1
|
Jia T, Nie P, Xu H. Combined exposure of nano-titanium dioxide and polystyrene nanoplastics exacerbate oxidative stress-induced liver injury in mice by regulating the Keap-1/Nrf2/ARE pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2681-2691. [PMID: 38234154 DOI: 10.1002/tox.24141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/19/2024]
Abstract
It is well known that polystyrene nanoplastics (PS-NaP) and nano-titanium dioxide (TiO2 NPs) are frequently co-appeared in daily life and can cause liver injury when they accumulate in the liver. Nonetheless, the combined toxicological impacts and potential molecular mechanisms of PS-NaP and TiO2 NPs in the hepatic system have not been revealed. Thus, we conducted experiments on C57BL/6 mice exposed to PS-NaP or/and TiO2 NPs for 4 weeks. The findings suggested that PS-NaP and TiO2 NPs co-exposed significantly altered the hepatic function parameters, levels of antioxidant-related enzymes and genes expression of Keap-1/Nrf2/ARE signaling pathway, as well as significantly increased the hepatic Ti contents, aggravated hepatic pathological and oxidative stress (OS) damage compared with individual exposure to PS-NaP or TiO2 NPs. Using N-Acetyl-L-cysteine (NAC), an OS inhibitor, we further demonstrated that OS played a pivotal role in coexposure-induced liver injury. NAC reduced the levels of OS in mice, which mitigated co-exposure-induced liver injury. Taken together, we proposed that PS-NaP and TiO2 NPs co-exposed activated the Keap-1, then inhibited the recognition of Nrf2 and ARE, consequently exacerbated liver injury. These findings shed light on the co-toxicity and potential mechanism of nanoplastics and nanoparticles, which informed the risk assessment of human exposure to environmental pollutants.
Collapse
Affiliation(s)
- Tiantian Jia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, People's Republic of China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, People's Republic of China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
2
|
Donghia R, Campanella A, Bonfiglio C, Cuccaro F, Tatoli R, Giannelli G. Protective Role of Lycopene in Subjects with Liver Disease: NUTRIHEP Study. Nutrients 2024; 16:562. [PMID: 38398886 PMCID: PMC10892188 DOI: 10.3390/nu16040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Liver diseases are constantly increasing throughout the world and are often associated with other diseases, but above all they are caused by improper diet. Adherence to a diet with abundant vegetables has now been widely demonstrated to be important in combating this pathological condition. The aim of this study was to explore the protective role of lycopene (LYC) extracts from cooked and fresh tomato. METHODS The study cohort included 969 participants assessed in the NUTRIHEP cohort (2005-2006) and the associated follow-up (2014-2016), divided into two groups, based on liver condition: NAFLD, or AFLD and FLD. RESULTS The results indicated a statistical significance of LYC consumption, showing a protective role against liver disease, the best concentration being 9.50 mg/die, with an RR value of 0.59, p = 0.01, 0.39 to 0.90 at 95% C.I., and RRR = 0.40, p = 0.002, 0.22 to 0.71 at 95% C.I. CONCLUSIONS The protective role of LYC extracts from tomato has not been amply demonstrated in humans. We conclude that this is one of the few papers in the literature to evaluate the protective effect of LYC against liver disease, as well as how this molecule could be used in future possible treatments. Utilizing lycopene as a supplement alone or in combination with other foods could be useful for developing treatments with reduced contraindications.
Collapse
Affiliation(s)
- Rossella Donghia
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (R.T.); (G.G.)
| | - Angelo Campanella
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (R.T.); (G.G.)
| | - Caterina Bonfiglio
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (R.T.); (G.G.)
| | | | - Rossella Tatoli
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (R.T.); (G.G.)
| | - Gianluigi Giannelli
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (A.C.); (C.B.); (R.T.); (G.G.)
| |
Collapse
|
3
|
Sztolsztener K, Dzięcioł J, Chabowski A. N-acetylcysteine acts as a potent anti-inflammatory agent altering the eicosanoid profile in the development of simple steatosis and its progression to hepatitis. Clin Exp Hepatol 2023; 9:386-395. [PMID: 38774197 PMCID: PMC11103808 DOI: 10.5114/ceh.2023.133106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/24/2023] [Indexed: 05/24/2024] Open
Abstract
Aim of the study We aimed to examine the influence of N-acetylcysteine (NAC) on the development of metabolic dysfunction-associated steatotic liver disease (MASLD) in rats with a specific focus on the eicosanoid pathway. Material and methods The experiment was conducted on male Wistar rats fed a standard diet or a high-fat diet (HFD) for eight weeks. In the entire experiment, half of rats from both groups received intragastrically NAC solution prepared in normal saline. H + E staining was used for the histological assessment of liver tissue. The gas-liquid chromatography (GLC) technique was used for the assessment of the activity of n-3 and n-6 polyunsaturated fatty acid (PUFA) pathways and arachidonic acid concentration. ELISA and multiplex immunoassay kits were applied for the measurement of eicosanoid, cytokine, and chemokine levels. The Western blot technique was applied to determine the expression of proteins involved in the inflammation pathway. Results NAC decreased hepatic n-6 PUFA activity in all examined lipid pools and decreased the hepatic content of arachidonic acid as a pro-inflammatory precursor in each lipid pool, especially in the phospholipid fraction in rats with fatty lipid disease. NAC administration abolished 5-LOX expression, leading to a decrease in the content of pro-inflammatory leukotriene B4 and leukotriene C4. In rats with steatosis, NAC weakened NF-κB expression and raised Nrf-2 expression, inhibiting the synthesis of pro-inflammatory cytokines and chemokines. Conclusions NAC treatment significantly rate-limited the progression of simple hepatic steatosis to hepatitis in a rat model of MASLD.
Collapse
Affiliation(s)
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Karimi M, Ghasemzadeh Rahbardar M, Razavi BM, Hosseinzadeh H. Amifostine inhibits acrylamide-induced hepatotoxicity by inhibiting oxidative stress and apoptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:662-668. [PMID: 37275759 PMCID: PMC10237170 DOI: 10.22038/ijbms.2023.67815.14837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/15/2023] [Indexed: 06/07/2023]
Abstract
Objectives Acrylamide (ACR) is a toxic chemical agent that can induce hepatotoxicity through different mechanisms including oxidative stress and apoptosis. Amifostine is an important hepatoprotective and anti-oxidant compound. In this research, the hepatoprotective effect of amifostine on ACR-induced hepatotoxicity in rats has been investigated. Materials and Methods Male Wistar rats were randomly divided into 7 groups, including: 1. Control group, 2. ACR (50 mg/kg, 11 days, IP), 3-5. ACR+ amifostine (25, 50, 100 mg/kg, 11 days, IP), 6. ACR+ N-acetyl cysteine (NAC) (200 mg/kg, 11 days, IP), and 7. Amifostine (100 mg/kg, 11 days, IP). At the end of the injection period, animals' liver samples were collected to determine the content of glutathione (GSH), malondialdehyde (MDA), and apoptotic proteins (B-cell lymphoma 2 (Bcl2), Bcl-2-associated X protein (Bax), and cleaved caspase-3. Serum samples were also collected to measure alanine transaminase (ALT) and aspartate transaminase (AST) levels. Results Administration of ACR increased MDA, Bax/Bcl2 ratio, cleaved caspase-3, ALT, and AST levels, and decreased GSH content compared with the control group. The administration of amifostine with ACR decreased MDA, Bax/Bcl2 ratio, cleaved caspase-3, ALT, and AST levels, and increased GSH content compared with the ACR group. Receiving NAC along with ACR reversed the alterations induced by ACR. Conclusion This study shows that pretreatment with amifostine can reduce ACR-induced toxicity in the liver tissue of rats. Since oxidative stress is one of the most important mechanisms in ACR toxicity, amifostine probably reduces the toxicity of ACR by increasing the anti-oxidant and anti-apoptotic capacity of the hepatic cells.
