1
|
Yuan Y, Fan T, Wang J, Yuan Y, Tao X. Near-infrared imaging of head and neck squamous cell carcinoma using indocyanine green that targets the αvβ6 peptide. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:046002. [PMID: 38633382 PMCID: PMC11021736 DOI: 10.1117/1.jbo.29.4.046002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Significance Head and neck squamous cell carcinoma (HNSCC) has a particularly poor prognosis. Improving the surgical resection boundary, reducing local recurrence, and ultimately ameliorating the overall survival rate are the treatment goals. Aim To obtain a complete surgical resection (R0 resection), we investigated the use of a fluorescent imaging probe that targets the integrin subtype α v β 6 , which is upregulated in many kinds of epithelial cancer, using animal models. Approach α v β 6 expression was detected using polymerase chain reaction (PCR) and immunoprotein blotting of human tissues for malignancy. Protein expression localization was observed. α v β 6 and epidermal growth factor receptor (EGFR) were quantified by PCR and immunoprotein blotting, and the biosafety of targeting the α v β 6 probe material was examined using Cell Counting Kit-8 assays. Indocyanine green (ICG) was used as a control to determine the localization of the probe at the cellular level. In vivo animal experiments were conducted through tail vein injections to evaluate the probe's imaging effect and to confirm its targeting in tissue sections. Results α v β 6 expression was higher than EGFR expression in HNSCC, and the probe showed good targeting in in vivo and in vitro experiments with a good safety profile. Conclusions The ICG-α v β 6 peptide probe is an exceptional and sensitive imaging tool for HNSCC that can distinguish among tumor, normal, and inflammatory tissues.
Collapse
Affiliation(s)
- Yuan Yuan
- Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Department of Radiology, Shanghai, China
| | - Tengfei Fan
- Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai, China
- Shanghai Jiao Tong University, College of Stomatology, Shanghai, China
- The Second Xiangya Hospital of Central South University, Department of Oral and Maxillofacial Surgery, Changsha, China
| | - Jingbo Wang
- Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Department of Radiology, Shanghai, China
| | - Ying Yuan
- Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Department of Radiology, Shanghai, China
| | - Xiaofeng Tao
- Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Department of Radiology, Shanghai, China
| |
Collapse
|
2
|
Zlotnikov ID, Ezhov AA, Vigovskiy MA, Grigorieva OA, Dyachkova UD, Belogurova NG, Kudryashova EV. Application Prospects of FTIR Spectroscopy and CLSM to Monitor the Drugs Interaction with Bacteria Cells Localized in Macrophages for Diagnosis and Treatment Control of Respiratory Diseases. Diagnostics (Basel) 2023; 13:diagnostics13040698. [PMID: 36832185 PMCID: PMC9954918 DOI: 10.3390/diagnostics13040698] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Visualization of the interaction of drugs with biological cells creates new approaches to improving the bioavailability, selectivity, and effectiveness of drugs. The use of CLSM and FTIR spectroscopy to study the interactions of antibacterial drugs with latent bacterial cells localized in macrophages create prospects to solve the problems of multidrug resistance (MDR) and severe cases. Here, the mechanism of rifampicin penetration into E. coli bacterial cells was studied by tracking the changes in the characteristic peaks of cell wall components and intracellular proteins. However, the effectiveness of the drug is determined not only by penetration, but also by efflux of the drugs molecules from the bacterial cells. Here, the efflux effect was studied and visualized using FTIR spectroscopy, as well as CLSM imaging. We have shown that because of efflux inhibition, eugenol acting as an adjuvant for rifampicin showed a significant (more than three times) increase in the antibiotic penetration and the maintenance of its intracellular concentration in E. coli (up to 72 h in a concentration of more than 2 μg/mL). In addition, optical methods have been applied to study the systems containing bacteria localized inside of macrophages (model of the latent form), where the availability of bacteria for antibiotics is reduced. Polyethylenimine grafted with cyclodextrin carrying trimannoside vector molecules was developed as a drug delivery system for macrophages. Such ligands were absorbed by CD206+ macrophages by 60-70% versus 10-15% for ligands with a non-specific galactose label. Owing to presence of ligands with trimannoside vectors, the increase in antibiotic concentration inside macrophages, and thus, its accumulation into dormant bacteria, is observed. In the future, the developed FTIR+CLSM techniques would be applicable for the diagnosis of bacterial infections and the adjustment of therapy strategies.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Alexander A. Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Maksim A. Vigovskiy
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Olga A. Grigorieva
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Uliana D. Dyachkova
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Natalia G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
3
|
Design and Development of a Bimodal Optical Instrument for Simultaneous Vibrational Spectroscopy Measurements. Int J Mol Sci 2022; 23:ijms23126834. [PMID: 35743277 PMCID: PMC9223838 DOI: 10.3390/ijms23126834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Vibrational spectroscopy techniques are widely used in analytical chemistry, physics and biology. The most prominent techniques are Raman and Fourier-transform infrared spectroscopy (FTIR). Combining both techniques delivers complementary information of the test sample. We present the design, construction, and calibration of a novel bimodal spectroscopy system featuring both Raman and infrared measurements simultaneously on the same sample without mutual interference. The optomechanical design provides a modular flexible system for solid and liquid samples and different configurations for Raman. As a novel feature, the Raman module can be operated off-axis for optical sectioning. The calibrated system demonstrates high sensitivity, precision, and resolution for simultaneous operation of both techniques and shows excellent calibration curves with coefficients of determination greater than 0.96. We demonstrate the ability to simultaneously measure Raman and infrared spectra of complex biological material using bovine serum albumin. The performance competes with commercial systems; moreover, it presents the additional advantage of simultaneously operating Raman and infrared techniques. To the best of our knowledge, it is the first demonstration of a combined Raman-infrared system that can analyze the same sample volume and obtain optically sectioned Raman signals. Additionally, quantitative comparison of confocality of backscattering micro-Raman and off-axis Raman was performed for the first time.
Collapse
|
4
|
Virtanen V, Tafintseva V, Shaikh R, Nippolainen E, Haas J, Afara I, Töyräs J, Kröger H, Solheim J, Zimmermann B, Kohler A, Mizaikoff B, Finnilä M, Rieppo L, Saarakkala S. Infrared spectroscopy is suitable for objective assessment of articular cartilage health. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100250. [DOI: 10.1016/j.ocarto.2022.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/28/2022] [Indexed: 10/18/2022] Open
|
5
|
Tiwari S, Falahkheirkhah K, Cheng G, Bhargava R. Colon Cancer Grading Using Infrared Spectroscopic Imaging-Based Deep Learning. APPLIED SPECTROSCOPY 2022; 76:475-484. [PMID: 35332784 PMCID: PMC9202565 DOI: 10.1177/00037028221076170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor grade assessment is critical to the treatment of cancers. A pathologist typically evaluates grade by examining morphologic organization in tissue using hematoxylin and eosin (H&E) stained tissue sections. Fourier transform infrared spectroscopic (FT-IR) imaging provides an alternate view of tissue in which spatially specific molecular information from unstained tissue can be utilized. Here, we examine the potential of IR imaging for grading colon cancer in biopsy samples. We used a 148-patient cohort to develop a deep learning classifier to estimate the tumor grade using IR absorption. We demonstrate that FT-IR imaging can be a viable tool to determine colorectal cancer grades, which we validated on an independent cohort of surgical resections. This work demonstrates that harnessing molecular information from FT-IR imaging and coupling it with morphometry is a potential path to develop clinically relevant grade prediction models.
