1
|
Kim SW, Lee JY, Lee HC, Ahn JB, Kim JH, Park IS, Cheon JH, Kim DH. Downregulation of Heat Shock Protein 72 Contributes to Fibrostenosis in Crohn's Disease. Gut Liver 2023; 17:905-915. [PMID: 36814356 PMCID: PMC10651382 DOI: 10.5009/gnl220308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/21/2022] [Accepted: 11/29/2022] [Indexed: 02/24/2023] Open
Abstract
Background/Aims Crohn's disease (CD) with recurrent inflammation can cause intestinal fibrostenosis due to dysregulated deposition of extracellular matrix. However, little is known about the pathogenesis of fibrostenosis. Here, we performed a differential proteomic analysis between normal, inflamed, and fibrostenotic specimens of patients with CD and investigated the roles of the candidate proteins in myofibroblast activation and fibrosis. Methods We performed two-dimensional difference gel electrophoresis and identified candidate proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and orbitrap liquid chromatography-mass spectrometry. We also verified the levels of candidate proteins in clinical specimens and examined their effects on 18Co myofibroblasts and Caco-2 intestinal epithelial cells. Results We identified five of 30 proteins (HSP72, HSPA5, KRT8, PEPCK-M, and FABP6) differentially expressed in fibrostenotic CD. Among these proteins, the knockdown of heat shock protein 72 (HSP72) promoted the activation and wound healing of myofibroblasts. Moreover, knockdown of HSP72 induced the epithelial-mesenchymal transition of intestinal epithelial cells by reducing E-cadherin and inducing fibronectin and α-smooth muscle actin, which contribute to fibrosis. Conclusions HSP72 is an important mediator that regulates myofibroblasts and epithelial-mesenchymal transition in fibrosis of CD, suggesting that HSP72 can serve as a target for antifibrotic therapy.
Collapse
Affiliation(s)
- Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Young Lee
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Han Cheol Lee
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Bum Ahn
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyung Kim
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Seoul, Korea
| | - I Seul Park
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Duk Hwan Kim
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
2
|
Xie W, An L, Liu Z, Wang X, Fu X, Ma J. Therapeutic Effect of Polaprezinc on Reflux Esophagitis in the Rat Model. Dig Dis Sci 2023:10.1007/s10620-023-07990-6. [PMID: 37335414 DOI: 10.1007/s10620-023-07990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND/AIMS To explore the protective effects and therapeutic mechanism of Esomeprazole (PPI), polaprezinc granule (PZ), and PPI + PZ on reflux esophagitis (RE) in the rat model. METHODS Wistar rats were randomly divided into 9 groups, which contain the control group, the acid cessation group (0.7% HCl, Q3D × 4), and the acid persistence group (0.7% HCl, Q3D × 11). PPI was administered by gavage at 8 mg·kg-1 body weight and PZ was administered by gavage at 120 mg·kg-1 body weight once a day for 15 days. The gastric cardia tissue of the feeding tube was observed under the light microscope, and the levels of interleukin-8 (IL-8) and prostaglandin E2 (PGE2) were measured by ELISA. The expression of EGFR, Akt, p-Akt, and p-mTOR was detected by Western blot. RESULTS The ELISA results showed that the levels of IL-8 and PGE2 were significantly increased in the model group, but decreased in all groups after treatment. In the acid cessation group, PZ treatment had the most significant effect on reducing IL-8 levels and PPI + PZ treatment had the most significant effect on reducing PGE2 levels. In the acid persistence group, the PPI treatment had the most significant effect on reducing the levels of IL-8 and PGE2, and the PZ treatment could also significantly reduce their levels, close to the normal value. Western blot results showed that the expression of PI3K/Akt/mTOR pathway protein was increased in the model group, while its expression was decreased after treatment. CONCLUSIONS Polaprezinc has a significant therapeutic effect on RE in rats, which can reduce the levels of IL-8 and PGE2 and downregulate the expression of PI3K/Akt/mTOR signal pathway protein. The efficacy of polaprezinc in the treatment of reflux esophagitis is comparable to that of PPI, and the combination of them is more effective in the reflux esophagitis treatment.
Collapse
Affiliation(s)
- Wenbo Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China
| | - Lu An
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China
| | - Zhaoyang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xindi Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, Liaoning Province, China
| | - Xueqi Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China
| | - Junfeng Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China.
| |
Collapse
|
3
|
Pietroletti R, Giuliani A, Buonanno A, Mattei A, Fiasca F, Gallo G. Efficacy and Tolerability of a New Formulation in Rectal Ointment Based on Zn-L-Carnosine (Proctilor®) in the Treatment of Haemorrhoidal Disease. Front Surg 2022; 9:818887. [PMID: 35402488 PMCID: PMC8993583 DOI: 10.3389/fsurg.2022.818887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/27/2022] [Indexed: 01/05/2023] Open
Abstract
Haemorrhoidal disease (HD) shows high prevalence in western countries, reaching 4.4% per year in the US. Topical preparations are the first-line treatments, which are readily available as “over-the-counter” (OTC) products, often containing a nonstandardised mixture of “natural” remedies, or anaesthetics or cortisol;those latter are not free from undesirable effects. The Zinc-L-Carnosine is a cytoprotective compound, promoting mucosal repair in the gastrointestinal tract and also in mucosal repair, following radiation injuries to the rectum as well as in ulcerative colitis. Our aim was to study the efficacy of Zinc-L-Carnosine in relieving acute symptoms of HD, testing a preparation in the rectal ointment, Proctilor®, in patients complaining of bleeding or thrombosed piles. In a multicentre open trial, 21 patients older than 18 years of age were enrolled. The symptoms of HD were graded according to the Haemorrhoidal Disease Symptoms Score (HDSS) in association with the Short Health Scale (SHS) to assess the influence of HD on quality of life. The pain was assessed with the VAS score, bowel habit by means of the Bristol scale. The patients were evaluated at enrolment (T0) and 2 (T1) and 4 (T2) weeks of treatment with Proctilor® rectal ointment. There were 10 men and 11 women; mean age, 49 years. Pain, bleeding, and thrombosis were all significantly reduced after treatment; the mean VAS score decreased from 4.71 ± 3.05 at T0 to.52 ± 0.87 and.05 ± 0.22 at T1 and T2, respectively; (mean ± SD; p < 0.001 in both cases). Similarly, the HDSS score showed to be significantly reduced between T0, T1 (8.05 ± 4.55 vs. 1.14 ± 1.01), and T2 (8.05 ± 4.55 vs. 24 ± 0.44) (mean ± SD; p < 0.001 in both cases). Quality of life showed to be improved as the SHS score decreased significantly with treatment (7.90 ± 4.17 at T0 vs. 4.24 ± 0.44 at T1 vs. 4.05 ± 0.22 at T2; mean ± SD; p < 0.001 in both cases). The Bristol score of defecation remained substantially unchanged. No side effects or discontinuation of treatment were reported. Results of our investigation suggest a role of Proctilor® rectal ointment in treating symptomatic HD with good results and an excellent safety profile. However, our preliminary results encourage further studies on a larger number of patients to confirm the role of Zinc-L-Carnosine in the rectal ointment for the topical treatment of HD.
