1
|
Iyer S, Enman M, Sahay P, Dudeja V. Novel therapeutics to treat chronic pancreatitis: targeting pancreatic stellate cells and macrophages. Expert Rev Gastroenterol Hepatol 2024; 18:171-183. [PMID: 38761167 DOI: 10.1080/17474124.2024.2355969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a persistent, recurrent, and progressive disorder that is characterized by chronic inflammation and irreversible fibrosis of the pancreas. It is associated with severe morbidity, resulting in intense abdominal pain, diabetes, exocrine and endocrine dysfunction, and an increased risk of pancreatic cancer. The etiological factors are diverse and the major risk factors include smoking, chronic alcoholism, as well as other environmental and genetic factors. The treatment and management of CP is challenging, and no definitive curative therapy is currently available. AREAS COVERED This review paper aims to provide an overview of the different cell types in the pancreas that is known to mediate disease progression and outline potential novel therapeutic approaches and drug targets that may be effective in treating and managing CP. The information presented in this review was obtained by conducting a NCBI PubMed database search, using relevant keywords. EXPERT OPINION In recent years, there has been an increased interest in the development of novel therapeutics for CP. A collaborative multi-disciplinary approach coupled with a consistent funding for research can expedite progress of translating the findings from bench to bedside.
Collapse
Affiliation(s)
- Srikanth Iyer
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Macie Enman
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Preeti Sahay
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
2
|
Ghosh J, Chowdhury AR, Srinivasan S, Chattopadhyay M, Bose M, Bhattacharya S, Raza H, Fuchs SY, Rustgi AK, Gonzalez FJ, Avadhani NG. Cigarette Smoke Toxins-Induced Mitochondrial Dysfunction and Pancreatitis Involves Aryl Hydrocarbon Receptor Mediated Cyp1 Gene Expression: Protective Effects of Resveratrol. Toxicol Sci 2018; 166:428-440. [PMID: 30165701 PMCID: PMC6260170 DOI: 10.1093/toxsci/kfy206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously reported that mitochondrial CYP1 enzymes participate in the metabolism of polycyclic aromatic hydrocarbons and other carcinogens leading to mitochondrial dysfunction. In this study, using Cyp1b1-/-, Cyp1a1/1a2-/-, and Cyp1a1/1a2/1b1-/- mice, we observed that cigarette and environmental toxins, namely benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induce pancreatic mitochondrial respiratory dysfunction and pancreatitis. Our results suggest that aryl hydrocarbon receptor (AhR) activation and resultant mitochondrial dysfunction are associated with pancreatic pathology. BaP treatment markedly inhibits pancreatic mitochondrial oxygen consumption rate (OCR), ADP-dependent OCR, and also maximal respiration, in wild-type mice but not in Cyp1a1/1a2-/- and Cyp1a1/1a2/1b1-/- mice. In addition, both BaP and TCDD treatment markedly affected mitochondrial complex IV activity, in addition to causing marked reduction in mitochondrial DNA content. Interestingly, the AhR antagonist resveratrol, attenuated BaP-induced mitochondrial respiratory defects in the pancreas, and reversed pancreatitis, both histologically and biochemically in wild-type mice. These results reveal a novel role for AhR- and AhR-regulated CYP1 enzymes in eliciting mitochondrial dysfunction and cigarette toxin-mediated pancreatic pathology. We propose that increased mitochondrial respiratory dysfunction and oxidative stress are involved in polycyclic aromatic hydrocarbon associated pancreatitis. Resveratrol, a chemo preventive agent and AhR antagonist, and CH-223191, a potent and specific AhR inhibitor, confer protection against BaP-induced mitochondrial dysfunction and pancreatic pathology.