Collapse
Affiliation(s)
- Saumya Tiwari
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Kianoush Falahkheirkhah
- Department of Chemical and Biomolecular Engineering and Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Georgina Cheng
- Carle Foundation Hospital (Carle Health), Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rohit Bhargava
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Ex Vivo Vibration Spectroscopic Analysis of Colorectal Polyps for the Early Diagnosis of Colorectal Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11112048. [PMID: 34829393 PMCID: PMC8621094 DOI: 10.3390/diagnostics11112048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer is one of the most common and often fatal cancers in humans, but it has the highest chance of a cure if detected at an early precancerous stage. Carcinogenesis in the colon begins as an uncontrolled growth forming polyps. Some of these polyps can finally be converted to colon cancer. Early diagnosis of adenomatous polyps is the main approach for screening and preventing colorectal cancer, and vibration spectroscopy can be used for this purpose. This work is focused on evaluating FTIR and Raman spectroscopy as a tool in the ex vivo analysis of colorectal polyps, which could be important for the early diagnosis of colorectal carcinoma. Multivariate analyses (PCA and LDA) were used to assist the spectroscopic discrimination of normal colon tissue, as well as benign and malignant colon polyps. The spectra demonstrated evident differences in the characteristic bands of the main tissue constituents, i.e., proteins, nucleic acids, lipids, polysaccharides, etc. Suitable models for discriminating the three mentioned diagnostic groups were proposed based on multivariate analyses of the spectroscopic data. LDA classification was especially successful in the case of a combined set of 55 variables from the FTIR, FT Raman and dispersion Raman spectra. This model can be proposed for ex vivo colorectal cancer diagnostics in combination with the colonoscopic extraction of colon polyps for further testing. This pilot study is a precursor for the further evaluation of the diagnostic potential for the simultaneous in vivo application of colonoscopic Raman probes.
Collapse
|
7
|
Mabwa D, Gajjar K, Furniss D, Schiemer R, Crane R, Fallaize C, Martin-Hirsch PL, Martin FL, Kypraios T, Seddon AB, Phang S. Mid-infrared spectral classification of endometrial cancer compared to benign controls in serum or plasma samples. Analyst 2021; 146:5631-5642. [PMID: 34378554 DOI: 10.1039/d1an00833a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study demonstrates a discrimination of endometrial cancer versus (non-cancerous) benign controls based on mid-infrared (MIR) spectroscopy of dried plasma or serum liquid samples. A detailed evaluation was performed using four discriminant methods (LDA, QDA, kNN or SVM) to execute the classification task. The discriminant methods used in the study comprised methods that are widely used in the statistics (LDA and QDA) and machine learning literature (kNN and SVM). Of particular interest, is the impact of discrimination when presented with spectral data from a section of the bio-fingerprint region (1430 cm-1 to 900 cm-1) in contrast to the more extended bio-fingerprint region used here (1800 cm-1 to 900 cm-1). Quality metrics used were the misclassification rate, sensitivity, specificity, and Matthew's correlation coefficient (MCC). For plasma (with spectral data ranging from 1430 cm-1 to 900 cm-1), the best performing classifier was kNN, which achieved a sensitivity, specificity and MCC of 0.865 ± 0.043, 0.865 ± 0.023 and 0.762 ± 0.034, respectively. For serum (in the same wavenumber range), the best performing classifier was LDA, achieving a sensitivity, specificity and MCC of 0.899 ± 0.023, 0.763 ± 0.048 and 0.664 ± 0.067, respectively. For plasma (with spectral data ranging from 1800 cm-1 to 900 cm-1), the best performing classifier was SVM, with a sensitivity, specificity and MCC of 0.993 ± 0.010, 0.815 ± 0.000 and 0.815 ± 0.010, respectively. For serum (in the same wavenumber range), QDA performed best achieving a sensitivity, specificity and MCC of 0.852 ± 0.023, 0.700 ± 0.162 and 0.557 ± 0.012, respectively. Our findings demonstrate that even when a section of the bio-fingerprint region has been removed, good classification of endometrial cancer versus non-cancerous controls is still maintained. These findings suggest the potential of a MIR screening tool for endometrial cancer screening.
Collapse
Affiliation(s)
- David Mabwa
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics' Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Ketankumar Gajjar
- Obstetrics and Gynaecology, Nottingham University Hospitals NHS Trust - City Campus, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - David Furniss
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics' Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Roberta Schiemer
- Obstetrics and Gynaecology, Nottingham University Hospitals NHS Trust - City Campus, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Richard Crane
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics' Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Christopher Fallaize
- School of Mathematical Sciences, The Mathematical Sciences Building, University Park, University of Nottingham, NG7 2RD, UK
| | | | | | - Theordore Kypraios
- School of Mathematical Sciences, The Mathematical Sciences Building, University Park, University of Nottingham, NG7 2RD, UK
| | - Angela B Seddon
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics' Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Sendy Phang
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics' Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
8
|
Kochan K, Bedolla DE, Perez-Guaita D, Adegoke JA, Chakkumpulakkal Puthan Veettil T, Martin M, Roy S, Pebotuwa S, Heraud P, Wood BR. Infrared Spectroscopy of Blood. APPLIED SPECTROSCOPY 2021; 75:611-646. [PMID: 33331179 DOI: 10.1177/0003702820985856] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The magnitude of infectious diseases in the twenty-first century created an urgent need for point-of-care diagnostics. Critical shortages in reagents and testing kits have had a large impact on the ability to test patients with a suspected parasitic, bacteria, fungal, and viral infections. New point-of-care tests need to be highly sensitive, specific, and easy to use and provide results in rapid time. Infrared spectroscopy, coupled to multivariate and machine learning algorithms, has the potential to meet this unmet demand requiring minimal sample preparation to detect both pathogenic infectious agents and chronic disease markers in blood. This focal point article will highlight the application of Fourier transform infrared spectroscopy to detect disease markers in blood focusing principally on parasites, bacteria, viruses, cancer markers, and important analytes indicative of disease. Methodologies and state-of-the-art approaches will be reported and potential confounding variables in blood analysis identified. The article provides an up to date review of the literature on blood diagnosis using infrared spectroscopy highlighting the recent advances in this burgeoning field.