Collapse
Affiliation(s)
- Mostafa Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Alwadani AH, Almasri SA, Aloud AA, Albadr NA, Alshammari GM, Yahya MA. The Synergistic Protective Effect of γ-Oryzanol (OZ) and N-Acetylcysteine (NAC) against Experimentally Induced NAFLD in Rats Entails Hypoglycemic, Antioxidant, and PPARα Stimulatory Effects. Nutrients 2022; 15:nu15010106. [PMID: 36615764 PMCID: PMC9823776 DOI: 10.3390/nu15010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study estimated that the combined effect of γ-Oryzanol and N-acetylcysteine (NAC) against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats also estimated some of their mechanisms of action. Adult male rats were divided into seven groups (n = 8 each) as control, control + NAC, control + γ-Oryzanol, HFD, HFD + NAC, HFD + γ-Oryzanol, and HFD + NAC + γ-Oryzanol. NAC was administered orally at a final concentration of 200 mg/kg, whereas γ-Oryzanol was added to diets at a concentration of 0.16. All treatments were conducted for 17 weeks and daily. Both NAC and γ-Oryzanol were able to reduce final body weights, fat weights, fasting glucose, fasting insulin, serum, and serum levels of liver function enzymes as well as the inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukine-6 (IL-6), and leptin in HFD-fed rats. They also improved hepatic structure and glucose tolerance, increased adiponectin levels, and reduced serum and hepatic levels of triglycerides (TGs) and cholesterol (CHOL) in these rats. These effects were concomitant with a reduction in the hepatic levels of lipid peroxides (MDA) and serum levels of LDL-C, but also with an increment in the hepatic levels of superoxide dismutase (SOD) and glutathione (GSH). Interestingly, only treatment with γ-Oryzanol stimulated the mRNA levels of proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1 (CPT1) in the liver and white adipose tissue (WAT) of rats. Of note, the combination therapy of both drugs resulted in maximum effects and restored almost normal liver structure and basal levels of all the above-mentioned metabolic parameters. In conclusion, a combination therapy of γ-Oryzanol and NAC is an effective therapy to treat NAFLD, which can act via several mechanisms on the liver and adipose tissue.
Collapse
Affiliation(s)
- Ashwag H. Alwadani
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Home Economics, University College in Farasan, Jazan University, Jazan 54943, Saudi Arabia
| | - Soheir A. Almasri
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Amal A. Aloud
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawal A. Albadr
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
N-acetyl-L-cysteine ameliorates hepatocyte pyroptosis of dog type 1 diabetes mellitus via suppression of NLRP3/NF-κB pathway. Life Sci 2022; 306:120802. [PMID: 35850245 DOI: 10.1016/j.lfs.2022.120802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic and represented by insulin-causing pancreatic β-cell disruption and hyperglycemia. N-Acetyl-Cysteine (NAC) is regarded as facilitating endothelial cell function and angiogenesis and may have treatment effect in the case of diabetes. However, the impact of NAC on T1DM are unknown. Here we reported that inflammatory pathogenesis of canine type 1 diabetes liver disease and the therapeutic effect of NAC combined with insulin. For this purpose, the model was established by intravenous injection of streptozotocin (20 mg/kg). Forty adult dogs were used and divided into 5 groups: control group, DM group, insulin treatment group, NAC combined with insulin therapy, and NAC group, while study lasted for 16 weeks. Results showed that the level of liver function enzyme activity were apparently increased in DM group, while the NAC with insulin treatment remarkable decreased liver function enzyme levels. Histopathology revealed that obvious changes in liver structure of all DM group, as evidenced by hepatocyte disorder and cellular swelling. Liver structure was evaluated by Periodic Acid Schiff (PAS) and Masson staining, the tissues appeared glycogen deposition and collagen deposition, indicating that DM aggravated liver injury. Compared with control group, the protein and mRNA expression of NLRP3, Caspase-1, ASC, and GSDMD were significantly induced in the DM group, while INS and NAC combined with INS treatment reversed the above changes. The levels of NF-κB P65, p-NF-κB, and IFN γ were availably enhanced in the DM group, which decreased through insulin and NAC combined with insulin treatment. This study demonstrated that NAC combined with INS exerted protective effects against STZ-induced liver injury by inhibiting the NLRP3/NF-κB pathway. The findings indicated that NAC combined with INS may serve as a potential candidate therapy for the treatment of T1DM.
Collapse
|
7
|
Yang W, Guo R, Pi A, Ding Q, Hao L, Song Q, Chen L, Dou X, Na L, Li S. Long non-coding RNA-EN_181 potentially contributes to the protective effects of N-acetylcysteine against non-alcoholic fatty liver disease in mice. Br J Nutr 2022; 129:1-15. [PMID: 35710106 DOI: 10.1017/s0007114522001829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
N-acetylcysteine (NAC) possesses a strong capability to ameliorate high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in mice, but the underlying mechanism is still unknown. Our study aimed to clarify the involvement of long non-coding RNA (lncRNA) in the beneficial effects of NAC on HFD-induced NAFLD. C57BL/6J mice were fed a normal-fat diet (10 % fat), a HFD (45 % fat) or a HFD plus NAC (2 g/l). After 14-week of intervention, NAC rescued the deleterious alterations induced by HFD, including the changes in body and liver weights, hepatic TAG, plasma alanine aminotransferase, plasma aspartate transaminase and liver histomorphology (haematoxylin and eosin and Oil red O staining). Through whole-transcriptome sequencing, 52 167 (50 758 known and 1409 novel) hepatic lncRNA were detected. Our cross-comparison data revealed the expression of 175 lncRNA was changed by HFD but reversed by NAC. Five of those lncRNA, lncRNA-NONMMUT148902·1 (NO_902·1), lncRNA-XR_001781798·1 (XR_798·1), lncRNA-NONMMUT141720·1 (NO_720·1), lncRNA-XR_869907·1 (XR_907·1), and lncRNA-ENSMUST00000132181 (EN_181), were selected based on an absolute log2 fold change value of greater than 4, P-value < 0·01 and P-adjusted value < 0·01. Further qRT-PCR analysis showed the levels of lncRNA-NO_902·1, lncRNA-XR_798·1, and lncRNA-EN_181 were decreased by HFD but restored by NAC, consistent with the RNA sequencing. Finally, we constructed a ceRNA network containing lncRNA-EN_181, 3 miRNA, and 13 mRNA, which was associated with the NAC-ameliorated NAFLD. Overall, lncRNA-EN_181 might be a potential target in NAC-ameliorated NAFLD. This finding enhanced our understanding of the biological mechanisms underlying the beneficial role of NAC.
Collapse
Affiliation(s)
- Wenwen Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Aiwen Pi
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Qing Song
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Lixin Na
- Public Health College, Shanghai University of Medicine & Health Sciences, Shanghai201318, People's Republic of China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| |
Collapse
|
8
|
Ding Q, Guo R, Pei L, Lai S, Li J, Yin Y, Xu T, Yang W, Song Q, Han Q, Dou X, Li S. N-acetylcysteine alleviates high fat diet-induced hepatic steatosis and liver injury via regulating intestinal microecology in mice. Food Funct 2022; 13:3368-3380. [DOI: 10.1039/d1fo03952k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-acetylcysteine (NAC), a well-accepted antioxidant, has been shown to protect against high fat diet (HFD)-induced obesity-associated non-alcoholic fatty liver disease (NAFLD) in mice. However, the underlying mechanism(s) of the beneficial...