Collapse
Affiliation(s)
- Renato Pietroletti
- Surgical Coloproctology University of L'Aquila—Hospital Val Vibrata, Sant'Omero, Italy
- *Correspondence: Renato Pietroletti
| | - Antonio Giuliani
- General Surgery University of L'Aquila—Hospital San Salvatore, L'Aquila, Italy
| | - Alberto Buonanno
- General Surgery ASREM-AREA 5, Hospital San Benedetto del Tronto, San Benedetto del Tronto, Italy
| | - Antonella Mattei
- Public Health Section—Department of Life Health and Environmental Sciences University of L'Aquila, L'Aquila, Italy
| | - Fabiana Fiasca
- Public Health Section—Department of Life Health and Environmental Sciences University of L'Aquila, L'Aquila, Italy
| | - Gaetano Gallo
- Department of Surgery University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
4
|
Li M, Sun Z, Zhang H, Liu Z. Recent advances on polaprezinc for medical use (Review). Exp Ther Med 2021; 22:1445. [PMID: 34721687 DOI: 10.3892/etm.2021.10880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
The present study described the chemical and biological properties of zinc complex of L-carnosine (L-CAZ; generic name, polaprezinc; chemical name, catena-(S)-[µ-[N(α)-(3-aminopropionyl) histidinato (2-) N1, N2, O: N(τ)]-zinc], molecular formula, C9H14N4O3Zn; molecular weight, 291.6404; CAS registry number, 107667-60-7). Characterized as a white or yellowish white crystalline powder, this drug is insoluble in glacial acetic acid and almost insoluble in water, methanol, ethanol and ether. It is soluble in dilute hydrochloric acid, dilute nitric acid and sodium hydroxide solution, and its melting point is 260-270˚C. Polaprezinc is an anti-ulcer drug that was jointly studied and developed by Hamari Chemicals Co., Ltd. and Zeria Pharmaceutical Co., Ltd., and was first approved in Japan in 1994. This review article summarizes the research advances of polaprezinc, including the patents, preparations, synthetic routes, pharmacokinetics, pharmacological effects and application in clinical research.
Collapse
Affiliation(s)
- Mingru Li
- Jilin Broadwell Pharmaceutical Co., Ltd., Liaoyuan, Jilin 136200, P.R. China
| | - Zhen Sun
- Department of Gastroenterology, Jilin People's Hospital, Jilin City, Jilin 132000, P.R. China
| | - Hong Zhang
- Jilin Broadwell Pharmaceutical Co., Ltd., Liaoyuan, Jilin 136200, P.R. China
| | - Zhaoyang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
5
|
Ooi TC, Chan KM, Sharif R. Zinc L-Carnosine Protects CCD-18co Cells from L-Buthionine Sulfoximine-Induced Oxidative Stress via the Induction of Metallothionein and Superoxide Dismutase 1 Expression. Biol Trace Elem Res 2020; 198:464-471. [PMID: 32146577 DOI: 10.1007/s12011-020-02108-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Zinc L-carnosine (ZnC) is the chelate form of zinc and L-carnosine and is one of the zinc supplements available in the market. This study aims to determine the protective effects of ZnC against L-buthionine sulfoximine (BSO)-induced oxidative stress in CCD-18co human normal colon fibroblast cell line. CCD-18co cells were pretreated with ZnC (0-100 μM) for 24 h before the induction of oxidative stress by BSO (1 mM) for another 24 h. Results from this present study demonstrated that ZnC up to the concentration of 100 μM was not cytotoxic to CCD-18co cells. Induction with BSO significantly increased the intracellular reactive oxygen species (ROS) levels and reduced the intracellular glutathione (GSH) levels in CCD-18co cells. Pretreatment with ZnC was able to attenuate the increment in intracellular ROS level in CCD-18co cells significantly in a concentration-dependent manner. However, ZnC did not have any effects on intracellular GSH levels and Nrf2 activation. Mechanistically, pretreatment with ZnC was able to upregulate the expression of metallothionein (MT) and superoxide dismutase 1 (SOD1) in CCD-18co cells. Results from dual-luciferase reporter gene assay reported that ZnC was able to increase the MRE-mediated relative luciferase activities in a concentration-dependent manner, suggesting that the induction of MT expression by ZnC was due to the activation of MTF-1 signaling pathway. Taken together, our current findings suggest that ZnC can protect CCD-18co cells from BSO-induced oxidative stress via the induction of MT and SOD1 expression.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Kok Meng Chan
- Environmental Health and Industrial Safety Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Razinah Sharif
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
- Biocompatibility Laboratory, Centre for Research and Instrumentation, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Liu Z, Xie W, Li M, Liu J, Liang X, Li T. Intrarectally administered polaprezinc attenuates the development of dextran sodium sulfate-induced ulcerative colitis in mice. Exp Ther Med 2019; 18:4927-4934. [PMID: 31798714 DOI: 10.3892/etm.2019.8155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Polaprezinc (PZ), a chelate of zinc and L-carnosine, has been widely used in the treatment of gastric ulcers since 1994. In recent years, researchers have found PZ to have a beneficial effect on various experimentally induced models of colitis in mice. In the present study, 6% dextran sodium sulfate (DSS) was used to induce a model of ulcerative colitis (UC) in Institute of Cancer Research mice. The therapeutic effect and mechanism of PZ action in a model of UC was studied in order to provide an experimental basis for the clinical application of PZ in UC treatment. The effect of PZ on UC was evaluated in five groups of mice: A vehicle control only group, a DSS model control group (DSS, 6%), a validated treatment control group (DSS 6% + Mesalamine), a low-dose PZ treatment group (DSS 6% + PZ 60 mg/kg) and a high-dose PZ group (DSS 6% + PZ 120 mg/kg). After the animals were sacrificed, blood was collected and the serum levels of NF-κB and tumor necrosis factor-α (TNF-α) were measured. Changes in histology were observed by light microscopy. The protein levels of AKT, phosphorylated AKT and heat shock protein 70 (HSP70) were determined by western blot analysis. The results suggested that PZ reduced the DSS-induced increase in the inflammatory proteins TNF-α and NF-κB in the UC model. The high-dose of PZ also increased the HSP70 protein level, inhibited AKT phosphorylation in a DSS-induced UC animal model, and decreased white blood cell and neutrophil % counts compared to levels in an untreated DSS control group. Histopathology indicated that the mice of the DSS model group had irregular colonic villi, a large number of inflammatory cells and mucosal damage, whereas mice of the group treated with PZ had small intestinal villus morphology and their villi showed signs of recovery from the damage of UC. The results of the present study indicated that PZ significantly alleviates DSS-induced UC in mice, relieves diarrhea, and inhibits the phosphorylation of inflammatory factors and the inflammatory AKT signaling pathway.