Collapse
Affiliation(s)
- Kamila Kochan
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Diana E Bedolla
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - David Perez-Guaita
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - John A Adegoke
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | | | - Miguela Martin
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Supti Roy
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Savithri Pebotuwa
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Philip Heraud
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Bayden R Wood
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Medipally DKR, Cullen D, Untereiner V, Sockalingum GD, Maguire A, Nguyen TNQ, Bryant J, Noone E, Bradshaw S, Finn M, Dunne M, Shannon AM, Armstrong J, Meade AD, Lyng FM. Vibrational spectroscopy of liquid biopsies for prostate cancer diagnosis. Ther Adv Med Oncol 2020; 12:1758835920918499. [PMID: 32821294 PMCID: PMC7412923 DOI: 10.1177/1758835920918499] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Screening for prostate cancer with prostate specific antigen and digital rectal examination allows early diagnosis of prostate malignancy but has been associated with poor sensitivity and specificity. There is also a considerable risk of over-diagnosis and over-treatment, which highlights the need for better tools for diagnosis of prostate cancer. This study investigates the potential of high throughput Raman and Fourier Transform Infrared (FTIR) spectroscopy of liquid biopsies for rapid and accurate diagnosis of prostate cancer. Methods: Blood samples (plasma and lymphocytes) were obtained from healthy control subjects and prostate cancer patients. FTIR and Raman spectra were recorded from plasma samples, while Raman spectra were recorded from the lymphocytes. The acquired spectral data was analysed with various multivariate statistical methods, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and classical least squares (CLS) fitting analysis. Results: Discrimination was observed between the infrared and Raman spectra of plasma and lymphocytes from healthy donors and prostate cancer patients using PCA. In addition, plasma and lymphocytes displayed differentiating signatures in patients exhibiting different Gleason scores. A PLS-DA model was able to discriminate these groups with sensitivity and specificity rates ranging from 90% to 99%. CLS fitting analysis identified key analytes that are involved in the development and progression of prostate cancer. Conclusions: This technology may have potential as an alternative first stage diagnostic triage for prostate cancer. This technology can be easily adaptable to many other bodily fluids and could be useful for translation of liquid biopsy-based diagnostics into the clinic.
Collapse
Affiliation(s)
- Dinesh K R Medipally
- Radiation and Environmental Science Centre, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Daniel Cullen
- Radiation and Environmental Science Centre, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Valérie Untereiner
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR Pharmacie, Reims, France
| | - Ganesh D Sockalingum
- Université de Reims Champagne-Ardenne, BioSpecT EA 7506, UFR Pharmacie, Reims, France
| | - Adrian Maguire
- Radiation and Environmental Science Centre, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Thi Nguyet Que Nguyen
- Radiation and Environmental Science Centre, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Jane Bryant
- Radiation and Environmental Science Centre, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Emma Noone
- Clinical Trials Unit, St Luke's Radiation Oncology Network, St Luke's Hospital, Dublin, Ireland
| | - Shirley Bradshaw
- Clinical Trials Unit, St Luke's Radiation Oncology Network, St Luke's Hospital, Dublin, Ireland
| | - Marie Finn
- Clinical Trials Unit, St Luke's Radiation Oncology Network, St Luke's Hospital, Dublin, Ireland
| | - Mary Dunne
- Clinical Trials Unit, St Luke's Radiation Oncology Network, St Luke's Hospital, Dublin, Ireland
| | | | | | - Aidan D Meade
- School of Physics & Clinical & Optometric Sciences, Technological University Dublin, Kevin Street, Dublin, Dublin D08 NF82, Ireland
| | - Fiona M Lyng
- Radiation and Environmental Science Centre, Focas Research Institute, Technological University Dublin, Dublin, Dublin D08 NF82, Ireland
| |
Collapse
|
10
|
Balan V, Mihai CT, Cojocaru FD, Uritu CM, Dodi G, Botezat D, Gardikiotis I. Vibrational Spectroscopy Fingerprinting in Medicine: from Molecular to Clinical Practice. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2884. [PMID: 31489927 PMCID: PMC6766044 DOI: 10.3390/ma12182884] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
In the last two decades, Fourier Transform Infrared (FTIR) and Raman spectroscopies turn out to be valuable tools, capable of providing fingerprint-type information on the composition and structural conformation of specific molecular species. Vibrational spectroscopy's multiple features, namely highly sensitive to changes at the molecular level, noninvasive, nondestructive, reagent-free, and waste-free analysis, illustrate the potential in biomedical field. In light of this, the current work features recent data and major trends in spectroscopic analyses going from in vivo measurements up to ex vivo extracted and processed materials. The ability to offer insights into the structural variations underpinning pathogenesis of diseases could provide a platform for disease diagnosis and therapy effectiveness evaluation as a future standard clinical tool.
Collapse
Affiliation(s)
- Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Cosmin-Teodor Mihai
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Florina-Daniela Cojocaru
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Cristina-Mariana Uritu
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Doru Botezat
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania
| |
Collapse
|
11
|
Song CL, Vardaki MZ, Goldin RD, Kazarian SG. Fourier transform infrared spectroscopic imaging of colon tissues: evaluating the significance of amide I and C-H stretching bands in diagnostic applications with machine learning. Anal Bioanal Chem 2019; 411:6969-6981. [PMID: 31418050 PMCID: PMC6834539 DOI: 10.1007/s00216-019-02069-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopic imaging of colon biopsy tissues in transmission combined with machine learning for the classification of different stages of colon malignancy was carried out in this study. Two different approaches, an optical and a computational one, were applied for the elimination of the scattering background during the measurements and compared with the results of the machine learning model without correction for the scattering. Several different data processing pathways were implemented in order to obtain a high accuracy of the prediction model. This study demonstrates, for the first time, that C-H stretching and amide I bands are of little to no significance in the classification of the colon malignancy, based on the Gini importance values by random forest (RF). The best prediction outcome is found when supervised RF classification was carried out in the fingerprint region of the spectral data between 1500 and 1000 cm-1 (excluding the contribution of amide I and II bands). An overall prediction accuracy higher than 90% is achieved through the RF. The results also show that dysplastic and hyperplastic tissues are well distinguished. This leads to the insight that the important differences between hyperplastic and dysplastic colon tissues lie within the fingerprint region of FTIR spectra. In this study, computational correction performed better than optical correction, but the findings show that the disease states of colon biopsies can be distinguished effectively without elimination of Mie scattering effect. Graphical abstract.
Collapse
Affiliation(s)
- Cai Li Song
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| | - Martha Z Vardaki
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Robert D Goldin
- Department of Cellular Pathology, St. Mary's Campus, Imperial College London, W2 1NY, London, UK
| | - Sergei G Kazarian
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
12
|
Jang E, Jeong J, Yim JH, Kim Y, Lee CH, Choi D, Chung H. Improved infrared spectroscopic discrimination between gall bladder (GB) polyps and GB cancer using component-descriptive spectral features of separated phases from bile. Analyst 2019; 144:4826-4834. [PMID: 31290490 DOI: 10.1039/c9an00878k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study demonstrates a unique strategy for enhancing infrared (IR) spectroscopic discrimination between gall bladder (GB) polyps and cancer. This strategy includes the separation of raw bile juice into three sections of organic, aqueous, and amphiphilic phases and a cooperative combination of all IR spectral features of each separated phase for the discrimination. Raw bile juice is viscous and complex in composition because it contains fatty acids, cholesterol, proteins, phospholipids, bilirubin, and other components; therefore, the acquisition of IR spectra providing more component-discernible information is fundamental for improving discrimination. For this purpose, raw bile juice was separated into an aqueous phase, mostly containing bile salts, an organic phase with isolated lipids, and an amphiphilic phase, mainly containing proteins. The subsequent IR spectra of each separated phase were mutually characteristic and complementary to each other. When all the IR spectral features were combined, the discrimination was improved compared to that using the spectra of raw bile juice with no separation. The cooperative integration of more component-specific spectra obtained from each separated phase enhanced the discrimination. In addition, the IR spectra of the major constituents in bile juice, such as bile acids, conjugated bile salts, lecithin, and cholesterol, were recorded to explain the IR features of each separated phase.
