abstract
Loss of function of the phosphatase and tensin homolog (PTEN) tumour suppressor contributes to the development of many cancers. However, in contrast to classical models of tumour suppression, partial loss of PTEN function appears to be frequently observed in the clinic. In addition, studies of both humans and mice with reductions in PTEN gene dosage indicate that even partial loss of PTEN function is sufficient to promote some cancer types, particularly in the breast. PTEN expression appears to be tightly controlled both transcriptionally and post-transcriptionally, with several recent studies implicating oncogenic microRNAs in PTEN suppression. The lipid phosphatase activity of PTEN can also be regulated post-translationally via inhibitory phosphorylation, ubiquitination or oxidation. Here we discuss these multiple mechanisms of PTEN regulation. We also put into context recent proposals that changes in this regulation can drive tumour development and address the accompanying evidence for their clinical significance.
Collapse
|
11
|
EGR1 reactivation by histone deacetylase inhibitors promotes synovial sarcoma cell death through the PTEN tumor suppressor. Oncogene 2010; 29:4352-61. [PMID: 20514024 DOI: 10.1038/onc.2010.204] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synovial sarcoma is a high-grade soft tissue malignancy, for which current cytotoxic chemotherapies provide limited benefit. Although histone deacetylase (HDAC) inhibitors are known to suppress synovial sarcoma in vitro and in vivo, the exact mechanism is not clear. In this study, we report a central role of the transcription factor, early growth response-1 (EGR1), in the regulation of HDAC inhibitor-induced apoptotic cell death in synovial sarcoma. The SS18-SSX oncoprotein, characteristic of synovial sarcoma, maintains EGR1 expression at low levels, whereas it is significantly increased after HDAC inhibitor treatment. On the contrary, EGR1 knockdown leads to a decrease in HDAC inhibitor-induced apoptosis. Moreover, we find that under these conditions phosphatase and tensin homolog deleted in chromosome 10 (PTEN) is upregulated and this occurs through direct binding of EGR1 to an element upstream of the PTEN promoter. Using a combination of gain- and loss-of-function approaches, we show that EGR1 modulation of PTEN contributes to HDAC inhibitor-induced apoptosis in synovial sarcoma. Finally, restoration of EGR1 or PTEN expression is sufficient to induce synovial sarcoma cell death. Taken together, our findings indicate that SS18-SSX-mediated attenuation of an EGR1-PTEN network regulates synovial sarcoma cell survival, and that HDAC inhibitor-mediated apoptosis operates at least in part through reactivation of this pathway.
Collapse
|
12
|
Yang Y, Zhou F, Fang Z, Wang L, Li Z, Sun L, Wang C, Yao W, Cai X, Jin J, Zha X. Post-transcriptional and post-translational regulation of PTEN by transforming growth factor-beta1. J Cell Biochem 2009; 106:1102-12. [PMID: 19206163 DOI: 10.1002/jcb.22100] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PTEN is a critical tumor suppressor gene mutated frequently in various human cancers. Previous studies have showed that PTEN mRNA expression is down-regulated by TGF-beta1 in various cell lines. In present study, we have found that TGF-beta1 down-regulates PTEN mRNA and protein expression in a dose- and time-dependent manner in hepatocarcinoma cell line SMMC-7721. Based on the PTEN promoter dual-luciferase report assay, we have found that PTEN transcription is not affected by TGF-beta1. By using transcriptional inhibitor actinomycin D (Act D), the turnover rate of PTEN transcripts appeared to be accelerated during TGF-beta1 stimulation, which indicated that down-regulation of PTEN by TGF-beta1 was post-transcriptional. What interested us was that transfection of PTEN coding sequence increased TGF-beta1-induced degradation of PTEN mRNA, suggesting that PTEN coding region was account for TGF-beta1-mediated down-regulation of PTEN. In addition, TGF-beta1 down-regulated PTEN expression was blocked by the TbetaIR inhibitor SB431542 and the p38 inhibitor SB203580, suggesting Smad and p38 MAPK signal pathways played crucial roles in PTEN down-regulation via TGF-beta1 stimulation. In this study, we also found TGF-beta1 accelerated down-regulation of PTEN through the ubiquitin-proteasome pathway. Collectively, our data clearly demonstrated that TGF-beta1-mediated down-regulation of PTEN was post-transcriptional and post-translational, depending on its coding sequence, Smad and p38-MAPK signal pathways were involved in this down-regulation.