Collapse
Affiliation(s)
- Zhaoyang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wenbo Xie
- Jilin Province Broadwell Pharmaceutical Co., Ltd., Liaoyuan, Jilin 130000, P.R. China
| | - Mingru Li
- Jilin Province Broadwell Pharmaceutical Co., Ltd., Liaoyuan, Jilin 130000, P.R. China
| | - Jing Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiao Liang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Tao Li
- Institute of Basic Medical Sciences of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
7
|
Hoter A, Naim HY. The Functions and Therapeutic Potential of Heat Shock Proteins in Inflammatory Bowel Disease-An Update. Int J Mol Sci 2019; 20:ijms20215331. [PMID: 31717769 PMCID: PMC6862201 DOI: 10.3390/ijms20215331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial human intestinal disease that arises from numerous, yet incompletely defined, factors. Two main forms, Crohn's disease (CD) and ulcerative colitis (UC), lead to a chronic pathological form. Heat shock proteins (HSPs) are stress-responsive molecules involved in various pathophysiological processes. Several lines of evidence link the expression of HSPs to the development and prognosis of IBD. HSP90, HSP70 and HSP60 have been reported to contribute to IBD in different aspects. Moreover, induction and/or targeted inhibition of specific HSPs have been suggested to ameliorate the disease consequences. In the present review, we shed the light on the role of HSPs in IBD and their targeting to prevent further disease progression.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt or
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Correspondence: ; Tel.: +49-511-953-8780; Fax: +49-511-953-8585
| |
Collapse
|
8
|
Kobayashi Y, Ohfuji S, Kondo K, Fukushima W, Sasaki S, Kamata N, Yamagami H, Fujiwara Y, Suzuki Y, Hirota Y. Association between dietary iron and zinc intake and development of ulcerative colitis: A case-control study in Japan. J Gastroenterol Hepatol 2019; 34:1703-1710. [PMID: 30821862 DOI: 10.1111/jgh.14642] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM The prevalence of ulcerative colitis (UC) has been increasing in Japan. Trace elements, such as iron, zinc, magnesium, and copper, can cause digestive symptoms where there is a deficiency or excess. We focused on the dietary intake of trace elements and their associations with UC development. METHODS A multicenter, hospital-based case-control study was conducted in Japan. Cases were 127 newly diagnosed UC patients, and 171 age-matched and sex-matched hospital controls were recruited. We considered that UC patients had potentially changed their dietary habits due to disease symptoms. The dietary habits were investigated using a self-administered diet history questionnaire to analyze the dietary intakes and frequencies at two points, the previous 1 month and 1 year before. RESULTS In the assessment of dietary habits 1 year before, the highest intake of iron showed an increased odds ratio (OR) for UC on multivariate analysis (OR = 4.05, 95% confidence interval, 1.46-11.2, P < 0.01). The highest intake of zinc 1 year before showed a decreased OR for UC (OR = 0.39, 95% confidence interval, 0.18-0.85, P = 0.01). Intakes of magnesium and copper had no significant association with UC. Because most UC cases had experienced the first symptom of UC within the previous 11 months, these intakes at 1 year before represented an association with pre-illness dietary habits. CONCLUSION A high intake of iron has some effect on the development of UC. In contrast, a high intake of zinc has a protective effect on the development of UC.
Collapse
Affiliation(s)
- Yumie Kobayashi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoko Ohfuji
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kyoko Kondo
- Osaka City University Hospital Administration Division, Osaka, Japan
| | - Wakaba Fukushima
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Sasaki
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Noriko Kamata
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hirokazu Yamagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuo Suzuki
- Department of Internal Medicine, Sakura Medical Center, Toho University, Chiba, Japan
| | - Yoshio Hirota
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan.,College of Healthcare Management, Fukuoka, Japan
| | | |
Collapse
|
9
|
Moradi-Marjaneh R, Paseban M, Moradi Marjaneh M. Hsp70 inhibitors: Implications for the treatment of colorectal cancer. IUBMB Life 2019; 71:1834-1845. [PMID: 31441584 DOI: 10.1002/iub.2157] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the world. Despite intensive advances in diagnosis and treatment of CRC, it is yet one of the leading cause of cancer related morbidity and mortality. Therefore, there is an urgent medical need for alternative therapeutic approaches to treat CRC. The 70 kDa heat shock proteins (Hsp70s) are a family of evolutionary conserved heat shock proteins, which play an important role in cell homeostasis and survival. They overexpress in various types of malignancy including CRC and are typically accompanied with poor prognosis. Hence, inhibition of Hsp70 may be considered as a striking chemotherapeutic avenue. This review summarizes the current knowledge on the progress made so far to discover compounds, which target the Hsp70 family, with particular emphasis on their efficacy in treatment of CRC. We also briefly explain the induction of Hsp70 as a strategy to prevent CRC.
Collapse
Affiliation(s)
| | - Maryam Paseban
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Moradi Marjaneh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Sironi C, Bodega F, Zocchi L, Porta C. Effects of Creatine Treatment on Jejunal Phenotypes in a Rat Model of Acidosis. Antioxidants (Basel) 2019; 8:antiox8070225. [PMID: 31319541 PMCID: PMC6680959 DOI: 10.3390/antiox8070225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/03/2023] Open
Abstract
We investigated the effects of creatine treatment on jejunal phenotypes in a rat model of oxidative stress induced by acidosis. In particular, the activities of some antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase, and glutathione reductase), the level of lipid peroxidation, the expression of heat shock proteins (HSP70), and the expression of the major carriers of the cells (Na+/K+-ATPase, sodium-glucose Transporter 1—SGLT1, and glucose transporter 2—GLUT2) were measured under control and chronic acidosis conditions. Creatine did not affect the activity of antioxidant enzymes in either the control or acidosis groups, except for catalase, for which the activity was reduced in both conditions. Creatine did not change the lipid peroxidation level or HSP70 expression. Finally, creatine stimulated (Na+/K+)-ATPase expression under both control and chronic acidosis conditions. Chronic acidosis caused reductions in the expression levels of GLUT2 and SGLT1. GLUT2 reduction was abolished by creatine, while the presence of creatine did not induce any strengthening effect on the expression of SGLT1 in either the control or chronic acidosis groups. These results indicate that creatine has antioxidant properties that are realized through direct interaction of the molecule with reactive oxygen species. Moreover, the administration of creatine seems to determine a functional strengthening of the tissue, making it more resistant to acidosis.