Collapse
|
9
|
Agoun H, Semiane N, Mallek A, Bellahreche Z, Hammadi S, Madjerab M, Abdlalli M, Khalkhal A, Dahmani Y. High-carbohydrate diet-induced metabolic disorders in Gerbillus tarabuli (a new model of non-alcoholic fatty-liver disease). Protective effects of 20-hydroxyecdysone. Arch Physiol Biochem 2021; 127:127-135. [PMID: 31190566 DOI: 10.1080/13813455.2019.1621350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of our study was to reveal the effects of long-term consumption of a high-carbohydrate diet (HCD) on metabolic dysfunctions and histopathological liver alterations in Gerbillus tarabuli, as well as to assess the preventive effects of 20-hydroxyecdysone (20E) in the same animals. Contrary to control diet, HCD induces several metabolic disorders including increased adiposity, dyslipidemia, ectopic fat deposition in the liver, associated with higher levels of plasma AST and ALT. These gerbils showed enhanced oxidative stress with liver damages characteristic of steatohepatitis development. By contrast, adding 20E to HCD resulted in a dose-dependent reduction of all changes induced by HCD. In addition, the hepatoprotective effect of 20E was demonstrated by decreased plasma concentrations of AST, ALT and of hepatic malondialdehyde. Our results suggest that G. tarabuli represents a good model to study diet-induced metabolic disorders and hepatic dysfunctions. Moreover, they demonstrate the efficacy of 20E treatment to counteract the damaging effects of HCD.
Collapse
Affiliation(s)
- Hadjer Agoun
- LBPO/Nutrition & Metabolism, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Nesrine Semiane
- LBPO/Nutrition & Metabolism, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Aicha Mallek
- LBPO/Nutrition & Metabolism, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Zineb Bellahreche
- LBPO/Nutrition & Metabolism, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Soumia Hammadi
- LBPO/Nutrition & Metabolism, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Maha Madjerab
- LBPO/Nutrition & Metabolism, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Mohamed Abdlalli
- Service of Pathology and Anatomy, CHU Hussein Dey: Ex: Parnet, Algiers, Algeria
| | - Ali Khalkhal
- LBPO/Nutrition & Metabolism, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Yasmina Dahmani
- LBPO/Nutrition & Metabolism, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| |
Collapse
|
10
|
Genç F, Peker EGGÜ. Does Short-Term and Low-Dose N-Acetylcysteine Affect Oxidative Stress and Inflammation in The Liver Tissues of Diabetic Rats? Biol Res Nurs 2021; 23:568-574. [PMID: 33739173 DOI: 10.1177/10998004211003668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus is a serious chronic disease in which the oxidant-antioxidant balance is impaired, causing many complications, including hepatopathy. In this study, the effects of short-term and low-dose N-acetylcysteine (NAC) administration on the biochemical, proinflammatory, and oxidative stress parameters in the liver tissue of diabetic rats were investigated. Twenty-four adult male Wistar albino rats weighing approximately 250-300 g were divided into 4 groups (n = 6): Control, Streptozotosin (STZ)-induced diabetes (DM), NAC treatment (60 mg/kg), and STZ-induced diabetes treated with NAC (DM+NAC; 60 mg/kg). NAC treatment was administered intraperitoneally as a single daily dose for 7 days. At the end of the experiment (3 weeks), blood and liver samples were collected for biochemical parameter analysis. Lipid peroxidation, antioxidant parameters, and nitric oxide (NOx) levels were determined by spectrophotometric method. Tissue inflammation parameters were evaluated by ELISA. Lipid peroxidation, proinflammatory cytokines, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) values increased significantly with diabetes. NAC treatment significantly decreased serum ALT and AST levels and proinflammatory cytokines in the diabetic group. Liver glutathione (GSH) and NOx levels increased significantly in the DM+NAC group (p < 0.05). While NAC treatment reduced lipid peroxidation in the liver, it improved the inflammatory response and antioxidant status. The beneficial effect of NAC treatment may be due to its antioxidant activity and the resulting increased level of GSH. The results show that low-dose and short-term NAC treatment had a positive effect on oxidative damage and inflammation in liver tissue. NAC can be used as a potential antioxidant in diabetes to prevent hepatopathy.
Collapse
Affiliation(s)
- Fatma Genç
- Department of Nursing, Faculty of Health Sciences, 187438Giresun University, Turkey
| | | |
Collapse
|
11
|
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel) 2021; 10:364. [PMID: 33670839 PMCID: PMC7997318 DOI: 10.3390/antiox10030364] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), a tripeptide particularly concentrated in the liver, is the most important thiol reducing agent involved in the modulation of redox processes. It has also been demonstrated that GSH cannot be considered only as a mere free radical scavenger but that it takes part in the network governing the choice between survival, necrosis and apoptosis as well as in altering the function of signal transduction and transcription factor molecules. The purpose of the present review is to provide an overview on the molecular biology of the GSH system; therefore, GSH synthesis, metabolism and regulation will be reviewed. The multiple GSH functions will be described, as well as the importance of GSH compartmentalization into distinct subcellular pools and inter-organ transfer. Furthermore, we will highlight the close relationship existing between GSH content and the pathogenesis of liver disease, such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), chronic cholestatic injury, ischemia/reperfusion damage, hepatitis C virus (HCV), hepatitis B virus (HBV) and hepatocellular carcinoma. Finally, the potential therapeutic benefits of GSH and GSH-related medications, will be described for each liver disorder taken into account.
Collapse
Affiliation(s)
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | | | | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | |
Collapse
|
12
|
Possible protective activity of n-acetyl cysteine against cisplatin‑induced hepatotoxicity in rats. Mol Biol Rep 2021; 48:637-644. [PMID: 33439409 DOI: 10.1007/s11033-020-06111-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 01/05/2023]
Abstract
CP is one of the most widely used antineoplastic agents. However, its clinical application is very limited due to its severe toxic effects. The present study aimed to reveal the effects of NAC, which exhibits broad biological activities in reducing CP-induced liver damage, in consideration of biochemical, genetic, and histopathological findings. Twenty-eight wistar rats were randomly divided into four groups of seven animals. A dose of saline was administered (i.p.) to the control group for 5 days. One dose of NAC (200 mg/kg) was administered to the NAC group for 5 days (i.p.). To the NAC + CP group, a dose of CP (7.5 mg/kg) was administered on days 2 and 5 of the experiment, a dose of NAC (200 mg/ kg) (i.p.) was administered for 5 day of the experiment. CP (7.5 mg/kg) was administered to the CP group on days 2 and 5 of the experiment. At the end of the experiment, the biochemical, histological, and mRNA expression analyses of the liver tissues isolated from all the rats were performed. A statistically significant decrease was observed in the AST and ALT enzyme activities in Group NAC + CP compared to Control and CP groups. In addition, it was determined that the NAC administration reduced CP-induced inflammation by increasing the level of NF-κB and decreased CP-caused oxidative stress by decreasing the GPx level. Moreover, the histopathological analyses showed that NAC improved liver morphology. It was revealed by Western blotting analysis that NAC promoted Bcl-2 signaling and decreased p53 signaling. The findings herein showed that NAC could help alleviate hepatotoxicity, a serious therapeutic complication, by reducing CP-induced oxidative stress and playing an effective part in the regulation of apoptotic markers.