Collapse
Affiliation(s)
- Yong Yang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 2009; 49:1176-84. [PMID: 19072831 DOI: 10.1002/hep.22737] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Phosphatase and tensin homolog (PTEN) is a regulator of phosphoinositide 3-kinase signaling and an important tumor suppressor mutated/deleted in human cancers. PTEN deletion in the liver leads to insulin resistance, steatosis, inflammation, and cancer. We recently demonstrated that unsaturated fatty acids trigger steatosis by down-regulating PTEN expression in hepatocytes via activation of a mammalian target of rapamycin (mTOR)/nuclear factor kappa B (NF-kappaB) complex, but the molecular mechanisms implicated in this process are still unknown. Here, we investigated potential genetic and epigenetic mechanisms activated by fatty acids leading to PTEN down-regulation. Our results indicate that unsaturated fatty acids down-regulate PTEN messenger RNA expression in hepatocytes through mechanisms unrelated to methylation of the PTEN promoter, histone deacetylase activities, or repression of the PTEN promoter activity. In contrast, unsaturated fatty acids up-regulate the expression of microRNA-21, which binds to PTEN messenger RNA 3'-untranslated region and induces its degradation. The promoter activity of microRNA-21 was increased by mTOR/NF-kappaB activation. Consistent with these data, microRNA-21 expression was increased in the livers of rats fed high-fat diets and in human liver biopsies of obese patients having diminished PTEN expression and steatosis. CONCLUSION Unsaturated fatty acids inhibit PTEN expression in hepatocytes by up-regulating microRNA-21 synthesis via an mTOR/NF-kappaB-dependent mechanism. Aberrant up-regulation of microRNA-21 expression by excessive circulating levels of fatty acids exemplify a novel regulatory mechanism by which fatty acids affect PTEN expression and trigger liver disorders.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Department of Cellular Physiology and Metabolism, Geneva Medical Faculty, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Park NH, Chung YH. [Molecular mechanisms of hepatitis B virus-associated hepatocellular carcinoma]. THE KOREAN JOURNAL OF HEPATOLOGY 2008; 13:320-40. [PMID: 17898549 DOI: 10.3350/kjhep.2007.13.3.320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases in the world. The hepatitis B virus (HBV) replicates non-cytopathically in hepatocytes, and most of the liver injury associated with this infection reflects the immune response. Epidemiological studies have clearly demonstrated that a chronic HBV infection is a major etiological factor in the development of HCC. The pathogenesis of HBV-associated HCC has been studied extensively, and the molecular changes during the malignant transformation have been identified. The main carcinogenic mechanism of HBV-associated HCC is related to the long term-inflammatory changes caused by a chronic hepatitis B infection, which might involve the integration of the HBV. Integration of the HBV DNA into the host genome occurs at the early steps of clonal tumorous expansion. The hepatitis B x protein (HBx) is a multifunctional regulatory protein that communicates directly or indirectly with a variety of host targets, and mediates many opposing cellular functions, including its function in cell cycle regulation, transcriptional regulation, signaling, encoding of the cytoskeleton and cell adhesion molecules, as well as oncogenes and tumor suppressor genes. Continued study of the mechanisms of hepatocarcinogenesis will refine our current understanding of the molecular and cellular basis for neoplastic transformations in the liver. This review summarizes the current knowledge of the mechanisms involved in HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Neung Hwa Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Biomedical Research Center, Ulsan University Hospital, Ulsan, Korea
| | | |
Collapse
|
15
|
Abstract
A few signaling pathways are driving the growth of hepatocellular carcinoma. Each of these pathways possesses negative regulators. These enzymes, which normally suppress unchecked cell proliferation, are circumvented in the oncogenic process, either the over-activity of oncogenes is sufficient to annihilate the activity of tumor suppressors or tumor suppressors have been rendered ineffective. The loss of several key tumor suppressors has been described in hepatocellular carcinoma. Here, we systematically review the evidence implicating tumor suppressors in the development of hepatocellular carcinoma.