Collapse
Affiliation(s)
- Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy.
| | - Luciano Zocchi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Facoltà di Medicina e Chirurgia, Università degli Studi di Milano, Via Mangiagalli 32, 20133 Milano, Italy
| |
Collapse
|
11
|
Prasher P, Mudila H, Sharma M, Khati B. Developmental perspectives of the drugs targeting enzyme-instigated inflammation: a mini review. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Kim M, Min YS, Sohn UD. Cytoprotective effect of eupatilin against indomethacin-induced damage in feline esophageal epithelial cells: relevance of HSP27 and HSP70. Arch Pharm Res 2018; 41:1019-1031. [PMID: 30109575 DOI: 10.1007/s12272-018-1066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/10/2018] [Indexed: 12/28/2022]
Abstract
Indomethacin is a non-steroidal anti-inflammatory drug with clearly known side effects on the gastrointestinal tract. The purpose of the present study was to investigate whether eupatilin inhibit cell injury induced by indomethacin in cultured feline esophageal epithelial cells (EECs). EECs were used to investigate the ability of eupatilin to induce the expression of heat shock proteins (HSP27 and HSP70) and analyze its cytoprotective effect against indomethacin-induced damage. The treatment of EECs with indomethacin for 8 h decreased cell viability. Western blot analysis showed that the levels of HSPs gradually decreased in cells treated with indomethacin, while eupatilin treatment increased the levels of HSPs. When treated with both indomethacin and eupatilin, the levels of HSPs increased rapidly, and were maintained at 130-140%. In addition, treatment with the specific inhibitors of PTK, PKC, PLC, p38 MAPK, JNKs, and PI3K attenuated the eupatilin-induced expression of HSPs. Pretreatment of EECs with the inhibitors of protein synthesis, actinomycin D or cycloheximide, attenuated the cytoprotective effect of eupatilin on indomethacin-induced cell damage. Reactive oxygen species production was upregulated by indomethacin, but downregulated by eupatilin. Taken together, it was suggested that HSPs were partly responsible for the eupatilin-mediated cytoprotective activity against the indomethacin-induced damage in EECs.
Collapse
Affiliation(s)
- Mina Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06911, Republic of Korea
| | - Young Sil Min
- Department of Pharmaceutical Engineering, College of Convergence Science and Technology, Jung Won University, Goesan, Chungcheongbuk-do, 28054, Republic of Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06911, Republic of Korea.
| |
Collapse
|
13
|
Handa O, Takayama S, Mukai R, Suyama Y, Majima A, Fukui A, Omatsu T, Naito Y. A review of the mechanism and prophylaxis of acetyl salicylic acid-induced injury of the small intestine. Free Radic Res 2018; 52:1266-1270. [DOI: 10.1080/10715762.2018.1455003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Osamu Handa
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shun Takayama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rieko Mukai
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Suyama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Majima
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akifumi Fukui
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsushi Omatsu
- Department of Gastroenterology, Asahi University Hospital, Asahi University, Gifu, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Ooi TC, Chan KM, Sharif R. Antioxidant, Anti-inflammatory, and Genomic Stability Enhancement Effects of Zinc l-carnosine: A Potential Cancer Chemopreventive Agent? Nutr Cancer 2017; 69:201-210. [PMID: 28094570 DOI: 10.1080/01635581.2017.1265132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is one of the major causes of death worldwide, and the incidence and mortality rates of cancer are expected to rise tremendously in the near future. Despite a better understanding of cancer biology and advancement in cancer management, current strategies in cancer treatment remain costly and ineffective. Hence, instead of putting more efforts to search for new cancer cures, attention has now been shifted to the development of cancer chemopreventive agents as a preventive measure for cancer formation. It is well known that neoplastic transformation of cells is multifactorial, and the occurrence of oxidative stress, chronic inflammation, and genomic instability events has been implicated in the carcinogenesis of cells. Zinc l-carnosine (ZnC), which is clinically used as gastric ulcer treatment in Japan, has been suggested to have the potential in preventing cancer development. Multiple studies have revealed that ZnC possesses potent antioxidant, anti-inflammatory, and genomic stability enhancement effects. Thus, this review provides some mechanistic insight into the antioxidant, anti-inflammatory, and genomic stability enhancement effects of ZnC in relevance to its chemopreventive potential.
Collapse
Affiliation(s)
- Theng Choon Ooi
- a Biomedical Science Programme , School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Kok Meng Chan
- b Environmental Health and Industrial Safety Programme , School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Razinah Sharif
- c Programme of Nutritional Sciences , School of Healthcare Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| |
Collapse
|
15
|
Odawara S, Doi H, Shikata T, Kitajima K, Suzuki H, Niwa Y, Kosaka K, Tarutani K, Tsujimura T, Kamikonya N, Hirota S. Polaprezinc protects normal intestinal epithelium against exposure to ionizing radiation in mice. Mol Clin Oncol 2016; 5:377-381. [PMID: 27699029 PMCID: PMC5038609 DOI: 10.3892/mco.2016.983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/09/2016] [Indexed: 11/06/2022] Open
Abstract
Polaprezinc (PZ), an antiulcer drug, has been reported to have antioxidant effects. The purpose of the present study was to assess the radioprotective effects of PZ in the normal intestine of C57BL/6J mice. PZ was orally administered at 100 mg/kg body weight in the drinking water. Firstly, the present study compared the survival of normal intestinal crypt epithelial cells with mice that received PZ prior to or following irradiation. Next, the present study examined the sequential changes of the incidence of apoptosis in the normal intestine of mice that received irradiation. The mice that received PZ prior to irradiation demonstrated a stronger protective effect on the normal intestine compared with those that received PZ after irradiation. The present study therefore administrated PZ 2 h before irradiation in the subsequent experiments. The mice receiving PZ developed fewer apoptotic cells in the duodenum, jejunum and ileum. Radiation-induced cell death occurred with a peak at position 10 or lower from the base of the crypt axis, and was subsequently reduced by PZ treatment. Pretreatment with PZ protected the normal intestinal tissues from radiation-induced apoptosis.
Collapse
Affiliation(s)
- Soichi Odawara
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroshi Doi
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Toshiyuki Shikata
- Department of Pharmacy, Hyogo College of Medicine Sasayama Medical Center, Sasayama, Hyogo 669-2321, Japan
| | - Kazuhiro Kitajima
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hitomi Suzuki
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Yasue Niwa
- Department of Therapeutic Radiology, Uji-Tokushukai Medical Center, Uji, Kyoto 611-0041, Japan
| | - Kengo Kosaka
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuo Tarutani
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Norihiko Kamikonya
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Shozo Hirota
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
16
|
Arnal ME, Lallès JP. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota. Nutr Rev 2016; 74:181-97. [PMID: 26883882 DOI: 10.1093/nutrit/nuv104] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components.
Collapse
Affiliation(s)
- Marie-Edith Arnal
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| | - Jean-Paul Lallès
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France.
| |
Collapse
|
17
|
Hipkiss AR. Aging risk factors and Parkinson's disease: contrasting roles of common dietary constituents. Neurobiol Aging 2013; 35:1469-72. [PMID: 24388766 DOI: 10.1016/j.neurobiolaging.2013.11.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Abstract
Aging is a Parkinson's disease (PD) risk factor. It is suggested here that certain dietary components may either contribute to or ameliorate PD risk. There is evidence, which indicates that excessive carbohydrate (glucose or fructose) catabolism is a cause of mitochondrial dysfunction in PD, one consequence is increased production of methylglyoxal (MG). However, other dietary components (carnosine and certain plant extracts) not only scavenge MG but can also influence some of the biochemical events (signal transduction, stress protein synthesis, glycation, and toxin generation) associated with PD pathology. As double blind, placebo-controlled carnosine supplementation studies have revealed beneficial outcomes in humans, it is suggested that MG scavengers such as carnosine be further explored for their therapeutic potential toward PD.