Collapse
|
13
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Marcheggiani F, Cirilli I, Ziqubu K, Shabalala SC, Johnson R, Louw J, Damiani E, Tiano L. N-Acetyl Cysteine Targets Hepatic Lipid Accumulation to Curb Oxidative Stress and Inflammation in NAFLD: A Comprehensive Analysis of the Literature. Antioxidants (Basel) 2020; 9:E1283. [PMID: 33339155 PMCID: PMC7765616 DOI: 10.3390/antiox9121283] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic lipid accumulation in conditions of metabolic syndrome. In fact, enhanced lipid accumulation together with oxidative stress and an abnormal inflammatory response underpin the development and severity of non-alcoholic fatty liver disease (NAFLD). There are currently no specific protective drugs against NAFLD, and effective interventions involving regular exercise and healthy diets have proved difficult to achieve and maintain. Alternatively, due to its antioxidant and anti-inflammatory properties, there has been growing interest in understanding the therapeutic effects of N-acetyl cysteine (NAC) against metabolic complications, including NAFLD. Here, reviewed evidence suggests that NAC blocks hepatic lipid accumulation in preclinical models of NAFLD. This is in part through the effective regulation of a fatty acid scavenger molecule (CD36) and transcriptional factors such as sterol regulatory element-binding protein (SREBP)-1c/-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Importantly, NAC appears effective in improving liver function by reducing pro-inflammatory markers such as interleukin (IL)-6 IL-1β, tumour necrosis factor alpha (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This was primarily through the attenuation of lipid peroxidation and enhancements in intracellular response antioxidants, particularly glutathione. Very few clinical studies support the beneficial effects of NAC against NAFLD-related complications, thus well-organized randomized clinical trials are still necessary to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Tawanda M. Nyambuya
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (B.B.N.); (T.M.N.)
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2745, South Africa; (S.E.M.-M.); (K.Z.)
| | - Samukelisiwe C. Shabalala
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (S.C.S.); (R.J.); (J.L.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.M.); (I.C.); (E.D.); (L.T.)
| |
Collapse
|
14
|
Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity. Pharmacol Res 2020; 161:105102. [DOI: 10.1016/j.phrs.2020.105102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
|
15
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
16
|
Intracellular Toxic Advanced Glycation End-Products Promote the Production of Reactive Oxygen Species in HepG2 Cells. Int J Mol Sci 2020; 21:ijms21144861. [PMID: 32660150 PMCID: PMC7402329 DOI: 10.3390/ijms21144861] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte cell death is a key process in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the factors responsible for and mechanisms underlying NASH-related cell death have not yet been elucidated in detail. We herein investigated the effects of intracellular glyceraldehyde (GA)-derived advanced glycation end-products (AGEs), named toxic AGEs (TAGE), on the production of reactive oxygen species (ROS), which have been implicated in the pathogenesis of NASH. Cell death related to intracellular TAGE accumulation was eliminated in the hepatocyte carcinoma cell line HepG2 by the antioxidant effects of N-acetyl-L-cysteine. The intracellular accumulation of TAGE increased ROS production and the expression of Nrf2, including its downstream gene. These results suggest that ROS are produced in association with the accumulation of TAGE and are a direct trigger for cell death. We also investigated the factors responsible for these increases in ROS. Catalase activity did not decrease with the accumulation of TAGE, while mitochondrial membrane depolarization was enhanced in cells treated with GA. These results indicate that TAGE play an important role in mitochondrial abnormalities and increases in ROS production, both of which are characteristic features of NASH. The suppression of TAGE accumulation has potential as a new therapeutic target in the progression of NASH.
Collapse
|
17
|
Duarte SMB, Stefano JT, Vanni DS, Carrilho FJ, Oliveira CPMSD. IMPACT OF CURRENT DIET AT THE RISK OF NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD). ARQUIVOS DE GASTROENTEROLOGIA 2020; 56:431-439. [PMID: 31721969 DOI: 10.1590/s0004-2803.201900000-67] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
The nonalcoholic fatty liver disease (NAFLD) affects approximately 20%-30% of general population and is even more prevalent among obese individuals. The risk factors mainly associated with NAFLD are diseases related to the metabolic syndrome, genetics and environment. In this review, we provide a literature compilation evaluating the evidence behind dietary components, including calories intake, fat, protein, fibers and carbohydrate, especially fructose which could be a trigger to development and progression of the NAFLD. In fact, it has been demonstrated that diet is an important factor for the development of NAFLD and its association is complex and extends beyond total energy intake.
Collapse
Affiliation(s)
| | - José Tadeu Stefano
- Universidade de São Paulo, Hospital das Clínicas, Laboratório de Gastroenterologia Clínica e Experimental (LIM-07) do Departamento de Gastroenterologia da FMUSP, São Paulo, SP, Brasil
| | - Denise Siqueira Vanni
- Universidade de São Paulo, Hospital das Clínicas, Divisão de Gastroenterologia e Hepatologia Clínica e Departamento de Gastroenterologia da FMUSP, São Paulo, SP, Brasil
| | - Flair José Carrilho
- Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil.,Universidade de São Paulo, Hospital das Clínicas, Divisão de Gastroenterologia e Hepatologia Clínica e Departamento de Gastroenterologia da FMUSP, São Paulo, SP, Brasil
| | - Claudia Pinto Marques Souza de Oliveira
- Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil.,Universidade de São Paulo, Hospital das Clínicas, Laboratório de Gastroenterologia Clínica e Experimental (LIM-07) do Departamento de Gastroenterologia da FMUSP, São Paulo, SP, Brasil
| |
Collapse
|
18
|
Shi T, Wu L, Ma W, Ju L, Bai M, Chen X, Liu S, Yang X, Shi J. Nonalcoholic Fatty Liver Disease: Pathogenesis and Treatment in Traditional Chinese Medicine and Western Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8749564. [PMID: 31998400 PMCID: PMC6969649 DOI: 10.1155/2020/8749564] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 01/30/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is one of the most important causes of liver disease worldwide and probably destined to become the leading cause of end-stage liver disease in the coming decades, affecting both adults and children. Faced with the severe challenges for the prevention and control of NAFLD, this article discusses the understanding and mechanism of NAFLD from Chinese and Western medicine. Moreover, the progress regarding its treatment in both Chinese and Western medicine is also summarized. Both Chinese medicine and Western medicine have their own characteristics and clinical efficacy advantages in treating diseases. The purpose of this article is to hope that Chinese and Western medicine have complementary advantages, complementing each other to improve clinical NAFLD therapy prevention and treatment methods to receive more and more attention throughout the global medical community.
Collapse
Affiliation(s)
- Tingting Shi
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Li Wu
- Center of Clinical Evaluation, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, Zhejiang, China
| | - Wenjun Ma
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Liping Ju
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Minghui Bai
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Xiaowei Chen
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Shourong Liu
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Xingxin Yang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Kunming 650500, Yunnan, China
| | - Junping Shi
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Mohamed DI, Khairy E, Khedr SA, Habib EK, Elayat WM, El-Kharashi OA. N-acetylcysteine (NAC) alleviates the peripheral neuropathy associated with liver cirrhosis via modulation of neural MEG3/PAR2/ NF-ҡB axis. Neurochem Int 2019; 132:104602. [PMID: 31751619 DOI: 10.1016/j.neuint.2019.104602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Oxidative stress (OS) is accused in pathogenesis of many diseases, including liver cirrhosis by many mechanisms. One of them is the disturbance of long non coding maternally expressed 3 (MEG3)/protease activated receptor 2 (PAR2) downstream pathway. We aimed to investigate the role of this axis in cirrhotic neuropathy and whether an antioxidant compound such as N-acetylcysteine (NAC) could improve the peripheral nerve function through repression of MEG3/PAR2. METHODS Thirty Wistar rats were used and divided into 5 groups; naive, thiacetamide (TAA) (200 mg/kg 3 times/week. i.p. for 8 weeks) and TAA+NAC (50 or 100 or 200 mg/kg/day) groups. Von Frey (VF) test for mechanical nociceptive responses, hepatic& neural MEG3, NF-ҡB and neural PAR2 expression by PCR, histological studies for liver and sciatic nerve together with the dorsopedal skin thickness were done. RESULTS TAA induced significant decrease in liver function, negative VF test, an increase in the expression of hepatic& neural MEG3, NF-ҡB and neural PAR2. The histological studies showed cirrhotic changes with atrophy of the sciatic nerve and the dorsal skin. NAC improved the liver function together with reversal of the neural: functional, biochemical and histological changes in a dose dependent manner. CONCLUSIONS NAC could improve the peripheral neuropathy in cirrhotic rat through suppression of MEG3/PAR2 expression.