Collapse
Affiliation(s)
- Eunjin Jang
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
13
|
Turner BD, Sloan SW, Currell GR. Novel remediation of per- and polyfluoroalkyl substances (PFASs) from contaminated groundwater using Cannabis Sativa L. (hemp) protein powder. CHEMOSPHERE 2019; 229:22-31. [PMID: 31071516 DOI: 10.1016/j.chemosphere.2019.04.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a group of environmentally persistent, man-made chemicals used in many industrial products and everyday consumer items. Of the plant proteins trialled, those of hemp (Cannabis sativa L.) were found to be far superior for PFAS removal than the next best protein, soy. The use of hemp plant proteins as a possible pump-and-treat solution to PFAS remediation from groundwater has been successfully demonstrated with very good removals (>98%) of the main contaminants of PFOS and PFHxS in approximately 1 h of contact time, with salinity enhancing removal of short chain PFAS. Changes to the secondary structure of hemp proteins was found using FTIR spectroscopy analysis and calculated based on the integrated areas of the amide I component bands. The amount of β-turns increased from ∼9.3% (control) to 44.1% (undiluted groundwater); with a decrease in random coils (25.6-8.6%); α-helix (19.3-8.6%) and β-sheets (38.8-23.1%). These changes indicate that hemp proteins partially unfold during the reaction with PFAS with other FTIR evidence suggesting sorption at hydrophobic sites of the protein as well as with the side chains of the amino acids aspartic and glutamic acid. The absence of these side chains in soy protein, as evidenced from FTIR and amino acid analysis, being part of the reason why soy removed less (approx. half) of the Σ(PFHxS + PFOS) load when compared to hemp. The findings reported here will lead to new, environmentally friendly methods for PFAS remediation.
Collapse
Affiliation(s)
- Brett D Turner
- Centre of Excellence for Geotechnical Science and Engineering, Civil Surveying and Environmental Engineering, The University of Newcastle, University Drive, Callaghan, N.S.W., 2308, Australia.
| | - Scott W Sloan
- Centre of Excellence for Geotechnical Science and Engineering, Civil Surveying and Environmental Engineering, The University of Newcastle, University Drive, Callaghan, N.S.W., 2308, Australia
| | - Glenn R Currell
- Centre of Excellence for Geotechnical Science and Engineering, Civil Surveying and Environmental Engineering, The University of Newcastle, University Drive, Callaghan, N.S.W., 2308, Australia
| |
Collapse
|
14
|
Classification of Healthy and Cancer States of Colon Epithelial Tissues Using Opto-magnetic Imaging Spectroscopy. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0414-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Rodrigues LM, Carvalho LFDCES, Bonnier F, Anbinder AL, Martinho HDS, Almeida JD. Evaluation of inflammatory processes by FTIR spectroscopy. J Med Eng Technol 2018; 42:228-235. [DOI: 10.1080/03091902.2018.1470691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Laís Morandini Rodrigues
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, Brazil
| | | | - Franck Bonnier
- Faculty of Pharmacy, Université François-Rabelais de Tours, Tours, France
| | - Ana Lia Anbinder
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, Brazil
| | | | - Janete Dias Almeida
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos, Univ Estadual Paulista-UNESP, São José dos Campos, Brazil
| |
Collapse
|
16
|
Rai V, Mukherjee R, Routray A, Ghosh AK, Roy S, Ghosh BP, Mandal PB, Bose S, Chakraborty C. Serum-based diagnostic prediction of oral submucous fibrosis using FTIR spectrometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:322-329. [PMID: 28826108 DOI: 10.1016/j.saa.2017.08.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Oral submucous fibrosis (OSF) is found to have the highest malignant potentiality among all other pre-cancerous lesions. However, its detection prior to tissue biopsy can be challenging in clinics. Moreover, biopsy examination is invasive and painful. Hence, there is an urgent need of new technology that facilitates accurate diagnostic prediction of OSF prior to biopsy. Here, we used FTIR spectroscopy coupled with chemometric techniques to distinguish the serum metabolic signatures of OSF patients (n=30) and healthy controls (n=30). Serum biochemical analyses have been performed to further support the FTIR findings. Absorbance intensities of 45 infrared wavenumbers differed significantly between OSF and normal serum FTIR spectra representing alterations in carbohydrates, proteins, lipids and nucleic acids. Nineteen prominent significant wavenumbers (P≤0.001) at 1020, 1025, 1035, 1039, 1045, 1078, 1055, 1100, 1117, 1122, 1151, 1169, 1243, 1313, 1398, 1453, 1544, 1650 and 1725cm-1 provided excellent segregation of OSF spectra from normal using multivariate statistical techniques. These findings provided essential information on the metabolic features of blood serum of OSF patients and established that FTIR spectroscopy coupled with chemometric analysis can be potentially useful in the rapid and accurate preoperative screening/diagnosis of OSF.
Collapse
Affiliation(s)
- Vertika Rai
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Rashmi Mukherjee
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, India
| | - Aurobinda Routray
- Dept. of Electrical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Ananta Kumar Ghosh
- Dept. of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Seema Roy
- B C Roy Technology Hospital, Indian Institute of Technology, Kharagpur, India
| | - Barnali Paul Ghosh
- B C Roy Technology Hospital, Indian Institute of Technology, Kharagpur, India
| | | | - Surajit Bose
- Awadh Dental College and Hospital, Tata Jamshedpur, India
| | - Chandan Chakraborty
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
17
|
De Bruyne S, Speeckaert MM, Delanghe JR. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit Rev Clin Lab Sci 2017; 55:1-20. [PMID: 29239240 DOI: 10.1080/10408363.2017.1414142] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fourier transform mid-infrared (MIR-FTIR) spectroscopy is a nondestructive, label-free, highly sensitive and specific technique that provides complete information on the chemical composition of biological samples. The technique both can offer fundamental structural information and serve as a quantitative analysis tool. Therefore, it has many potential applications in different fields of clinical laboratory science. Although considerable technological progress has been made to promote biomedical applications of this powerful analytical technique, most clinical laboratory analyses are based on spectroscopic measurements in the visible or ultraviolet (UV) spectrum and the potential role of FTIR spectroscopy still remains unexplored. In this review, we present some general principles of FTIR spectroscopy as a useful method to study molecules in specimens by MIR radiation together with a short overview of methods to interpret spectral data. We aim at illustrating the wide range of potential applications of the proposed technique in the clinical laboratory setting with a focus on its advantages and limitations and discussing the future directions. The reviewed applications of MIR spectroscopy include (1) quantification of clinical parameters in body fluids, (2) diagnosis and monitoring of cancer and other diseases by analysis of body fluids, cells, and tissues, (3) classification of clinically relevant microorganisms, and (4) analysis of kidney stones, nails, and faecal fat.