Collapse
Affiliation(s)
- Alan R Hipkiss
- Aston Research Centre for Healthy Ageing (ARCHA), School of Health and Life Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
18
|
Aloisi A, Barca A, Romano A, Guerrieri S, Storelli C, Rinaldi R, Verri T. Anti-aggregating effect of the naturally occurring dipeptide carnosine on aβ1-42 fibril formation. PLoS One 2013; 8:e68159. [PMID: 23844165 PMCID: PMC3700870 DOI: 10.1371/journal.pone.0068159] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 05/31/2013] [Indexed: 01/24/2023] Open
Abstract
Carnosine is an endogenous dipeptide abundant in the central nervous system, where by acting as intracellular pH buffering molecule, Zn/Cu ion chelator, antioxidant and anti-crosslinking agent, it exerts a well-recognized multi-protective homeostatic function for neuronal and non-neuronal cells. Carnosine seems to counteract proteotoxicity and protein accumulation in neurodegenerative conditions, such as Alzheimer's Disease (AD). However, its direct impact on the dynamics of AD-related fibril formation remains uninvestigated. We considered the effects of carnosine on the formation of fibrils/aggregates of the amyloidogenic peptide fragment Aβ1-42, a major hallmark of AD injury. Atomic force microscopy and thioflavin T assays showed inhibition of Aβ1-42 fibrillogenesis in vitro and differences in the aggregation state of Aβ1-42 small pre-fibrillar structures (monomers and small oligomers) in the presence of carnosine. in silico molecular docking supported the experimental data, calculating possible conformational carnosine/Aβ1-42 interactions. Overall, our results suggest an effective role of carnosine against Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Alessandra Aloisi
- National Nanotechnology Laboratory (NNL) of Consiglio Nazionale delle Ricerche (CNR) – Istituto Nanoscienze Lecce, Lecce, Italy
| | - Amilcare Barca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Alessandro Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Sara Guerrieri
- National Nanotechnology Laboratory (NNL) of Consiglio Nazionale delle Ricerche (CNR) – Istituto Nanoscienze Lecce, Lecce, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Carlo Storelli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Rosaria Rinaldi
- National Nanotechnology Laboratory (NNL) of Consiglio Nazionale delle Ricerche (CNR) – Istituto Nanoscienze Lecce, Lecce, Italy
- Mathematics and Physics “E. De Giorgi” Department, University of Salento, Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
19
|
Hipkiss AR, Cartwright SP, Bromley C, Gross SR, Bill RM. Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential? Chem Cent J 2013; 7:38. [PMID: 23442334 PMCID: PMC3602167 DOI: 10.1186/1752-153x-7-38] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/07/2013] [Indexed: 12/24/2022] Open
Abstract
The dipeptide carnosine (β-alanyl-L-histidine) has contrasting but beneficial effects on cellular activity. It delays cellular senescence and rejuvenates cultured senescent mammalian cells. However, it also inhibits the growth of cultured tumour cells. Based on studies in several organisms, we speculate that carnosine exerts these apparently opposing actions by affecting energy metabolism and/or protein homeostasis (proteostasis). Specific effects on energy metabolism include the dipeptide's influence on cellular ATP concentrations. Carnosine's ability to reduce the formation of altered proteins (typically adducts of methylglyoxal) and enhance proteolysis of aberrant polypeptides is indicative of its influence on proteostasis. Furthermore these dual actions might provide a rationale for the use of carnosine in the treatment or prevention of diverse age-related conditions where energy metabolism or proteostasis are compromised. These include cancer, Alzheimer's disease, Parkinson's disease and the complications of type-2 diabetes (nephropathy, cataracts, stroke and pain), which might all benefit from knowledge of carnosine's mode of action on human cells.
Collapse
Affiliation(s)
- Alan R Hipkiss
- Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | | | | | | | | |
Collapse
|
20
|
Lodemann U, Einspanier R, Scharfen F, Martens H, Bondzio A. Effects of zinc on epithelial barrier properties and viability in a human and a porcine intestinal cell culture model. Toxicol In Vitro 2012; 27:834-43. [PMID: 23274768 DOI: 10.1016/j.tiv.2012.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 12/14/2012] [Accepted: 12/19/2012] [Indexed: 01/01/2023]
Abstract
Zinc is an essential trace element with a variety of physiological and biochemical functions. Piglets are commonly supplemented, during the weaning period, with doses of zinc above dietary requirements with positive effects on health and performance that might be attributed to anti-secretory and barrier-enhancing effects in the intestine. For a better understanding of these observations increasing zinc sulfate (ZnSO4; 0-200μM) concentrations were used in an in vitro culture model of porcine (IPEC-J2) and human (Caco-2) intestinal epithelial cells and effects on barrier function, viability, and the mRNA expression of one selected heat shock protein (Hsp) were assessed. When treated apically with zinc sulfate, the transepithelial electrical resistance (TEER) did not change significantly. In contrast, cell viability measured by lactate dehydrogenase (LDH) leakage, by ATP and by WST-1 conversion in postconfluent IPEC-J2 monolayers was affected after a 24-h treatment with 200μM ZnSO4. Caco-2 cells were more resistant to Zn. ZnSO4 did not induce any effect on viability, except when it was used at the highest concentration (200μM), and only in preconfluent cells. Furthermore, ZnSO4 induced Hsp70 mRNA expression at 200μM and was more pronounced in preconfluent cells. The observed dose-related effects of zinc are cell-line specific and depended on the differentiation status of the cells. The IPEC-J2 cell line appears to be a suitable in vitro model to characterize specific effects on porcine intestinal cells.
Collapse
Affiliation(s)
- U Lodemann
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany.
| | | | | | | | | |
Collapse
|
21
|
Zuhl M, Schneider S, Lanphere K, Conn C, Dokladny K, Moseley P. Exercise regulation of intestinal tight junction proteins. Br J Sports Med 2012; 48:980-6. [PMID: 23134759 DOI: 10.1136/bjsports-2012-091585] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gastrointestinal distress, such as diarrhoea, cramping, vomiting, nausea and gastric pain are common among athletes during training and competition. The mechanisms that cause these symptoms are not fully understood. The stress of heat and oxidative damage during exercise causes disruption to intestinal epithelial cell tight junction proteins resulting in increased permeability to luminal endotoxins. The endotoxin moves into the blood stream leading to a systemic immune response. Tight junction integrity is altered by the phosphoylation state of the proteins occludin and claudins, and may be regulated by the type of exercise performed. Prolonged exercise and high-intensity exercise lead to an increase in key phosphorylation enzymes that ultimately cause tight junction dysfunction, but the mechanisms are different. The purpose of this review is to (1) explain the function and physiology of tight junction regulation, (2) discuss the effects of prolonged and high-intensity exercise on tight junction permeability leading to gastrointestinal distress and (3) review agents that may increase or decrease tight junction integrity during exercise.