Collapse
Affiliation(s)
- Doaa I Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Eman Khairy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Sara A Khedr
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Eman K Habib
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Wael M Elayat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Omnyah A El-Kharashi
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
20
|
Oliveira CP, Cotrim HP, Stefano JT, Siqueira ACG, Salgado ALA, Parise ER. N-ACETYLCYSTEINE AND/OR URSODEOXYCHOLIC ACID ASSOCIATED WITH METFORMIN IN NON-ALCOHOLIC STEATOHEPATITIS: AN OPEN-LABEL MULTICENTER RANDOMIZED CONTROLLED TRIAL. ARQUIVOS DE GASTROENTEROLOGIA 2019; 56:184-190. [PMID: 31460584 DOI: 10.1590/s0004-2803.201900000-36] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Nowadays, pharmacological treatment of non-alcoholic fatty liver disease (NAFLD) is still limited and it is based on the treatment of conditions associated comorbities. Oxidative stress and insulin resistance are the mechanisms that seem to be mostly involved in its pathogenesis. OBJECTIVE To evaluate the efficacy of N-acetylcysteine (NAC) in combination with metformin (MTF) and/or ursodeoxycholic acid (UDCA) for treatment of non-alcoholic steatohepatitis (NASH). METHODS Open-label multicenter randomized trial was conducted for 48 weeks. It included patients with biopsy-proven NASH. The patients were randomized into three groups: NAC (1.2 g) + UDCA (15 mg/kg) + MTF (850-1500 mg/day) (n=26); UDCA (20 mg/kg) + MTF (850-1500 mg/day) (n=13); NAC (1.2g) + MTF (850-1500 mg/day) (n=14) for 48 weeks. Clinical, laboratory and the second liver biopsies were performed after 48 weeks. RESULTS A total of 53 patients were evaluated; 17 (32.1%) were males; median age ±54 (IQR=15, 21-71) years. In the baseline, no difference was seen between groups according clinical and histological parameters. The groups differed only in cholesterol, LDL and triglycerides. No significant differences in biochemical and histologic parameters were found between these the three groups after 48 weeks of treatment. In the intragroup analysis (intention-to-treat) comparing histological and biochemical features, there were significant improvements in the steatosis degree (P=0.014), ballooning (0.027) and, consequently, in the NAFLD Activity Score (NAS) (P=0.005), and in the ALT levels at the end of the treatment only in the NAC + MTF group. No significant evidence of modification in the liver fibrosis could be observed in any of the groups. CONCLUSION This multicenter study suggests that the association of NAC + MTF could reduce the liver disease activity in patients with NASH. These data stimulate further controlled studies with this therapy for these patients.
Collapse
Affiliation(s)
- Claudia P Oliveira
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brasil.,Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), Departamento de Gastroenterologia e Hepatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Helma P Cotrim
- Universidade Federal da Bahia, Faculdade de Medicina da Bahia, (FMB-UFBA), Salvador, BA, Brasil
| | - Jose Tadeu Stefano
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), Departamento de Gastroenterologia e Hepatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ana Cristina G Siqueira
- Universidade Federal da Bahia, Faculdade de Medicina da Bahia, (FMB-UFBA), Salvador, BA, Brasil
| | | | | |
Collapse
|
21
|
The footprints of mitochondrial impairment and cellular energy crisis in the pathogenesis of xenobiotics-induced nephrotoxicity, serum electrolytes imbalance, and Fanconi's syndrome: A comprehensive review. Toxicology 2019; 423:1-31. [PMID: 31095988 DOI: 10.1016/j.tox.2019.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022]
Abstract
Fanconi's Syndrome (FS) is a disorder characterized by impaired renal proximal tubule function. FS is associated with a vast defect in the renal reabsorption of several chemicals. Inherited and/or acquired conditions seem to be connected with FS. Several xenobiotics including many pharmaceuticals are capable of inducing FS and nephrotoxicity. Although the pathological state of FS is well described, the exact underlying etiology and cellular mechanism(s) of xenobiotics-induced nephrotoxicity, serum electrolytes imbalance, and FS are not elucidated. Constant and high dependence of the renal reabsorption process to energy (ATP) makes mitochondrial dysfunction as a pivotal mechanism which could be involved in the pathogenesis of FS. The current review focuses on the footprints of mitochondrial impairment in the etiology of xenobiotics-induced FS. Moreover, the importance of mitochondria protecting agents and their preventive/therapeutic capability against FS is highlighted. The information collected in this review may provide significant clues to new therapeutic interventions aimed at minimizing xenobiotics-induced renal injury, serum electrolytes imbalance, and FS.
Collapse
|
22
|
Hajighasem A, Farzanegi P, Mazaheri Z. Effects of combined therapy with resveratrol, continuous and interval exercises on apoptosis, oxidative stress, and inflammatory biomarkers in the liver of old rats with non-alcoholic fatty liver disease. Arch Physiol Biochem 2019; 125:142-149. [PMID: 29463133 DOI: 10.1080/13813455.2018.1441872] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. OBJECTIVE Effects of combined therapy with resveratrol, interval and continuous exercises on oxidative stress, inflammation, and apoptosis in the liver of rats with NAFLD. METHODS NAFLD rats were organised in patient, saline, resveratrol (RSV), continuous exercise, interval exercise, continuous exercise + RSV, and interval exercise + RSV groups. RESULTS Resveratrol supplementation alone or in combination with interval and continuous training significantly decreased malondialdehyde and TNF-α level (p < .05), while the levels of catalase; superoxide dismutase and IL-10 were significantly increased (p < .05). Although RSV alone significantly decreased the percentage of apoptotic cells (17.12%), its combination with interval (10.74%), and continuous (14.85%) exercise training demonstrated higher anti-apoptotic activity (p < .05). CONCLUSIONS Although resveratrol alone has an antioxidant, anti-apoptotic and anti-inflammatory properties, combined therapy with interval, and continuous training can be more effective to mitigate these abnormalities in NAFLD patients.
Collapse
Affiliation(s)
- Amir Hajighasem
- a Department of Exercise Physiology, Sari Branch , Islamic Azad University , Sari , Iran
| | - Parvin Farzanegi
- a Department of Exercise Physiology, Sari Branch , Islamic Azad University , Sari , Iran
| | - Zohreh Mazaheri
- b Department of Anatomical Sciences, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
23
|
N-Acetylcysteine Attenuates Cisplatin-Induced Acute Kidney Injury by Inhibiting the C5a Receptor. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4805853. [PMID: 31111056 PMCID: PMC6487137 DOI: 10.1155/2019/4805853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/17/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
N-acetylcysteine has been widely used as a nutritional supplement and drug in humans for its antioxidant properties. The complement activation fragment C5a is a strong proinflammatory molecule that mediates cell adhesion, chemotaxis, and the complex biological functions. However, the effect of NAC on the C5a, and the relationship of those two with cisplatin-induced acute kidney injury are unknown. In cisplatin induced AKI mouse model, mice with NAC administration had a marked improvement in renal function (BUN and Cr), decreased pathological damage, reduced inflammation, and alleviated renal oxidative stress. Furthermore, C5a and C5aR expression in the cisplatin-treated group was notably increased compared with the control group, and this increase could be significantly inhibited by NAC. In addition, neutrophils coexpressed distinctly with C5aR, and the number of infiltrating neutrophils (MPO+ly6G+) and inflammatory factors decreased with NAC treatment in the cisplatin-treated group. Overall, these data demonstrate that NAC could ameliorate cisplatin-induced nephrotoxicity in mice and the protective effects may be conducted by inhibiting the activation of kidney inflammation and the complement system.