Collapse
|
16
|
Park NH, Song IH, Chung YH. Molecular Pathogenesis of Hepatitis-B-virus-associated Hepatocellular Carcinoma. Gut Liver 2007; 1:101-17. [PMID: 20485626 DOI: 10.5009/gnl.2007.1.2.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 11/18/2007] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent and malignant diseases worldwide. Epidemiological studies have clearly demonstrated that chronic hepatitis B virus (HBV) infection is a major etiological factor in the development of HCC. The pathogenesis of HBV-associated HCC has been studied extensively, and the molecular changes associated with malignant transformation have been identified. The predominant carcinogenic mechanisms of HBV-associated HCC are chronic inflammation and the effects of cytokines in the development of fibrosis and liver cell proliferation. An important role is also played by the integration of HBV DNA into host cellular DNA, which disrupts or promotes the expression of cellular genes that are important in cell growth and differentiation. Especially, HBx protein is a transactivating protein that promotes cell growth, survival, and the development of HCC. Continued investigation of the mechanisms underlying hepatocarcinogenesis will refine our current understanding of the molecular and cellular basis for neoplastic transformation in the liver. Prevention of HBV infections and effective treatments for chronic hepatitis B are still needed for the global control of HBV-associated HCC. This review summarizes the current knowledge on the mechanisms involved in HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Neung Hwa Park
- Division of Gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea
| | | | | |
Collapse
|
17
|
Hu Y, Li Z, Guo L, Wang L, Zhang L, Cai X, Zhao H, Zha X. MAGI-2 Inhibits cell migration and proliferation via PTEN in human hepatocarcinoma cells. Arch Biochem Biophys 2007; 467:1-9. [PMID: 17880912 DOI: 10.1016/j.abb.2007.07.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/26/2022]
Abstract
MAGI-2, a multidomain scaffolding protein, contains nine potential protein-protein interaction modules, including a GuK domain, two WW domains and six PDZ domains. In this study, we examined eight human hepatocarcinoma cell lines (HHCCs) and found that MAGI-2 was expressed only in 7721 cells. After 7721, 7404 and 97H cells were transfected with myc-MAGI-2 plasmid, their migration and proliferation was significantly inhibited, which was associated with downregulation of p-FAK and p-Akt. It is known that p-FAK is a substrate of PTEN and p-Akt can be regulated by PTEN via PIP(3). We demonstrated that PTEN was upregulated after myc-MAGI-2 transfection, which was due to the enhancement of PTEN protein stability rather than mRNA levels. Furthermore, MAGI-2-induced inhibition of cell migration and proliferation was attenuated in 7721 cells with PTEN silence or in PTEN-null cell line U87MG, and PTEN transfection could restore the effect of MAGI-2 in U87MG cells. Finally, the molecular association between PTEN and MAGI-2 was confirmed. Our results suggested that PTEN played a critical role in MAGI-2-induced inhibition of cell migration and proliferation in HHCCs.
Collapse
Affiliation(s)
- Yali Hu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang L, Wang WL, Zhang Y, Guo SP, Zhang J, Li QL. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol Res 2007; 37:389-96. [PMID: 17441812 DOI: 10.1111/j.1872-034x.2007.00042.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM To investigate the roles of epigenetic and genetic alterations of the phosphatase and tensin homologue on chromosome 10 gene (PTEN) in carcinogenesis and the development of hepatocellular carcinomas (HCC). METHODS A total of 56 cases of HCC tissues and six liver cell lines were studied for the expression of PTEN by immunohistochemistry and Western blot analysis. The PTEN gene mutations in exon5 and exon8 were detected by a combination of single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. Methylation-specific PCR (MSP) was used to identify PTEN promoter methylation. RESULTS Of the 56 cases of HCC, 24 (42.9%) expressed the PTEN protein. All surrounding liver tissues of the hepatoma (32 cases) were positive for PTEN. Of the six cell lines, three liver cancer cell lines showed a low expression of PTEN. Five mutations of 56 HCC samples were detected. All of them were located at intron4. No mutation was found in exon5 and exon8. After MSP analysis, we found nine cases of PTEN promoter methylation in 56 specimens (16.1%). However, no CpG island of PTEN was found to be methylated in all six liver cell lines. CONCLUSION The level of PTEN protein was altered in part of the HCC. The downregulation of PTEN expression may not be mainly associated with the PTEN mutations, but partly due to PTEN promoter methylation and other epigenetic regulation.