Collapse
Affiliation(s)
- Micah Zuhl
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Suzanne Schneider
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Katherine Lanphere
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Carole Conn
- Department of Nutrition/Dietetics, University of New Mexico, Albuquerque, New Mexico, USA
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Pope Moseley
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
22
|
Affiliation(s)
- Mineo Takei
- Pharmacological Research, Central Research Laboratories, Zeria Pharmaceutical Co., Ltd
| |
Collapse
|
23
|
Kono T, Asama T, Chisato N, Ebisawa Y, Okayama T, Imai K, Karasaki H, Furukawa H, Yoneda M. Polaprezinc prevents ongoing thioacetamide-induced liver fibrosis in rats. Life Sci 2012; 90:122-30. [DOI: 10.1016/j.lfs.2011.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/16/2011] [Accepted: 10/17/2011] [Indexed: 12/17/2022]
|
24
|
Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, Cuzzocrea S, Rizzarelli E, Calabrese EJ. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta Mol Basis Dis 2011; 1822:753-83. [PMID: 22108204 DOI: 10.1016/j.bbadis.2011.11.002] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 12/30/2022]
Abstract
Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
|
25
|
Effects of creatine in a rat intestinal model of ischemia/reperfusion injury. Eur J Nutr 2011; 51:375-84. [DOI: 10.1007/s00394-011-0222-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/11/2011] [Indexed: 01/13/2023]
|
26
|
Qin Y, Naito Y, Handa O, Hayashi N, Kuki A, Mizushima K, Omatsu T, Tanimura Y, Morita M, Adachi S, Fukui A, Hirata I, Kishimoto E, Nishikawa T, Uchiyama K, Ishikawa T, Takagi T, Yagi N, Kokura S, Yoshikawa T. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells. J Clin Biochem Nutr 2011; 49:174-81. [PMID: 22128216 PMCID: PMC3208013 DOI: 10.3164/jcbn.11-26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/20/2011] [Indexed: 12/13/2022] Open
Abstract
Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intestinal epithelial cells were incubated with 70 µM polaprezinc for 24 h, and then stimulated with or without 15 mM acetylsalicylic acid for a further 15 h. Subsequent cellular viability was quantified by fluorometric assay based on cell lysis and staining. Acetylsalicylic acid-induced cell death was also qualified by fluorescent microscopy of Hoechst33342 and propidium iodide. Heat shock proteins 70 protein expression after adding polaprezinc or acetylsalicylic acid was assessed by western blotting. To investigate the role of Heat shock protein 70, Heat shock protein 70-specific small interfering RNA was applied. Cell viability was quantified by fluorometric assay based on cell lysis and staining and apoptosis was analyzed by fluorescence-activated cell sorting. We found that acetylsalicylic acid significantly induced apoptosis of rat intestinal epithelial cells in a dose- and time-dependent manner. Polaprezinc significantly suppressed acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells at its late phase. At the same time, polaprezinc increased Heat shock protein 70 expressions of rat intestinal epithelial cells in a time-dependent manner. However, in Heat shock protein 70-silenced rat intestinal epithelial cells, polaprezinc could not suppress acetylsalicylic acid -induced apoptosis at its late phase. We conclude that polaprezinc-increased Heat shock protein 70 expression might be an important mechanism by which polaprezinc suppresses acetylsalicylic acid-induced small intestinal apoptosis, a hallmark of acetylsalicylic acid-induced enteropathy.
Collapse
Affiliation(s)
- Ying Qin
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Doi H, Kamikonya N, Takada Y, Fujiwara M, Tsuboi K, Inoue H, Tanooka M, Nakamura T, Shikata T, Tsujimura T, Hirota S. Efficacy of polaprezinc for acute radiation proctitis in a rat model. Int J Radiat Oncol Biol Phys 2011; 80:877-84. [PMID: 21377290 DOI: 10.1016/j.ijrobp.2011.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 12/24/2010] [Accepted: 01/10/2011] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of the present study was to standardize the experimental rat model of radiation proctitis and to examine the efficacy of polaprezinc on radiation proctitis. METHODS AND MATERIALS A total of 54 female Wistar rats (5 weeks old) were used. The rats were divided into three groups: those treated with polaprezinc (PZ+), those treated with base alone, exclusive of polaprezinc (PZ-), and those treated without any medication (control). All the rats were irradiated to the rectum. Polaprezinc was prepared as an ointment. The ointment was administered rectally each day after irradiation. All rats were killed on the 10th day after irradiation. The mucosal changes were evaluated endoscopically and pathologically. The results were graded from 0 to 4 and compared according to milder or more severe status, as applicable. RESULTS According to the endoscopic findings, the proportion of mild changes in the PZ+, PZ-, and control group was 71.4%, 25.0%, and 14.3% respectively. On pathologic examination, the proportion of low-grade findings in the PZ+, PZ-, and control group was 80.0%, 58.3%, and 42.9% for mucosal damage, 85.0%, 41.7%, and 42.9% for a mild degree of inflammation, and 50.0%, 33.3%, and 4.8% for a shallow depth of inflammation, respectively. The PZ+ group tended to have milder mucosal damage than the other groups, according to all criteria used. In addition, significant differences were observed between the PZ+ and control groups regarding the endoscopic findings, degree of inflammation, and depth of inflammation. CONCLUSIONS This model was confirmed to be a useful experimental rat model for radiation proctitis. The results of the present study have demonstrated the efficacy of polaprezinc against acute radiation-induced rectal disorders using the rat model.
Collapse
Affiliation(s)
- Hiroshi Doi
- Department of Radiology, Hyogo College of Medicine, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pfister F, Riedl E, Wang Q, vom Hagen F, Deinzer M, Harmsen MC, Molema G, Yard B, Feng Y, Hammes HP. Oral Carnosine Supplementation Prevents Vascular Damage in Experimental Diabetic Retinopathy. Cell Physiol Biochem 2011; 28:125-36. [DOI: 10.1159/000331721] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2011] [Indexed: 11/19/2022] Open
|
29
|
Babizhayev MA. Designation of imidazole-containing dipeptides as pharmacological chaperones. Hum Exp Toxicol 2010; 30:736-61. [PMID: 20656726 DOI: 10.1177/0960327110377526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We review the dichotomous regulatory roles of natural imidazole-containing peptidomimetics (N-acetylcarnosine [NAC], carcinine, non-hydrolized carnosine) in maintaining skin homeostasis that determines whether keratinocytes survive or undergo apoptosis in response to various insults and in the development of skin diseases. General strategies addressing common ground techniques to improve absorption of usually active chaperone proteins or their dipeptide inducer (usually poorly absorbed) compounds include encapsulation into hydrophobic carriers, combination with penetration enhancers, active electrical transport or chemical modification to increase hydrophobicity. A growing evidence is presented that demonstrates the ability of NAC (lubricant eye drops) or carcinine to act as pharmacological chaperones, or being synergistically coupled in patented formulations with another imidazole-containing peptidomimetic (such as, Leucyl-histidylhydrazide), to decrease oxidative stress and ameliorate oxidative and excessive glycation stress-related eye disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for age-related cataracts, glaucoma, age-related macular degeneration (AMD), and ocular complications of diabetes (OCD). Current efforts are being directed towards exploring therapeutic approaches of pharmacological targeting and human drug delivery for chaperone molecules based on innovative patented strategies.