Collapse
Affiliation(s)
- Jyotirmoy Ghosh
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Chemistry, Banwarilal Bhalotia College, Asansol, Ushagram, Asansol-713303, West Bengal, India
| | - Anindya Roy Chowdhury
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Roche Molecular Systems, 1080, US-202, Branchburg, NJ 08876
| | - Mrittika Chattopadhyay
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Moumita Bose
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390
| | - Sabyasachi Bhattacharya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426
| | - Haider Raza
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Al-Ain, UAE
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Frank J Gonzalez
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland 20892
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
3
|
Greer JB, Thrower E, Yadav D. Epidemiologic and Mechanistic Associations Between Smoking and Pancreatitis. ACTA ACUST UNITED AC 2015; 13:332-46. [PMID: 26109145 DOI: 10.1007/s11938-015-0056-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OPINION STATEMENT Alcohol has long been associated with pancreatitis. Although first described more than three decades ago, smoking has been widely accepted as an important risk factor for all forms of pancreatitis only in the past few years. Empiric data has confirmed smoking as an independent and dose-dependent risk for both acute and chronic pancreatitis. Smoking also increases the risk of recurrences and progression of established chronic pancreatitis. The effects of smoking are enhanced in the presence of alcohol consumption. Indirect evidence suggests that smoking cessation may be beneficial in preventing disease progression. Smoking cessation can therefore be an important strategy for primary as well as secondary prevention of pancreatitis. Therefore, in addition to alcohol, physicians should routinely counsel patients for the benefits of smoking cessation. The mechanisms through which cigarette smoke triggers pathological cellular events, resulting in pancreatitis, are unresolved. Although cigarette smoke contains greater than 4000 compounds, principally nicotine and the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) have been broadly studied with regard to pancreatic diseases. Both nicotine and NNK have been shown to induce morphological changes in the pancreas consistent with those seen in pancreatitis. Furthermore, nicotine affects pancreatic secretion and NNK induces premature zymogen activation, two well-known features of pancreatitis. These cigarette toxins may mediate both pro- and anti-inflammatory pathways and can induce changes in pancreatic acinar cell function at the level of transcription, leading to conditions such as thiamin deficiency and mitochondrial dysfunction. Such circumstances could leave the pancreas prone to the development of pancreatitis. This review summarizes relevant research findings and focuses on the epidemiologic links between smoking and pancreatitis, and the cellular pathways that may be significant in induction and evolution of smoking-related pancreatitis.
Collapse
Affiliation(s)
- Julia B Greer
- Division of Gastroenterology and Hepatology, University of Pittsburgh Medical Center, 200 Lothrop Street, M2, C-Wing, Pittsburgh, PA, 15213, USA
| | | | | |
Collapse
|
4
|
Nicotine and oxidative stress induced exomic variations are concordant and overrepresented in cancer-associated genes. Oncotarget 2015; 5:4788-98. [PMID: 24947164 PMCID: PMC4148099 DOI: 10.18632/oncotarget.2033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the connection between cancer and cigarette smoke is well established, nicotine is not characterized as a carcinogen. Here, we used exome sequencing to identify nicotine and oxidative stress-induced somatic mutations in normal human epithelial cells and its correlation with cancer. We identified over 6,400 SNVs, indels and microsatellites in each of the stress exposed cells relative to the control, of which, 2,159 were consistently observed at all nicotine doses. These included 429 nsSNVs including 158 novel and 79 cancer-associated. Over 80% of consistently nicotine induced variants overlap with variations detected in oxidative stressed cells, indicating that nicotine induced genomic alterations could be mediated through oxidative stress. Nicotine induced mutations were distributed across 1,585 genes, of which 49% were associated with cancer. MUC family genes were among the top mutated genes. Analysis of 591 lung carcinoma tumor exomes from The Cancer Genome Atlas (TCGA) revealed that 20% of non-small-cell lung cancer tumors in smokers have mutations in at least one of the MUC4, MUC6 or MUC12 genes in contrast to only 6% in non-smokers. These results indicate that nicotine induces genomic variations, promotes instability potentially mediated by oxidative stress, implicating nicotine in carcinogenesis, and establishes MUC genes as potential targets.