Collapse
Affiliation(s)
- Sander De Bruyne
- a Department of Clinical Chemistry , Ghent University Hospital , Ghent , Belgium
| | | | - Joris R Delanghe
- a Department of Clinical Chemistry , Ghent University Hospital , Ghent , Belgium
| |
Collapse
|
18
|
Colorectal Cancer and Colitis Diagnosis Using Fourier Transform Infrared Spectroscopy and an Improved K-Nearest-Neighbour Classifier. SENSORS 2017; 17:s17122739. [PMID: 29186913 PMCID: PMC5750796 DOI: 10.3390/s17122739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/03/2023]
Abstract
Combining Fourier transform infrared spectroscopy (FTIR) with endoscopy, it is expected that noninvasive, rapid detection of colorectal cancer can be performed in vivo in the future. In this study, Fourier transform infrared spectra were collected from 88 endoscopic biopsy colorectal tissue samples (41 colitis and 47 cancers). A new method, viz., entropy weight local-hyperplane k-nearest-neighbor (EWHK), which is an improved version of K-local hyperplane distance nearest-neighbor (HKNN), is proposed for tissue classification. In order to avoid limiting high dimensions and small values of the nearest neighbor, the new EWHK method calculates feature weights based on information entropy. The average results of the random classification showed that the EWHK classifier for differentiating cancer from colitis samples produced a sensitivity of 81.38% and a specificity of 92.69%.
Collapse
|
19
|
Gomes RNS, Bhattacharjee TT, Carvalho LFCS, Soares LES. ATR-FTIR spectroscopy and μ-EDXRF spectrometry monitoring of enamel erosion caused by medicaments used in the treatment of respiratory diseases. Microsc Res Tech 2017; 81:220-227. [DOI: 10.1002/jemt.22970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Raimundo Nonato Silva Gomes
- Laboratory of Dentistry and Applied Materials (LDAM); Research and Development Institute (IP&D), Universidade do Vale do Paraíba; São José dos Campos São Paulo Brazil
| | - Tanmoy T. Bhattacharjee
- Laboratory of Nanosensors; Research and Development Institute (IP&D), Universidade do Vale do Paraíba; São José dos Campos São Paulo Brazil
| | - Luis Felipe C. S. Carvalho
- Laboratory of Dentistry and Applied Materials (LDAM); Research and Development Institute (IP&D), Universidade do Vale do Paraíba; São José dos Campos São Paulo Brazil
- Programa de Pós Graduação em Odontologia, Departamento de Odontologia; Universidade de Taubaté; São Paulo Brazil
| | - Luís Eduardo Silva Soares
- Laboratory of Dentistry and Applied Materials (LDAM); Research and Development Institute (IP&D), Universidade do Vale do Paraíba; São José dos Campos São Paulo Brazil
- Health Sciences College, Dentistry Course; Universidade do Vale do Paraíba; São José dos Campos São Paulo Brazil
| |
Collapse
|
20
|
Jusman Y, Mat Isa NA, Ng SC, Hasikin K, Abu Osman NA. Automated cervical precancerous cells screening system based on Fourier transform infrared spectroscopy features. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:75005. [PMID: 27403606 DOI: 10.1117/1.jbo.21.7.075005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy technique can detect the abnormality of a cervical cell that occurs before the morphological change could be observed under the light microscope as employed in conventional techniques. This paper presents developed features extraction for an automated screening system for cervical precancerous cell based on the FTIR spectroscopy as a second opinion to pathologists. The automated system generally consists of the developed features extraction and classification stages. Signal processing techniques are used in the features extraction stage. Then, discriminant analysis and principal component analysis are employed to select dominant features for the classification process. The datasets of the cervical precancerous cells obtained from the feature selection process are classified using a hybrid multilayered perceptron network. The proposed system achieved 92% accuracy.
Collapse
Affiliation(s)
- Yessi Jusman
- University of Malaya, Department of Biomedical Engineering, Faculty of Engineering, 50603 Kuala Lumpur, MalaysiabUniversitas Abdurrab, Department of Informatics Engineering, Faculty of Engineering, Pekanbaru, 28291 Riau, Indonesia
| | - Nor Ashidi Mat Isa
- University of Science Malaysia, School of Electrical and Electronic Engineering, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia
| | - Siew-Cheok Ng
- University of Malaya, Department of Biomedical Engineering, Faculty of Engineering, 50603 Kuala Lumpur, Malaysia
| | - Khairunnisa Hasikin
- University of Malaya, Department of Biomedical Engineering, Faculty of Engineering, 50603 Kuala Lumpur, Malaysia
| | - Noor Azuan Abu Osman
- University of Malaya, Department of Biomedical Engineering, Faculty of Engineering, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Jenkins CA, Lewis PD, Dunstan PR, Harris DA. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer. World J Gastrointest Oncol 2016; 8:427-438. [PMID: 27190582 PMCID: PMC4865710 DOI: 10.4251/wjgo.v8.i5.427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/24/2015] [Accepted: 03/09/2016] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed.
Collapse
|
22
|
Addis J, Mohammed N, Rotimi O, Magee D, Jha A, Subramanian V. Raman spectroscopy of endoscopic colonic biopsies from patients with ulcerative colitis to identify mucosal inflammation and healing. BIOMEDICAL OPTICS EXPRESS 2016; 7:2022-35. [PMID: 27231640 PMCID: PMC4871100 DOI: 10.1364/boe.7.002022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 05/05/2023]
Abstract
Raman spectroscopy was used to differentiate between mucosally healed (or quiescent) and inflamed colon tissue, as assessed endoscopically, in patients with ulcerative colitis. From the analysis of the Raman spectra of 60 biopsy tissue samples, clear differences were identified between the spectra of the quiescent and inflamed tissue. Three carotenoid peaks were found to be approximately twice as intense in the inflamed tissue. Two phospholipid peaks were found to be significantly lower in the inflamed tissue. Using multivariate statistical analysis, we show that these five peaks can be used to discriminate between endoscopically quiescent and inflamed tissue. We also correlated the Raman data with a histological assessment of the tissue. Four of the five peaks were found to be significantly different between the spectra of histologically healed (or quiescent) and histologically inflamed tissue. These findings indicate the ability of Raman spectroscopy to accurately classify colon tissue as either quiescent or inflamed, irrespective of whether an endoscopic or histological grading scheme is followed. We thus demonstrate that Raman spectroscopy could potentially be used as an early diagnosis tool for assessing the presence of mucosal healing or inflammation in patients with ulcerative colitis.