Collapse
Affiliation(s)
- Mark A Babizhayev
- Innovative Vision Products Inc, County of New Castle, Delaware, USA.
| |
Collapse
|
30
|
Omatsu T, Naito Y, Handa O, Mizushima K, Hayashi N, Qin Y, Harusato A, Hirata I, Kishimoto E, Okada H, Uchiyama K, Ishikawa T, Takagi T, Yagi N, Kokura S, Ichikawa H, Yoshikawa T. Reactive oxygen species-quenching and anti-apoptotic effect of polaprezinc on indomethacin-induced small intestinal epithelial cell injury. J Gastroenterol 2010; 45:692-702. [PMID: 20174833 DOI: 10.1007/s00535-010-0213-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/19/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND To protect the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs is one of the critical issues in the field of gastroenterology. Polaprezinc (PZ), a gastric muco-protecting agent, has been widely used for the treatment of gastric ulcer and gastritis for its unique effects, such as its strong reactive oxygen species (ROS)-quenching effect. The aim of this study was to clarify the mechanism by which indomethacin-induced small intestinal mucosal injury occurs, by using a rat intestinal epithelial cell line (RIE-1). In addition, the protective role of PZ and the possible mechanism of its effect on indomethacin-induced small intestinal injury were investigated. METHODS Cell death was evaluated by methyl thiazolyl tetrazolium (MTT) assay and a double-staining method with Hoechst33342 dye and propidium iodide. Indomethacin-induced ROS production was evaluated by detecting the oxidation of a redox-sensitive fluorogenic probe, RedoxSensor, and the oxidation of cysteine residues of proteins (protein S oxidation). The activation of cytochrome c, smac/DIABLO, and caspase-3 was assessed by western blotting. In some experiments, PZ or its components, L: -carnosine and zinc, were used. RESULTS We found that indomethacin caused apoptosis in RIE-1 cells in a dose- and time-dependent manner. Indomethacin also induced ROS production and an increase in the protein S oxidation of RIE-1. Pretreatment of RIE-1 with PZ or zinc sulfate, but not L: -carnosine, significantly reduced the indomethacin-induced apoptosis. PZ prevented ROS production and the increase in protein S-oxidation. PZ inhibited indomethacin-induced cytochrome c and smac/DIABLO release and subsequent caspase-3 activation. CONCLUSIONS The protective effect of PZ on indomethacin-induced small intestinal injury may be dependent on its ROS-quenching effect.
Collapse
Affiliation(s)
- Tatsushi Omatsu
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ohata S, Moriyama C, Yamashita A, Nishida T, Kusumoto C, Mochida S, Minami Y, Nakada J, Shomori K, Inagaki Y, Ohta Y, Matsura T. Polaprezinc Protects Mice against Endotoxin Shock. J Clin Biochem Nutr 2010; 46:234-43. [PMID: 20490319 PMCID: PMC2872229 DOI: 10.3164/jcbn.09-125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/02/2010] [Indexed: 12/20/2022] Open
Abstract
Polaprezinc (PZ), a chelate compound consisting of zinc and l-carnosine (Car), is an anti-ulcer drug developed in Japan. In the present study, we investigated whether PZ suppresses mortality, pulmonary inflammation, and plasma nitric oxide (NO) and tumor necrosis factor (TNF)-α levels in endotoxin shock mice after peritoneal injection of lipopolysaccharide (LPS), and how PZ protects against LPS-induced endotoxin shock. PZ pretreatment inhibited the decrease in the survival rate of mice after LPS injection. PZ inhibited the increases in plasma NO as well as TNF-α after LPS. Compatibly, PZ suppressed LPS-induced inducible NO synthase mRNA transcription in the mouse lungs. PZ also improved LPS-induced lung injury. However, PZ did not enhance the induction of heat shock protein (HSP) 70 in the mouse lungs after LPS. Pretreatment of RAW264 cells with PZ suppressed the production of NO and TNF-α after LPS addition. This inhibition likely resulted from the inhibitory effect of PZ on LPS-mediated nuclear factor-κB (NF-κB) activation. Zinc sulfate, but not Car, suppressed NO production after LPS. These results indicate that PZ, in particular its zinc subcomponent, inhibits LPS-induced endotoxin shock via the inhibition of NF-κB activation and subsequent induction of proinflammatory products such as NO and TNF-α, but not HSP induction.
Collapse
Affiliation(s)
- Shuzo Ohata
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hipkiss AR. Aging, Proteotoxicity, Mitochondria, Glycation, NAD and Carnosine: Possible Inter-Relationships and Resolution of the Oxygen Paradox. Front Aging Neurosci 2010; 2:10. [PMID: 20552048 PMCID: PMC2874395 DOI: 10.3389/fnagi.2010.00010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/01/2010] [Indexed: 11/13/2022] Open
Abstract
It is suggested that NAD(+) availability strongly affects cellular aging and organism lifespan: low NAD(+) availability increases intracellular levels of glycolytic triose phosphates (glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate) which, if not further metabolized, decompose spontaneously into methylglyoxal (MG), a glycating agent and source of protein and mitochondrial dysfunction and reactive oxygen species (ROS). MG-damaged proteins and other aberrant polypeptides can induce ROS generation, promote mitochondrial dysfunction and inhibit proteasomal activity. Upregulation of mitogenesis and mitochondrial activity by increased aerobic exercise, or dietary manipulation, helps to maintain NAD(+)availability and thereby decreases MG-induced proteotoxicity. These proposals can explain the apparent paradox whereby aging is seemingly caused by increased ROS-mediated macromolecular damage but is ameliorated by increased aerobic activity. It is also suggested that increasing mitochondrial activity decreases ROS generation, while excess numbers of inactive mitochondria are deleterious due to increased ROS generation. The muscle- and brain-associated dipeptide, carnosine, is an intracellular buffer which can delay senescence in cultured human fibroblasts and delay aging in senescence-accelerated mice. Carnosine's ability to react with MG and possibly other deleterious carbonyl compounds, and scavenge various ROS, may account for its protective ability towards ischemia and ageing.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham Birmingham, UK
| |
Collapse
|
33
|
Takada M, Otaka M, Takahashi T, Izumi Y, Tamaki K, Shibuya T, Sakamoto N, Osada T, Yamamoto S, Ishida R, Odashima M, Itoh H, Watanabe S. Overexpression of a 60-kDa heat shock protein enhances cytoprotective function of small intestinal epithelial cells. Life Sci 2010; 86:499-504. [PMID: 20159025 DOI: 10.1016/j.lfs.2010.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/27/2010] [Accepted: 02/02/2010] [Indexed: 12/22/2022]
Abstract
AIMS With the advancement of small intestinal (double balloon and capsule) endoscopy technology, incidence of small intestinal lesion caused by nonsteroidal anti-inflammatory drugs (NSAIDs) has been known to be high. However, therapy for small intestinal mucosal lesion has not yet been developed. Previous studies have shown that heat shock proteins (HSPs) are involved in cytoprotection mediated by their function as a molecular chaperone. In this study, we examined the effect of HSP60 or HSP70 overexpression on hydrogen peroxide-induced (H2O2) or indomethacin-induced cell damage in the small intestinal epithelial cells. MAIN METHODS cDNA of human HSP60 or HSP70 was transfected to rat small intestinal (IEC-6) cells, and HSP60- or HSP70-overexpressing cells were cloned. IEC-6 cells transfected with vector only were used as control cells. These cells were treated with H2O2 (0-0.14mM) or indomethacin (0-2.5mM). The cell viability was determined by MTT-assay. Cell necrosis was evaluated by LDH-release assay. Further, apoptosis was evaluated by caspases-3/7 activity and TUNEL assay. KEY FINDINGS Cell viability after H2O2 or indomethacin treatment was significantly higher in HSP60-overexpressing cells compared with that in control cells and HSP60-overexpressing cells. Apoptotic cells were also reduced in HSP60-overexpressing. CONCLUSION These results indicate that HSP60 plays an important role in protecting small intestinal mucosal cells from H2O2-induced or indomethacin-induced cell injury. HSP70-overexpressing cells did not show anti-apoptotic ability. SIGNIFICANCE These findings possibly suggest that function of each HSP is different in the small intestine. Therefore, for the therapy of small intestinal mucosal lesion, HSP60-induction therapy could be a new therapeutic strategy.