Collapse
|
24
|
Shieh P, Jan CR, Liang WZ. The protective effects of the antioxidant N-acetylcysteine (NAC) against oxidative stress-associated apoptosis evoked by the organophosphorus insecticide malathion in normal human astrocytes. Toxicology 2019; 417:1-14. [PMID: 30769050 DOI: 10.1016/j.tox.2019.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/23/2019] [Accepted: 02/09/2019] [Indexed: 12/21/2022]
Abstract
Malathion is one of the most widely used organophosphorus insecticides in agriculture. However, malathion may be involved in the etiology of human brain dysfunction. Induction of ROS has been proposed as a mechanism of malathion-induced poisoning cases, but there are few data regarding the effects of malathion on oxidative stress-associated neurotoxicity in human glial cells. The aim was to explore the mechanism underlying effects of malathion on neurotoxicity in Gibco® Human Astrocytes (GHA cells) and evaluate the protective effects of the antioxidant (N-acetylcysteine, NAC). Cell viability was measured by the cell proliferation reagent (WST-1). Antioxidant enzymes (glutathione peroxidase and catalase) were measured by an ELISA reader. Cell cycle distribution and ROS productions were detected by flow cytometry. Cell cycle-related protein levels (cyclin E1, CDK2, cyclin A2, CDK1/CDC2, or cyclin B1) and apoptotic protein levels (Bcl-2, Bax, and cleaved caspase-9/caspase-3) were analyzed by Western blotting. In GHA cells, treatment with malathion (10-25 μM) for 24 h concentration-dependently induced cytotoxicity and cell cycle arrest. In terms of oxidative stresses, malathion elevated intracellular ROS levels, but reduced glutathion and antioxidant enzyme levels. Treatment with NAC (5 μM) reversed malathion-induced oxidative stress responses, and prevented malathion-evoked apoptosis by regulating apoptotic protein expressions. Together, in GHA cells, NAC mediated inhibition of malathion-activated mitochondrial apoptotic pathways that involved cell cycle arrest and ROS responses. These data provide further insights into the molecular mechanisms behind malathion poisoning, and might suggest that NAC with its protective effects may be a potential compound for prevention of malathion-induced brain injury.
Collapse
Affiliation(s)
- Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung, 90741, Taiwan, ROC
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan, ROC
| | - Wei-Zhe Liang
- Department of Pharmacy, Tajen University, Pingtung, 90741, Taiwan, ROC.
| |
Collapse
|
25
|
Heidari R, Jamshidzadeh A, Ghanbarinejad V, Ommati MM, Niknahad H. Taurine supplementation abates cirrhosis-associated locomotor dysfunction. Clin Exp Hepatol 2018; 4:72-82. [PMID: 29904723 PMCID: PMC6000746 DOI: 10.5114/ceh.2018.75956] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/26/2017] [Indexed: 01/04/2023] Open
Abstract
AIM OF THE STUDY Hepatic encephalopathy and hyperammonemia is a clinical complication associated with liver cirrhosis. The brain is the target organ for ammonia toxicity. Ammonia-induced brain injury is related to oxidative stress, locomotor activity dysfunction, and cognitive deficit, which could lead to permanent brain injury, coma and death if not appropriately managed. There is no promising pharmacological intervention against cirrhosis-associated brain injury. Taurine (TAU) is one of the most abundant amino acids in the human body. Several physiological and pharmacological roles have been attributed to TAU. TAU may act as an antioxidant and is an excellent neuroprotective agent. This study aimed to evaluate the effect of TAU supplementation on cirrhosis-associated locomotor activity disturbances and oxidative stress in the brain. MATERIAL AND METHODS Rats underwent bile duct ligation (BDL) surgery, and plasma and brain ammonia level, plasma biochemical parameters, and rats' locomotor function were monitored. Furthermore, brain tissue markers of oxidative stress were assessed. RESULTS It was found that plasma and brain ammonia was increased, and markers of liver injury were significantly elevated in the cirrhotic group. Impaired locomotor activity was also evident in BDL rats. Moreover, an increase in brain tissue markers of oxidative stress was detected in the brain of cirrhotic animals. It was found that TAU supplementation (50, 100, and 200 mg/kg, gavage) alleviated brain tissue markers of oxidative stress and improved animals' locomotor activity. CONCLUSIONS These data suggest that TAU is a potential protective agent against cirrhosis-associated brain injury.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Department of Animal Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Ommati MM, Jamshidzadeh A, Niknahad H, Mohammadi H, Sabouri S, Heidari R, Abdoli N. N-acetylcysteine treatment blunts liver failure-associated impairment of locomotor activity. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Vázquez-Velasco M, González-Torres L, García-Fernández RA, Méndez MT, Bastida S, Benedí J, González-Muñoz MJ, Sánchez-Muniz FJ. Glucomannan or Glucomannan Plus Spirulina-Enriched Squid-Surimi Diets Reduce Histological Damage to Liver and Heart in Zucker fa/fa Rats Fed a Cholesterol-Enriched and Non-Cholesterol-Enriched Atherogenic Diet. J Med Food 2017; 20:618-625. [DOI: 10.1089/jmf.2016.0157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Miguel Vázquez-Velasco
- Department of Nutrition and Food Science (I) Nutrition, School of Pharmacy, Complutense University, Madrid, Spain
| | - Laura González-Torres
- Department of Nutrition and Food Science (I) Nutrition, School of Pharmacy, Complutense University, Madrid, Spain
| | - Rosa A. García-Fernández
- Department of Veterinary Medicine and Surgery, School of Veterinary, Complutense University, Madrid, Spain
| | - María Teresa Méndez
- Clinic Analysis Center, School of Pharmacy, Complutense University, Madrid, Spain
| | - Sara Bastida
- Department of Nutrition and Food Science (I) Nutrition, School of Pharmacy, Complutense University, Madrid, Spain
| | - Juana Benedí
- Department of Pharmacology, School of Pharmacy, Complutense University, Madrid, Spain
| | - María José González-Muñoz
- Department of Nutrition, Food Science and Toxicology, School of Pharmacy, Alcalá University, Alcalá de Henares, Madrid, Spain
| | - Francisco J. Sánchez-Muniz
- Department of Nutrition and Food Science (I) Nutrition, School of Pharmacy, Complutense University, Madrid, Spain
| |
Collapse
|
28
|
Semiane N, Foufelle F, Ferré P, Hainault I, Ameddah S, Mallek A, Khalkhal A, Dahmani Y. High carbohydrate diet induces nonalcoholic steato-hepatitis (NASH) in a desert gerbil. C R Biol 2017; 340:25-36. [DOI: 10.1016/j.crvi.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
|
29
|
Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4234061. [PMID: 28070230 PMCID: PMC5192343 DOI: 10.1155/2016/4234061] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
The crucial roles of oxidative stress and inflammation in the development of hepatic diseases have been unraveled and emphasized for decades. From steatosis to fibrosis, cirrhosis and liver cancer, hepatic oxidative stress, and inflammation are sustained and participated in this pathological progressive process. Notably, increasing evidences showed that oxidative stress and inflammation are tightly related, which are regarded as essential partners that present simultaneously and interact with each other in various pathological conditions, creating a vicious cycle to aggravate the hepatic diseases. Clarifying the interaction of oxidative stress and inflammation is of great importance to provide new directions and targets for developing therapeutic intervention. Herein, this review is concerned with the regulation and interdependence of oxidative stress and inflammation in a variety of liver diseases. In addition to classical mediators and signaling, particular emphasis is placed upon immune suppression, a potential linkage of oxidative stress and inflammation, to provide new inspiration for the treatment of liver diseases. Furthermore, since antioxidation and anti-inflammation have been extensively attempted as the strategies for treatment of liver diseases, the application of herbal medicines and their derived compounds that protect liver from injury via regulating oxidative stress and inflammation collectively were reviewed and discussed.