Collapse
Affiliation(s)
- James Addis
- Institute of Materials Research, University of Leeds, Leeds LS2 9JT, UK
| | - Noor Mohammed
- Molecular Gastroenterology, St. James University Hospital, University of Leeds, UK
| | - Olorunda Rotimi
- Department of Histopathology, St. James University Hospital, University of Leeds, UK
| | - Derek Magee
- School of Computing, Faculty of Engineering, University of Leeds, UK
| | - Animesh Jha
- Institute of Materials Research, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
23
|
Kalmodia S, Parameswaran S, Yang W, Barrow CJ, Krishnakumar S. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy: An analytical technique to understand therapeutic responses at the molecular level. Sci Rep 2015; 5:16649. [PMID: 26568521 PMCID: PMC4645174 DOI: 10.1038/srep16649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Rapid monitoring of the response to treatment in cancer patients is essential to predict the outcome of the therapeutic regimen early in the course of the treatment. The conventional methods are laborious, time-consuming, subjective and lack the ability to study different biomolecules and their interactions, simultaneously. Since; mechanisms of cancer and its response to therapy is dependent on molecular interactions and not on single biomolecules, an assay capable of studying molecular interactions as a whole, is preferred. Fourier Transform Infrared (FTIR) spectroscopy has become a popular technique in the field of cancer therapy with an ability to elucidate molecular interactions. The aim of this study, was to explore the utility of the FTIR technique along with multivariate analysis to understand whether the method has the resolution to identify the differences in the mechanism of therapeutic response. Towards achieving the aim, we utilized the mouse xenograft model of retinoblastoma and nanoparticle mediated targeted therapy. The results indicate that the mechanism underlying the response differed between the treated and untreated group which can be elucidated by unique spectral signatures generated by each group. The study establishes the efficiency of non-invasive, label-free and rapid FTIR method in assessing the interactions of nanoparticles with cellular macromolecules towards monitoring the response to cancer therapeutics.
Collapse
Affiliation(s)
- Sushma Kalmodia
- Department of Nano biotechnology, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai - 600 006, India.,Centre for Chemistry and Biotechnology, Deakin University, Geelong campus, VIC 3216, Australia
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell laboratory, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai - 600 006, India
| | - Wenrong Yang
- Centre for Chemistry and Biotechnology, Deakin University, Geelong campus, VIC 3216, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Geelong campus, VIC 3216, Australia
| | - Subramanian Krishnakumar
- Department of Nano biotechnology, Vision Research Foundation, Sankara Nethralaya, 18, College Road, Nungambakkam, Chennai - 600 006, India
| |
Collapse
|
24
|
Chen H, Lin Z, Tan C. Probabilistic Characterization Using Partial Least Squares and Near-Infrared Spectroscopy for Cancer Diagnosis. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1027900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Wang W, Zhao J, Short M, Zeng H. Real-time in vivo cancer diagnosis using Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2015; 8:527-45. [PMID: 25220508 DOI: 10.1002/jbio.201400026] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 05/02/2023]
Abstract
Raman spectroscopy has becoming a practical tool for rapid in vivo tissue diagnosis. This paper provides an overview on the latest development of real-time in vivo Raman systems for cancer detection. Instrumentation, data handling, as well as oncology applications of Raman techniques were covered. Optic fiber probes designs for Raman spectroscopy were discussed. Spectral data pre-processing, feature extraction, and classification between normal/benign and malignant tissues were surveyed. Applications of Raman techniques for clinical diagnosis for different types of cancers, including skin cancer, lung cancer, stomach cancer, oesophageal cancer, colorectal cancer, cervical cancer, and breast cancer, were summarized. Schematic of a real-time Raman spectrometer for skin cancer detection. Without correction, the image captured on CCD camera for a straight entrance slit has a curvature. By arranging the optic fiber array in reverse orientation, the curvature could be effectively corrected.
Collapse
Affiliation(s)
- Wenbo Wang
- Imaging Unit - Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., V5Z 1L3, Canada
- Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Jianhua Zhao
- Imaging Unit - Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., V5Z 1L3, Canada
- Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Michael Short
- Imaging Unit - Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., V5Z 1L3, Canada
| | - Haishan Zeng
- Imaging Unit - Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., V5Z 1L3, Canada
- Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
26
|
Near-infrared spectroscopy as a diagnostic tool for distinguishing between normal and malignant colorectal tissues. BIOMED RESEARCH INTERNATIONAL 2015; 2015:472197. [PMID: 25654106 PMCID: PMC4309295 DOI: 10.1155/2015/472197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/26/2014] [Indexed: 12/04/2022]
Abstract
Cancer diagnosis is one of the most important tasks of biomedical research and has become the main objective of medical investigations.
The present paper proposed an analytical strategy for distinguishing between normal and malignant colorectal tissues
by combining the use of near-infrared (NIR) spectroscopy with chemometrics. The successive projection algorithm-linear discriminant analysis
(SPA-LDA) was used to seek a reduced subset of variables/wavenumbers and build a diagnostic model of LDA. For comparison, the partial least
squares-discriminant analysis (PLS-DA) based on full-spectrum classification was also used as the reference. Principal component analysis (PCA)
was used for a preliminary analysis. A total of 186 spectra from 20 patients with partial colorectal resection were collected and divided into three subsets for training,
optimizing, and testing the model. The results showed that, compared to PLS-DA, SPA-LDA provided more parsimonious model using only three
wavenumbers/variables (4065, 4173, and 5758 cm−1) to achieve the sensitivity of 84.6%, 92.3%, and 92.3%
for the training, validation, and test sets, respectively, and the specificity of 100% for each subset. It indicated that the combination of
NIR spectroscopy and SPA-LDA algorithm can serve as a potential tool for distinguishing between normal and malignant colorectal tissues.
Collapse
|
27
|
Chen H, Tan C, Wu H, Lin Z, Wu T. Feasibility of Rapid Diagnosis of Colorectal Cancer by Near-Infrared Spectroscopy and Support Vector Machine. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.915410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Simonova D, Karamancheva I. Application of Fourier Transform Infrared Spectroscopy for Tumor Diagnosis. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0106] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
29
|
Hung PS, Kuo YC, Chen HG, Chiang HHK, Lee OKS. Detection of osteogenic differentiation by differential mineralized matrix production in mesenchymal stromal cells by Raman spectroscopy. PLoS One 2013; 8:e65438. [PMID: 23734254 PMCID: PMC3667172 DOI: 10.1371/journal.pone.0065438] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/24/2013] [Indexed: 11/21/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) hold great potential in skeletal tissue engineering and regenerative medicine. However, conventional methods that are used in molecular biology to evaluate osteogenic differentiation of MSCs require a relatively large amount of cells. Cell lysis and cell fixation are also required and all these steps are time-consuming. Therefore, it is imperative to develop a facile technique which can provide real-time information with high sensitivity and selectivity to detect the osteogenic maturation of MSCs. In this study, we use Raman spectroscopy as a biosensor to monitor the production of mineralized matrices during osteogenic induction of MSCs. In summary, Raman spectroscopy is an excellent biosensor to detect the extent of maturation level during MSCs-osteoblast differentiation with a non-disruptive, real-time and label free manner. We expect that this study will promote further investigation of stem cell research and clinical applications.