Collapse
Affiliation(s)
- Makiko Takada
- Department of Gastroenterology, Juntendo University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nishida T, Ohata S, Kusumoto C, Mochida S, Nakada J, Inagaki Y, Ohta Y, Matsura T. Zinc Supplementation with Polaprezinc Protects Mouse Hepatocytes against Acetaminophen-Induced Toxicity via Induction of Heat Shock Protein 70. J Clin Biochem Nutr 2009; 46:43-51. [PMID: 20104264 PMCID: PMC2803132 DOI: 10.3164/jcbn.09-60] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/06/2009] [Indexed: 11/22/2022] Open
Abstract
Polaprezinc, a chelate compound consisting of zinc and l-carnosine, is clinically used as a medicine for gastric ulcers. It has been shown that induction of heat shock protein (HSP) is involved in protective effects of polaprezinc against gastric mucosal injury. In the present study, we investigated whether polaprezinc and its components could induce HSP70 and prevent acetaminophen (APAP) toxicity in mouse primary cultured hepatocytes. Hepatocytes were treated with polaprezinc, zinc sulfate or l-carnosine at the concentration of 100 microM for 9 h, and then exposed to 10 mM APAP. Polaprezinc or zinc sulfate increased cellular HSP70 expression. However, l-carnosine had no influence on it. Pretreatment of the cells with polaprezinc or zinc sulfate significantly suppressed cell death as well as cellular lipid peroxidation after APAP treatment. In contrast, pretreatment with polaprezinc did not affect decrease in intracellular glutathione after APAP. Furthermore, treatment with KNK437, an HSP inhibitor, attenuated increase in HSP70 expression induced by polaprezinc, and abolished protective effect of polaprezinc on cell death after APAP. These results suggested that polaprezinc, in particular its zinc component, induces HSP70 expression in mouse primary cultured hepatocytes, and inhibits lipid peroxidation after APAP treatment, resulting in protection against APAP toxicity.
Collapse
Affiliation(s)
- Tadashi Nishida
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gilling CE, Carlson KA. The effect of OTK18 upregulation in U937 cells on neuronal survival. In Vitro Cell Dev Biol Anim 2009; 45:243-51. [PMID: 19247725 DOI: 10.1007/s11626-009-9175-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 01/02/2009] [Indexed: 10/21/2022]
Abstract
The intent of this study was to characterize the effect OTK18 upregulation in monocytic cells had on neuronal survival. The human monocytic cell line, U937, was differentiated into macrophages or left as an undifferentiated monocyte. These cells were transfected with a plasmid containing the enhanced green fluorescent protein and OTK18 (pEGFP-OTK18) or an empty control vector (pEGFP-N3). The supernatants from the transfected U937 cells were used to culture rat neuronal cells (PC12). A live/dead assay was performed to determine the effect of culturing on cell survival. The protein levels of the neurotoxin, tumor necrosis factor alpha (TNF-alpha), and the neurotrophin, neurotrophin three (NT3), were determined by enzyme linked immunosorbent assay. The results of the live/dead assay showed differential cell survival between conditions with pEGFP-OTK18 when compared to the control empty vector. Quantitative real-time polymerase chain reaction assays demonstrated that OTK18 had an increased expression level when compared to the control. Lastly, NT3 protein levels were upregulated in treated cells with increased OTK18 expression, suggesting that OTK18 may play a role in neurotrophin production and consequently support neuronal survival.
Collapse
Affiliation(s)
- Christine E Gilling
- Biology Department, University of Nebraska at Kearney, 905 W25th St., Kearney, NE 68849, USA
| | | |
Collapse
|
36
|
Yi-Chen, Ran ZH, Xiang-Chen, Zhu CQ, Xiao SD. Expression of heat shock protein 70 and 90 and their relationships with biological behaviors of colon cancer. Shijie Huaren Xiaohua Zazhi 2006; 14:3201-3205. [DOI: 10.11569/wcjd.v14.i33.3201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of heat shock protein (HSP) 70 and 90 as well as their correlations with the biological behavior of colon cancer.
METHODS: Specimens were collected from the cancerous lesions, paracancerous tissues (2 cm away from cancer lesion) and normal mucosal tissues of 40 patients with colon cancer after colon resection. The expression of HSP70 and HSP90 were detected using affinitive immunohistochemical technique. Meanwhile, Duke's staging for the 40 colon cancer patients was analyzed, and the relationship between the expression levels of HSPs and Duke's staging was further investigated.
RESULTS: The levels of HSP70 and HSP90 expression between the cancerous tissues, paracancerous tissues, and normal tissues (HSP70: 82.5% vs 52.5% vs 25%, χ2 = 26.58, P = 0.000; HSP90: 72.5% vs 42.5% vs 22.5%, P = 0.000). The positive rates of HSP70 and HSP90 had significant correlations with clinical staging of colon cancer (HSP70: tau_b = 0.392, P = 0.006; HSP90: tau_b = 0.396, P = 0.006).
CONCLUSION: HSP70 and HSP90 are over-expressed in colon cancer, which are correlated with the biological behavior of colon cancer.
Collapse
|