Collapse
|
30
|
Lam P, Cheung F, Tan HY, Wang N, Yuen MF, Feng Y. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities. Int J Mol Sci 2016; 17:465. [PMID: 27043533 PMCID: PMC4848921 DOI: 10.3390/ijms17040465] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC) axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Puiyan Lam
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital and Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Rosic G, Selakovic D, Joksimovic J, Srejovic I, Zivkovic V, Tatalović N, Orescanin-Dusic Z, Mitrovic S, Ilic M, Jakovljevic V. The effects of N-acetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts. Toxicol Lett 2016; 242:34-46. [PMID: 26656795 DOI: 10.1016/j.toxlet.2015.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate the effects of chronic NAC administration along with cisplatin on cisplatin-induced cardiotoxicity by means of coronary flow (CF), cardiodynamic parameters, oxidative stress markers and morphological changes in isolated rat heart. Isolated hearts of Wistar albino rats (divided into four groups: control, cisplatin, NAC and cisplatin+NAC group) were perfused according to Langendorff technique at constant coronary perfusion pressure starting at 50 and gradually increased to 65, 80, 95 and 110 cm H2O to evaluate cardiodynamic parameters within autoregulation range. Samples of coronary venous effluent (CVE) were collected for determination of CF and biochemical assays, and heart tissue samples for biochemical assays and histopathological examination. Cisplatin treatment decreased CF and heart rate, and increased left ventricular systolic pressure and maximum left ventricular pressure development rate. Cisplatin increased H2O2 and TBARS, but decreased NO2(-) levels in CVE. In tissue samples, cisplatin reduced pathological alterations in myocardium and coronary vessels, with no changes in the amount of total glutathione, as well as in activity of glutathione peroxidase and glutathione reductase. NAC coadministration, by reducing oxidative damage, attenuated cisplatin-induced changes of cardiodynamic and oxidative stress parameters, as well as morphological changes in myocardium and coronary vasculature.
Collapse
Affiliation(s)
- Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Nikola Tatalović
- Department of Physiology, Institute for Biological Research, University of Belgrade, Serbia.
| | - Zorana Orescanin-Dusic
- Department of Physiology, Institute for Biological Research, University of Belgrade, Serbia.
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Milena Ilic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia.
| |
Collapse
|
32
|
El-Lakkany NM, Seif El-Din SH, Sabra ANAA, Hammam OA, Ebeid FAL. Co-administration of metformin and N-acetylcysteine with dietary control improves the biochemical and histological manifestations in rats with non-alcoholic fatty liver. Res Pharm Sci 2016; 11:374-382. [PMID: 27920819 PMCID: PMC5122826 DOI: 10.4103/1735-5362.192487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a burgeoning health problem that affects 1/3 of the adult population and an increasing number of children in developed countries. Oxidative stress and insulin resistance are the mechanisms that seem to be mostly involved in its pathogenesis. This study was conceived in a NAFLD rat model to evaluate the efficacy of both metformin (MTF) and N-acetylcysteine (NAC) with dietary control on biochemical and histologic liver manifestations. Rats were classified into nine groups; normal (I), NAFLD-induced by feeding high-fat diet (HFD; II) for 12 weeks, NAFLD switched to regular diet (RD; III), NAFLD-HFD or -RD treated with MTF in a dose of 150 mg/kg (IV, V), NAC in a dose of 500 mg/kg (VI, VII) or MTF+NAC (VIII, IX) respectively for 8 weeks. After 20 weeks, the rats in group II showed notable steatosis, lobular inflammation, fibrosis accompanied with elevated (P < 0.05) serum alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transferase (γ-GT), cholesterol, triglycerides, LDL, VLDL, leptin, tumor necrosis factor (TNF-α), transforming growth factor (TGF-β1) and hepatic malondialdehyde (MDA) compared with group I. Meanwhile, hepatic superoxide dismutase (SOD), glutathione GSH with serum HDL, adiponectin were significantly decreased (P < 0.05). These changes were to a less extent in group III. MTF or NAC individually resulted in improvement of most of these biochemical and histological parameters. These improvements were more pronounced in the combined groups VIII and IX versus each drug alone. NAC supplementation concomitant with MTF could be beneficial for the treatment of NAFLD and prevention of nonalcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
| | - Sayed Hassan Seif El-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba, Giza, Egypt
| | | | - Olfat Ali Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba, Giza, Egypt
| | - Fatma Abdel-Latif Ebeid
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba, Giza, Egypt
| |
Collapse
|
33
|
Machado MV, Kruger L, Jewell ML, Michelotti GA, Pereira TDA, Xie G, Moylan CA, Diehl AM. Vitamin B5 and N-Acetylcysteine in Nonalcoholic Steatohepatitis: A Preclinical Study in a Dietary Mouse Model. Dig Dis Sci 2016; 61:137-48. [PMID: 26403427 PMCID: PMC4703517 DOI: 10.1007/s10620-015-3871-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease and second indication for liver transplantation in the Western world. Effective therapy is still not available. Previously we showed a critical role for caspase-2 in the pathogenesis of nonalcoholic steatohepatitis (NASH), the potentially progressive form of NAFLD. An imbalance between free coenzyme A (CoA) and acyl-CoA ratio is known to induce caspase-2 activation. OBJECTIVES We aimed to evaluate CoA metabolism and the effects of supplementation with CoA precursors, pantothenate and cysteine, in mouse models of NASH. METHODS CoA metabolism was evaluated in methionine-choline deficient (MCD) and Western diet mouse models of NASH. MCD diet-fed mice were treated with pantothenate and N-acetylcysteine or placebo to determine effects on NASH. RESULTS Liver free CoA content was reduced, pantothenate kinase (PANK), the rate-limiting enzyme in the CoA biosynthesis pathway, was down-regulated, and CoA degrading enzymes were increased in mice with NASH. Decreased hepatic free CoA content was associated with increased caspase-2 activity and correlated with worse liver cell apoptosis, inflammation, and fibrosis. Treatment with pantothenate and N-acetylcysteine did not inhibit caspase-2 activation, improve NASH, normalize PANK expression, or restore free CoA levels in MCD diet-fed mice. CONCLUSION In mice with NASH, hepatic CoA metabolism is impaired, leading to decreased free CoA content, activation of caspase-2, and increased liver cell apoptosis. Dietary supplementation with CoA precursors did not restore CoA levels or improve NASH, suggesting that alternative approaches are necessary to normalize free CoA during NASH.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 905 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC, 27710, USA
- Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Leandi Kruger
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 905 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC, 27710, USA
| | - Mark L Jewell
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 905 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC, 27710, USA
| | - Gregory Alexander Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 905 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC, 27710, USA
| | - Thiago de Almeida Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 905 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC, 27710, USA
| | - Guanhua Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 905 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC, 27710, USA
| | - Cynthia A Moylan
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 905 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC, 27710, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 905 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC, 27710, USA.
| |
Collapse
|
34
|
Oxidative Stress and Inflammation in Hepatic Diseases: Therapeutic Possibilities of N-Acetylcysteine. Int J Mol Sci 2015; 16:30269-308. [PMID: 26694382 PMCID: PMC4691167 DOI: 10.3390/ijms161226225] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022] Open
Abstract
Liver disease is highly prevalent in the world. Oxidative stress (OS) and inflammation are the most important pathogenetic events in liver diseases, regardless the different etiology and natural course. N-acetyl-l-cysteine (the active form) (NAC) is being studied in diseases characterized by increased OS or decreased glutathione (GSH) level. NAC acts mainly on the supply of cysteine for GSH synthesis. The objective of this review is to examine experimental and clinical studies that evaluate the antioxidant and anti-inflammatory roles of NAC in attenuating markers of inflammation and OS in hepatic damage. The results related to the supplementation of NAC in any form of administration and type of study are satisfactory in 85.5% (n = 59) of the cases evaluated (n = 69, 100%). Within this percentage, the dosage of NAC utilized in studies in vivo varied from 0.204 up to 2 g/kg/day. A standard experimental design of protection and treatment as well as the choice of the route of administration, with a broader evaluation of OS and inflammation markers in the serum or other biological matrixes, in animal models, are necessary. Clinical studies are urgently required, to have a clear view, so that, the professionals can be sure about the effectiveness and safety of NAC prescription.