Collapse
Affiliation(s)
- Li Wang
- Department of Pathology, Xijing Hospital, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an, China
| | | | | | | | | | | |
Collapse
|
19
|
Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006; 5:671-88. [PMID: 16883305 DOI: 10.1038/nrd2062] [Citation(s) in RCA: 734] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a kinase that functions as a master switch between catabolic and anabolic metabolism and as such is a target for the design of anticancer agents. The most established mTOR inhibitors--rapamycin and its derivatives--showed long-lasting objective tumour responses in clinical trials, with CCI-779 being a first-in-class mTOR inhibitor that improved the survival of patients with advanced renal cell carcinoma. This heralded the beginning of extensive clinical programmes to further evaluate mTOR inhibitors in several tumour types. Here we review the clinical development of this drug class and look at future prospects for incorporating these agents into multitarget or multimodality strategies against cancer.
Collapse
Affiliation(s)
- Sandrine Faivre
- Service Inter Hospitalier de Cancrologie, Beaujon University Hospital, 100 Boulevard du General Leclerc, 92118 Clichy Cedex, France
| | | | | |
Collapse
|
20
|
Park NH, Song IH, Chung YH. Chronic hepatitis B in hepatocarcinogenesis. Postgrad Med J 2006; 82:507-15. [PMID: 16891440 PMCID: PMC2585715 DOI: 10.1136/pgmj.2006.047431] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 04/07/2006] [Indexed: 01/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world, and has a wide geographical variation. Eighty per cent of HCC is attributed to hepatitis B virus (HBV). The predominant carcinogenic mechanism of HBV associated HCC is through the process of liver cirrhosis, but direct oncogenic effects of HBV may also contribute. Prevention of HBV infections as well as effective treatment of chronic hepatitis B is still needed for the global control of HBV associated HCC. Continued investigation of the mechanisms of hepatocarcinogenesis will refine our current understanding of the molecular and cellular basis for neoplastic transformation in the liver.
Collapse
Affiliation(s)
- N H Park
- Division of Gastroenterology, Department of Internal Medicine, University of Ulsan, College of Medicine, Asan Medical Centre, Seoul, Korea
| | | | | |
Collapse
|
21
|
Vaudin P, Dupont J, Duchêne S, Audouin E, Crochet S, Berri C, Tesseraud S. Phosphatase PTEN in chicken muscle is regulated during ontogenesis. Domest Anim Endocrinol 2006; 31:123-40. [PMID: 16307863 DOI: 10.1016/j.domaniend.2005.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Revised: 09/30/2005] [Accepted: 09/30/2005] [Indexed: 11/17/2022]
Abstract
The phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase able to inhibit significant actors of cell signaling (i.e. phosphatidylinositol-3'kinase and mitogen-activated protein kinase pathways). The aim of this study was to characterize PTEN and to investigate its regulation during ontogenesis in chicken muscle. Pectoralis major muscle was sampled on day 18 of the embryonic period (E18), at hatching (d0) and in fed chickens at 2, 7 and 43 days after hatching (d2, d7 and d43). We first cloned the totality of chicken PTEN cDNA; its translation into a putative protein showed more than 95% sequence identity with that characterized in mammals (humans, mice). PTEN was expressed under two major transcripts in the majority of tissues, including muscles where the expression of PTEN mRNA increased with age (P < 0.05). Surprisingly, the protein levels of PTEN (protein characterized with an apparent molecular weight of 55kDa) and its activity were considerably decreased between the E18 and d43 stages (approximately 8-10-fold reduction, P < 0.001). An association between these decreases and higher phosphorylation levels of two potential indirect downstream targets of phosphatase (i.e. AKT and ERK) was observed only in the early growth phases. It was concluded that phosphatase PTEN was expressed in chicken muscle and that its expression was regulated during ontogenesis.
Collapse
Affiliation(s)
- Pascal Vaudin
- Recherches Avicoles, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|