Collapse
Affiliation(s)
- Pei-San Hung
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chun Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - He-Guei Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Hua Kenny Chiang
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem cell Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Label-free detection of peripheral nerve tissues against adjacent tissues by spontaneous Raman microspectroscopy. Histochem Cell Biol 2012; 139:181-93. [DOI: 10.1007/s00418-012-1015-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
31
|
Li X, Li QB, Zhang GJ, Xu YZ, Sun XJ, Shi JS, Zhang YF, Wu JG. Identification of colitis and cancer in colon biopsies by Fourier Transform Infrared spectroscopy and chemometrics. ScientificWorldJournal 2012; 2012:936149. [PMID: 22645472 PMCID: PMC3356748 DOI: 10.1100/2012/936149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/25/2011] [Indexed: 12/27/2022] Open
Abstract
Cancer is a disease that does great harms to the health of human beings. FT-IR spectroscopy could identify variability at the molecular level in biological specimens. It is a rapid and noninvasive method, which could be used intraoperatively to modify surgical procedures. The aim of this paper is to identify and separate cancer from colitis in endoscopic colon biopsies through the use of FT-IR spectroscopy. A total of 88 endoscopic colon samples, including 41 cases of colitis and 47 cases of colon cancer, were obtained. Specimens were placed on an ATR accessory linked to FT-IR spectrometer with a MCT detector for greater stability and sensitivity. Later, specimens were sent for the histological examination as the reference in the spectral analysis. 41 colitis and 47 cancer specimens were compared. Spectra preprocessed with smoothing and normalization were used for discrimination analysis. PCA was processed to simplify the spectrum data set. Naive Bayes classifier model was constructed for diagnostic classification. Leave-one-out cross-validation method was utilized to assess the discrimination results. The sensitivity of FT-IR detection for cancer achieves 97.6%. The results showed that colon cancer could be distinguished from colitis with high accuracy using FT-IR spectroscopy and chemometrics.
Collapse
Affiliation(s)
- Xiang Li
- College of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fourier transform infrared microspectroscopy as a diagnostic tool for distinguishing between normal and malignant human gastric tissue. J Biosci 2011; 36:669-77. [DOI: 10.1007/s12038-011-9090-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Duraipandian S, Zheng W, Ng J, Low JJH, Ilancheran A, Huang Z. In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques. Analyst 2011; 136:4328-36. [PMID: 21869948 DOI: 10.1039/c1an15296c] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to evaluate the clinical utility of applying near-infrared (NIR) Raman spectroscopy and genetic algorithm-partial least squares-discriminant analysis (GA-PLS-DA) to identify biomolecular changes of cervical tissues associated with dysplastic transformation during colposcopic examination. A total of 105 in vivo Raman spectra were measured from 57 cervical sites (35 normal and 22 precancer sites) of 29 patients recruited, in which 65 spectra were from normal sites, while 40 spectra were from cervical precancerous lesions (i.e., 7 low-grade CIN and 33 high-grade CIN). The GA feature selection technique incorporated with PLS was utilized to study the significant biochemical Raman bands for differentiation between normal and precancer cervical tissues. The GA-PLS-DA algorithm with double cross-validation (dCV) identified seven diagnostically significant Raman bands in the ranges of 925-935, 979-999, 1080-1090, 1240-1260, 1320-1340, 1400-1420, and 1625-1645 cm(-1) related to proteins, nucleic acids and lipids in tissue, and yielded a diagnostic accuracy of 82.9% (sensitivity of 72.5% (29/40) and specificity of 89.2% (58/65)) for precancer detection. The results of this exploratory study suggest that Raman spectroscopy in conjunction with GA-PLS-DA and dCV methods has the potential to provide clinically significant discrimination between normal and precancer cervical tissues at the molecular level.
Collapse
Affiliation(s)
- Shiyamala Duraipandian
- Optical Bioimaging Laboratory, Department of Bioengineering, Faculty of Engineering, National University of Singapore, 9, Engineering Drive 1, Singapore 117576
| | | | | | | | | | | |
Collapse
|
34
|
Khanmohammadi M, Garmarudi AB. Infrared spectroscopy provides a green analytical chemistry tool for direct diagnosis of cancer. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
35
|
Sahu RK, Mordechai S. Spectral signatures of colonic malignancies in the mid-infrared region: from basic research to clinical applicability. Future Oncol 2011; 6:1653-67. [PMID: 21062162 DOI: 10.2217/fon.10.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The process of carcinogenesis in the colon progresses through several overlapping stages, making the evaluation process challenging, as well as subjective. Owing to the complexity of colonic tissues and the search for a technique that is rapid and foolproof for precise grading and evaluation of biopsies, many spectroscopic techniques have been evaluated in the past few decades for their efficiency and clinical compatibility. Fourier-transform infrared spectroscopy, being quantitative and objective, has the capacity for automation and relevance to cancer diagnosis. This article highlights investigations on the application of Fourier-transform infrared spectroscopy (particularly microscopy) in colon cancer diagnosis and parallel developments in data analysis techniques for the characterization of spectral signatures of malignant tissues in the colon.
Collapse
Affiliation(s)
- Ranjit K Sahu
- Center for Autoimmune & Musculoskeletal Disease, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | |
Collapse
|
36
|
Katukuri VK, Hargrove J, Miller SJ, Rahal K, Kao JY, Wolters R, Zimmermann EM, Wang TD. Detection of colonic inflammation with Fourier transform infrared spectroscopy using a flexible silver halide fiber. BIOMEDICAL OPTICS EXPRESS 2010; 1:1014-1025. [PMID: 21258526 PMCID: PMC3018051 DOI: 10.1364/boe.1.001014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/16/2010] [Accepted: 09/19/2010] [Indexed: 05/03/2023]
Abstract
Persistent colonic inflammation increases risk for cancer, but mucosal appearance on conventional endoscopy correlates poorly with histology. Here we demonstrate the use of a flexible silver halide fiber to collect mid-infrared absorption spectra and an interval model to distinguish colitis from normal mucosa in dextran sulfate sodium treated mice. The spectral regime between 950 and 1800 cm(-1) was collected from excised colonic specimens and compared with histology. Our model identified 3 sub-ranges that optimize the classification results, and the performance for detecting inflammation resulted in a sensitivity, specificity, accuracy, and positive predictive value of 92%, 88%, 90%, and 88%, respectively.
Collapse
Affiliation(s)
- Vinay K. Katukuri
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| | | | - Sharon J. Miller
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| | - Kinan Rahal
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| | - John Y. Kao
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| | | | - Ellen M. Zimmermann
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| | - Thomas D. Wang
- Department of Medicine, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place,
Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Evaluation of gallbladder lipid level during carcinogenesis by an infrared spectroscopic method. Dig Dis Sci 2010; 55:2670-5. [PMID: 19957036 DOI: 10.1007/s10620-009-1045-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 10/27/2009] [Indexed: 12/29/2022]
Abstract
BACKGROUND Fourier transform infrared (FTIR) spectroscopy is sensitive to the molecular composition of tissue and has the potential to identify premalignant tissue. Our previous studies found that the lipids band of FTIR decreased in malignant tissues compared to normal tissue but increased in the cell line. AIM To investigate the change of lipids during carcinogenesis in the gallbladder by FTIR spectroscopy. METHODS The tissue from 12 malignant samples and 10 normal samples together with their corresponding tissue plasma membrane and gallbladder cancer cell lines were observed by FTIR. RESULTS Specific changes of lipids were observed in the FTIR spectral features of tissue, cell, and plasma membrane. The CH3 stretching band at 2,957 cm(-1) and the CH2 stretching bands at 2,853 cm(-1) decreased in the malignant tissue but increased in the tissue plasma membrane; the C-O stretching band at 1,740 cm(-1) disappeared in the malignant tissue but significantly increased in the tissue plasma membrane. The intensity of these bands all increased in the cancer cell line. The ratio of intensity (I) of 1,460 cm(-1)/1,398 cm(-1) was smaller in malignant tissue and the tissue plasma membrane. CONCLUSIONS Lipids were increased in the plasma membrane during carcinogenesis of the gallbladder; the ratio of intensity (I) 1,460 cm(-1)/1,398 cm(-1) could be a marker to diagnose cancer by FTIR.