Collapse
|
5
|
Ribera Osca JA, Córdoba Garcia R, Gascó Garcia P. [Electronic cigarette: utopia safe cigarette]. Aten Primaria 2015; 46:53-4. [PMID: 24524739 PMCID: PMC6983549 DOI: 10.1016/j.aprim.2013.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/23/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- J A Ribera Osca
- Miembros del Grupo de Abordaje del Tabaquismo (GAT) de la semFYC
| | - R Córdoba Garcia
- Miembros del Grupo de Abordaje del Tabaquismo (GAT) de la semFYC.
| | - P Gascó Garcia
- Miembros del Grupo de Abordaje del Tabaquismo (GAT) de la semFYC
| |
Collapse
|
6
|
Abstract
The electronic cigarette (e-cig) is a device with a conventional cigarette shape that releases a determined dose of nicotine vapour through an electronic heating process. The nicotine cartridges vary significantly in the amount of nicotine released, even within the same brand. Not all brands admit that they contain nicotine, but this is detected in the majority of units analysed. The e-cig usually contains a propellant, such as propylene glycol, which is a lung irritant. The short-term respiratory effect of the vapour of an e-cig is similar to that caused by the smoke of a cigarette, and is a cause of broncho-restriction. The majority of brands contain glycerine and at least one case of lipoid pneumonia has been detected due to this substance. Many brands contain traces of N-nitrosamines, heavy metals, and other products that are found in conventional cigarette smoke, but in a much higher proportion. There is currently no scientific evidence available that shows it is an effective device for quitting smoking, thus it should not be pro-actively recommended for this purpose, and may interfere with the use of demonstrated scientific evidence-based treatments for quitting smoking. It may have an undesirable effect on promoting the starting of smoking in adolescents or keeping adult smokers consuming nicotine and on gestural dependency. The toxicity of the vapour is not well known, but it is known that they are not innocuous, thus they should not be used in closed public spaces.
Collapse
Affiliation(s)
- Rodrigo Córdoba García
- Especialista en Medicina de Familia y Comunitaria, Centro de Salud Delicias Sur, Zaragoza, España.
| |
Collapse
|
7
|
Chowdhury P, Udupa KB. Effect of nicotine on exocytotic pancreatic secretory response: role of calcium signaling. Tob Induc Dis 2013; 11:1. [PMID: 23327436 PMCID: PMC3554538 DOI: 10.1186/1617-9625-11-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/16/2013] [Indexed: 12/14/2022] Open
Abstract
Background Nicotine is a risk factor for pancreatitis resulting in loss of pancreatic enzyme secretion. The aim of this study was to evaluate the mechanisms of nicotine-induced secretory response measured in primary pancreatic acinar cells isolated from Male Sprague Dawley rats. The study examines the role of calcium signaling in the mechanism of the enhanced secretory response observed with nicotine exposure. Methods Isolated and purified pancreatic acinar cells were subjected to a nicotine exposure at a dose of 100 μM for 6 minutes and then stimulated with cholecystokinin (CCK) for 30 min. The cell’s secretory response was measured by the percent of amylase released from the cells in the incubation medium Calcium receptor antagonists, inositol trisphosphate (IP3) receptor blockers, mitogen activated protein kinase inhibitors and specific nicotinic receptor antagonists were used to confirm the involvement of calcium in this process. Results Nicotine exposure induced enhanced secretory response in primary cells. These responses remained unaffected by mitogen activated protein kinases (MAPK’s) inhibitors. The effects, however, have been completely abolished by nicotinic receptor antagonist, calcium channel receptor antagonists and inositol trisphosphate (IP3) receptor blockers. Conclusions The data suggest that calcium activated events regulating the exocytotic secretion are affected by nicotine as shown by enhanced functional response which is inhibited by specific antagonists… The results implicate the role of nicotine in the mobilization of both intra- and extracellular calcium in the regulation of stimulus-secretory response of enzyme secretion in this cell system. We conclude that nicotine plays an important role in promoting enhanced calcium levels inside the acinar cell.