Collapse
|
38
|
Matsuura Y, Kino S, Katagiri T. Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection. APPLIED OPTICS 2009; 48:5396-400. [PMID: 19798380 DOI: 10.1364/ao.48.005396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A hollow optical-fiber probe for infrared attenuated total reflection (ATR) spectroscopy is developed. A newly designed ATR prism, optimized for use with hollow optical fibers, is proposed. Results from preliminary experiments show the potential uses of the probe in clinical applications. The probe is appropriate for in vivo applications because it is consists of only nontoxic and chemically durable materials.
Collapse
Affiliation(s)
- Yuji Matsuura
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aoba, Sendai 980-8579, Japan.
| | | | | |
Collapse
|
39
|
Kendall C, Isabelle M, Bazant-Hegemark F, Hutchings J, Orr L, Babrah J, Baker R, Stone N. Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst 2009; 134:1029-45. [PMID: 19475128 DOI: 10.1039/b822130h] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vibrational spectroscopy techniques have demonstrated potential to provide non-destructive, rapid, clinically relevant diagnostic information. Early detection is the most important factor in the prevention of cancer. Raman and infrared spectroscopy enable the biochemical signatures from biological tissues to be extracted and analysed. In conjunction with advanced chemometrics such measurements can contribute to the diagnostic assessment of biological material. This paper also illustrates the complementary advantage of using Raman and FTIR spectroscopy technologies together. Clinical requirements are increasingly met by technological developments which show promise to become a clinical reality. This review summarises recent advances in vibrational spectroscopy and their impact on the diagnosis of cancer.
Collapse
Affiliation(s)
- Catherine Kendall
- Biophotonics Research Unit, Leadon House, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK GL1 3NN
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Optical diagnosis of peritoneal metastases by infrared microscopic imaging. Anal Bioanal Chem 2009; 393:1619-27. [DOI: 10.1007/s00216-009-2630-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 02/04/2023]
|
41
|
Abstract
The rapid developments in the field of infrared spectroscopy in the past decade have demonstrated a potential for disease diagnosis using noninvasive technologies. Several earlier studies have highlighted the advantage of using infrared spectroscopy both in the near- and mid-infrared regions for diagnostic purposes at clinical levels. The areas of focus have been the distinction of premalignant and malignant cells and tissues from their normal state using specific parameters obtained from Fourier transform infrared spectra, making it a rapid and reagent-free method. While it still requires pilot studies and designed clinical trials to ensure the applicability of such systems for cancer diagnosis, substantial progress has been made in incorporating advances in computational methods into the system to increase the sensitivity of the entire setup, making it an objective and sensitive technique suitable for automation to suit the demands of the medical community. The development of fiber-optics systems for infrared spectroscopy have further opened up new and modern avenues in medical diagnosis at various levels of cells, tissues and organs under laboratory and clinical conditions.
Collapse
Affiliation(s)
- R K Sahu
- Ben Gurion University, Department of Physics and the Cancer Research Institute, Beer-Sheva, Israel.
| | | |
Collapse
|
42
|
Taylor GW, Jayne DG. Robotic applications in abdominal surgery: their limitations and future developments. Int J Med Robot 2007; 3:3-9. [PMID: 17441019 DOI: 10.1002/rcs.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND In the past 20 years, the technical aspects of abdominal surgery have changed dramatically. Operations are now routinely performed by laparoscopic techniques utilizing small abdominal incisions, with less patient discomfort, earlier recovery, improved cosmesis, and in many cases reduced economic burden on the healthcare provider. These benefits have largely been seen in the application of laparoscopic techniques to relatively straightforward procedures. It is not clear whether the same benefits carry through to more complex abdominal operations, which are more technically demanding and for which current laparoscopic instrumentation is less well adapted. The aim of surgical robotics is to address these problems and allow the advantages of minimal access surgery to be seen in a greater range of operations. METHODS A literature search was performed to ascertain the current state of the art in surgical robotics for the abdomen, and the technologies emerging within this field. The reference lists of the sourced articles were also searched for further relevant papers. RESULTS Currently available robotic devices for abdominal surgery are limited to large, costly 'slave-master' or telemanipulator systems, such as the da Vinci (Intuitive Surgical, Sunny Vale, CA). In addition to their size and expense, these systems share the same limitation, by virtue of the fulcrum effect on instrument manipulation inherent in the use of ports by which external instruments gain access to the abdominal cavity. In order to overcome these limitations several smaller telemanipulator systems are being developed, and progress towards freely mobile intracorporeal devices is being made. CONCLUSIONS While current robotic systems have considerable advantages over conventional laparoscopic techniques, they are not without limitations. Miniaturisation of robotic components and systems is feasible and necessary to allow minimally invasive techniques to reach full potential. The ultimate extrapolation of this progress is the development of intracorporeal robotics, the feasibility of which has been demonstrated.
Collapse
Affiliation(s)
- G W Taylor
- Academic Surgical Unit, Clinical Sciences Building, St. James's University Hospital, Leeds, UK.
| | | |
Collapse
|
43
|
Tfayli A, Piot O, Durlach A, Bernard P, Manfait M. Discriminating nevus and melanoma on paraffin-embedded skin biopsies using FTIR microspectroscopy. Biochim Biophys Acta Gen Subj 2005; 1724:262-9. [PMID: 15935560 DOI: 10.1016/j.bbagen.2005.04.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/19/2005] [Accepted: 04/21/2005] [Indexed: 11/25/2022]
Abstract
FTIR microspectroscopy, in combination with cluster analysis, has been used to characterise skin tissues, in order to discriminate cancerous from non-cancerous ones. The main objective of this in vitro study was to demonstrate the applicability of infrared spectral imaging to separate, on paraffinised biopsies, pigmented nevi (benign skin lesions) from melanomas (malignant skin lesions). Infrared spectra were collected from paraffin-embedded samples of nevi and melanomas, without deparaffinisation. Despite the important contribution of the paraffin in these spectra, it was possible to find meaningful and discriminating spectral regions. Spectral imaging was first performed to localize different skin layers (dermis and epidermis). Spectra extracted from the images were subjected to hierarchical classification algorithm, which allowed the discrimination of melanomas from the nevi, using selected spectral windows that correspond to vibrations of DNA and melanin content. The diversity of skin lesions and direct accessibility to the skin make this organ an interesting field of investigation using this technique.
Collapse
Affiliation(s)
- Ali Tfayli
- MéDIAN Unit, CNRS UMR 6142, Faculty of Pharmacy, Reims Champagne Ardenne, University, 51 rue Cognacq Jay, 51096 Reims cedex, France
| | | | | | | | | |
Collapse
|