Collapse
Affiliation(s)
- Parimal Chowdhury
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, College of Medicine, 4301 W Markham Street, Little Rock, 72205, Arkansas.
| | | |
Collapse
|
8
|
Wittel UA, Momi N, Seifert G, Wiech T, Hopt UT, Batra SK. The pathobiological impact of cigarette smoke on pancreatic cancer development (review). Int J Oncol 2012; 41:5-14. [PMID: 22446714 PMCID: PMC3589138 DOI: 10.3892/ijo.2012.1414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/25/2012] [Indexed: 12/13/2022] Open
Abstract
Despite extensive efforts, pancreatic cancer remains incurable. Most risk factors, such as genetic disposition, metabolic diseases or chronic pancreatitis cannot be influenced. By contrast, cigarette smoking, an important risk factor for pancreatic cancer, can be controlled. Despite the epidemiological evidence of the detrimental effects of cigarette smoking with regard to pancreatic cancer development and its unique property of being influenceable, our understanding of cigarette smoke-induced pancreatic carcinogenesis is limited. Current data on cigarette smoke-induced pancreatic carcinogenesis indicate multifactorial events that are triggered by nicotine, which is the major pharmacologically active constituent of tobacco smoke. In addition to nicotine, a vast number of carcinogens have the potential to reach the pancreatic gland, where they are metabolized, in some instances to even more toxic compounds. These metabolic events are not restricted to pancreatic ductal cells. Several studies show that acinar cells are also greatly affected. Furthermore, pancreatic cancer progenitor cells do not only derive from the ductal epithelial lineage, but also from acinar cells. This sheds new light on cigarette smoke-induced acinar cell damage. On this background, our objective is to outline a multifactorial model of tobacco smoke-induced pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Uwe A Wittel
- Department of General- and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Jensen K, Afroze S, Munshi MK, Guerrier M, Glaser SS. Mechanisms for nicotine in the development and progression of gastrointestinal cancers. TRANSLATIONAL GASTROINTESTINAL CANCER 2012; 1:81-87. [PMID: 22701817 PMCID: PMC3371638 DOI: 10.3978/j.issn.2224-4778.2011.12.01] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long-term smoking is major risk factor for a variety of cancers, including those of the gastrointestinal (GI) tract. Historically, nicotine and its derivatives are well known for their role in addiction, and have more recently been documented for their carcinogenic role in a number of human cancers. The cellular and molecular pathways activated by nicotine mimic physiological and environmental carcinogenesis in cancers throughout the GI tract potentiating cancer growth and/or inducing the formation of cancer on their own. Thus, it is important to unlock the carcinogenic mechanisms induced by nicotine in these systems, and underscore nicotine's potential as an environmental hazard. This review outlines the specific pathways demonstrated to mediate nicotine's carcinogenic mechanism in the GI tract. The abundance of cell and animal evidence calls for increased epidemiologic and case-control evaluation of nicotine's role in cancer.
Collapse
|
10
|
Abstract
The WHO ranks smoking and alcohol consumption as the first and third leading causes of the global burden of disease in industrialized countries, using disability-adjusted life years (DALYs) as a combined measure of premature death and disability. Smoking is responsible for 12.2% of all DALYs and alcohol consumption for 9.2%. For example in Germany, annually 110,000-140,000 humans die prematurely because of cigarette smoking and 40,000 because of alcohol drinking. In Europe and the USA, more than 20% of all hospitalized men and more than 9% of all hospitalized women suffer from alcohol-associated diseases. In Germany, about 2.0 million people in the age group 18-64 years (3.8% of all Germans) are alcohol abusers and 1.3 million people (2.4%) are alcohol-dependent. Alcohol can cause acute as well as chronic damage in nearly all body organs. Smoking damages also nearly every human body organ and is worldwide the most important single preventable health risk factor as well as the main cause for premature mortality in industrial countries. One third of the adult Germans as well as of the world population are active smokers; men smoke more frequently than women (34.0 vs. 25.1%). In this review a short overview will be given on the most important deleterious effects of alcohol and smoking. The most recent data about the pathophysiological relevance of non-alcoholic compounds of alcoholic beverages will also be discussed.
Collapse
Affiliation(s)
- Manfred V Singer
- Department of Medicine II, University Hospital of Heidelberg at Mannheim, Mannheim, Germany.
| | | | | |
Collapse
|
11
|
Lien YC, Wang W, Kuo LJ, Liu JJ, Wei PL, Ho YS, Ting WC, Wu CH, Chang YJ. Nicotine Promotes Cell Migration Through Alpha7 Nicotinic Acetylcholine Receptor in Gastric Cancer Cells. Ann Surg Oncol 2011; 18:2671-9. [DOI: 10.1245/s10434-011-1598-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Indexed: 02/06/2023]
|
12
|
Wei PL, Kuo LJ, Huang MT, Ting WC, Ho YS, Wang W, An J, Chang YJ. Nicotine enhances colon cancer cell migration by induction of fibronectin. Ann Surg Oncol 2011; 18:1782-90. [PMID: 21210228 DOI: 10.1245/s10434-010-1504-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Long-term cigarette smoking increases the risk of colorectal cancer mortality. Tobacco's addictive toxin, nicotine, was reported to increase DNA synthesis of colon cancer cells. Because metastasis is the major cause of cancer death, the influence of nicotine on the migration of colon cancer cells remains to be determined. METHODS The influence of nicotine on the migration of colon cancer cells was evaluated using transwell assay. Nicotine receptor-mediated migration was studied by using both inhibitors and small interfering RNA (siRNA). The role of COX-2 signal was studied using pharmacological inhibitors. The expression of epithelial mesenchymal transition (EMT) marker and COX-2 signal was evaluated using real-time polymerase chain reaction (PCR). RESULTS Nicotine enhanced DLD-1 and SW480 cell migration in a dose-dependent manner. We used inhibitors and siRNA to demonstrate that α7-nAChR mediates nicotine-enhanced colon cancer cell migration and upregulates fibronectin expression, which is involved in nicotine-enhanced migration. Furthermore, COX-2 signal was induced by nicotine treatment and is involved in nicotine-enhanced fibronectin expression. CONCLUSIONS Nicotine, tobacco's additive toxin, enhances colon cancer metastasis through α7-nAChR and fibronectin--a mesenchymal marker for epithelial mesenchymal transition. Furthermore, COX-2 signal was involved in the induction of fibronectin. Therefore, smoking may play role in the progression of colon cancer.
Collapse
Affiliation(s)
- Po-Li Wei
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Han SX, Zhu Q, Ma JL, Zhao J, Huang C, Jia X, Zhang D. Lowered HGK expression inhibits cell invasion and adhesion in hepatocellular carcinoma cell line HepG2. World J Gastroenterol 2010; 16:4541-8. [PMID: 20857524 PMCID: PMC2945485 DOI: 10.3748/wjg.v16.i36.4541] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of RNA interference targeting hepatocyte progenitor kinase-like kinase (HGK) in the invasion and adhesion of hepatocellular carcinoma (HCC) cell line HepG2.
METHODS: Three paired insert DNA fragments specific to HGK gene and one negative control DNA fragment were synthesized and inserted into RNAi-Ready pSIREN-RetroQ-ZsGreen vector. Western blotting assay and real-time reverse transcriptase polymerase chain reaction (RT-PCR) were used to screen the vector with a highest inhibitory rate. The vector was used to generate recombinant retrovirus specific to HGK. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2h-tetrazolium bromide (MTT) assay was used to examine cell growth; wound closure assay and cell adhesion assay were employed to investigate cell migration and adhesion respectively; and transwell assay and three-dimensional culture invasion assay were used to detect cell invasion. The expressions of matrix metalloproteinase (MMP)-2, MMP-9 and nuclear factor (NF)-κB were detected by Western blotting assay.
RESULTS: The real time RT-PCR and Western blotting assay showed that cells transfected with retrovirus mediating RNAi targeting of HGK (RV-shHGK)-1 vector had the strongest inhibition of HGK protein, with an inhibition rate of 76%, and this vector was used to generate recombinant retrovirus RV-shHGK-1. Cell adhesion assay and MTT assay found that cell adhesion and growth of the cells infected with RV-shHGK-1 were significantly lower than those of the control cells (P < 0.05). Wound closure assay, transwell assay and three-dimensional culture invasion assay showed that the cell invasiveness was significantly less in HGK knockdown cells than in the control cells (P < 0.05). The expressions of MMP-2, MMP-9 and NF-κB were inhibited in HepG2 cells infected with RV-shHGK-1.
CONCLUSION: Down-regulation of HGK can obviously inhibit the migration and invasion of HepG2 cells in vitro. HGK may be a new therapeutic target for treatment of HCC.
Collapse
|