Collapse
|
35
|
Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N. A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development. Clin Biochem 2015; 48:1200-8. [DOI: 10.1016/j.clinbiochem.2015.04.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
|
36
|
Seif el-Din SH, El-Lakkany NM, El-Naggar AA, Hammam OA, Abd El-Latif HA, Ain-Shoka AA, Ebeid FA. Effects of rosuvastatin and/or β-carotene on non-alcoholic fatty liver in rats. Res Pharm Sci 2015; 10:275-87. [PMID: 26600855 PMCID: PMC4623617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has markedly increased, especially in patients exhibit one or more features of the metabolic syndrome. This study investigates the effect of rosuvastatin (RSV) and/or β-carotene (βC) in NAFLD-induced rats. Rats were classified into nine groups; normal (I), NAFLD-induced with high-fat diet (HFD; II), NAFLD switched to regular diet (RD; III), NAFLD-HFD or NAFLD-RD treated with RSV (IV, V), βC (VI, VII) or both RSV+βC (VIII, IX), respectively. After four weeks, rats were sacrificed to obtain serum samples and liver tissues. Liver histology, lipid profile, liver oxidative stress markers, and adipocytokines were measured. Liver sections of rats with NAFLD-HFD revealed steatosis, lose of hepatic architecture, inflammation and hepatocyte vacuolation with high percentage of cell fibrosis. Serum levels of ALT, AST, ALP, gamma glutamyl transferase (GGT) and lipid profile (triglycerides, cholesterol, LDL and VLDL) were significantly increased (P<0.05) compared with normal. Also, hepatic malondialdehyde level and serum leptin, tumor necrosis factor-alpha (TNF-α) and transforming growth factor-β1 (TGF-β1) were increased. Meanwhile, superoxide dismutase (SOD) activity, GSH content in liver, serum HDL and adiponectin were decreased (P<0.05) vs normal. These changes were observed to a lesser extent in NAFLD-RD group. Administration of RSV or/and βC almost improved all previously mentioned parameters. Moreover, hepatic steatosis was decreased and inflammation was markedly ameliorated with reduction of TNF-α and TGF-β. These results were more pronounced in the groups VIII and IX vs each drug alone. In conclusion RSV and βC could be beneficial for the treatment and prevention of NAFLD. Combined RSV with βC is more effective than RSV alone.
Collapse
Affiliation(s)
- Sayed H. Seif el-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Naglaa M. El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Abeer A. El-Naggar
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Olfat A. Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Hekma A. Abd El-Latif
- Department of Pharmacology, Faculty of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Afaf A. Ain-Shoka
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Fatma A. Ebeid
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| |
Collapse
|
37
|
The effect of iloprost and N-acetylcysteine on skeletal muscle injury in an acute aortic ischemia-reperfusion model: an experimental study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:453748. [PMID: 25834818 PMCID: PMC4365336 DOI: 10.1155/2015/453748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/01/2015] [Accepted: 02/13/2015] [Indexed: 11/17/2022]
Abstract
Objective. The objective of this study was to examine the effects of iloprost and N-acetylcysteine (NAC) on ischemia-reperfusion (IR) injuries to the gastrocnemius muscle, following the occlusion-reperfusion period in the abdominal aorta of rats. Materials and Methods. Forty male Sprague-Dawley rats were randomly divided into four equal groups. Group 1: control group. Group 2 (IR): aorta was occluded. The clamp was removed after 1 hour of ischemia. Blood samples and muscle tissue specimens were collected following a 2-hour reperfusion period. Group 3 (IR + iloprost): during a 1-hour ischemia period, iloprost infusion was initiated from the jugular catheter. During a 2-hour reperfusion period, the iloprost infusion continued. Group 4 (IR + NAC): similar to the iloprost group. Findings. The mean total oxidant status, CK, and LDH levels were highest in Group 2 and lowest in Group 1. The levels of these parameters in Group 3 and Group 4 were lower compared to Group 2 and higher compared to Group 1 (P < 0.05). The histopathological examination showed that Group 3 and Group 4, compared to Group 2, had preserved appearance with respect to hemorrhage, necrosis, loss of nuclei, infiltration, and similar parameters. Conclusion. Iloprost and NAC are effective against ischemia-reperfusion injury and decrease ischemia-related tissue injury.
Collapse
|
38
|
The effect of tomato juice supplementation on biomarkers and gene expression related to lipid metabolism in rats with induced hepatic steatosis. Eur J Nutr 2014; 54:933-44. [DOI: 10.1007/s00394-014-0770-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023]
|
39
|
Schwingel TE, Klein CP, Nicoletti NF, Dora CL, Hadrich G, Bica CG, Lopes TG, da Silva VD, Morrone FB. Effects of the compounds resveratrol, rutin, quercetin, and quercetin nanoemulsion on oxaliplatin-induced hepatotoxicity and neurotoxicity in mice. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:837-48. [PMID: 24908156 DOI: 10.1007/s00210-014-0994-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 05/16/2014] [Indexed: 02/06/2023]
Abstract
Oxaliplatin (OXA) is a platinum compound widely used in the treatment of some solid tumors, especially colorectal cancer. Despite its usefulness, oxaliplatin-associated neurotoxicity represents the main dose-limiting factor of this drug, and until now, there is no suitable treatment. Chemotherapy with oxaliplatin also increases the rate of developing hepatic damages with inflammatory activity, termed chemotherapy-associated steatohepatitis (CASH). In the present study, we aimed to compare the effects of a series of antioxidant compounds on simultaneous development of oxaliplatin-induced hepato- and neurotoxicity in mice. Mice BALB/c were treated with oxaliplatin for 6 weeks, 10 mg/kg, intraperitoneally, resulting in mechanical allodynia and hepatic steatosis. We administered the following antioxidant compounds--rutin (RT) (20 mg/kg), resveratrol (RVS) (100 mg/kg), quercetin (QT) (20 mg/kg), and quercetin nanoemulsion (NQT) (20 mg/kg)--daily by gavage to BALB/c, and N-acetylcysteine (NAC) was used as positive control. Treatments with RSV, RUT, or NQT were able to prevent mechanical allodynia when compared to the OXA group, and this effect was associated with decreased c-Fos immunopositivity in the lumbar spinal cord. Regarding the effects on steatohepatitis, RVS, QT, and NQT almost completely reversed the mean liver weight increase induced by OXA. In accordance with these previous data, histological evaluation indicated attenuation of all features of hepatic steatosis evaluated in RSV, RUT, QT, and NQT groups. These compounds were able to reduce the immunopositivity for the apoptosis marker caspase-3. On the other hand, only QT and NQT treatments were able to reduce neutrophil migration measured by myeloperoxidase (MPO) activity. These results suggest that the compounds tested, RSV, RUT, QT, and NQT, would be useful for the clinical treatment of neuro- and hepatoxicity induced by oxaliplatin.
Collapse
Affiliation(s)
- Tania E Schwingel
- Programa de Pós Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Antioxidant and anti-inflammatory effects of N-acetylcysteine against malathion-induced liver damages and immunotoxicity in rats. Life Sci 2014; 107:50-8. [PMID: 24810974 DOI: 10.1016/j.lfs.2014.04.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 01/22/2023]
Abstract
AIMS Occupational exposure to organophosphate pesticides is becoming a common and increasingly alarming world-wide phenomenon. The present study is designed to investigate the preventive effect of N-acetylcysteine on malathion-induced hepatic injury and inflammation in rats. MAIN METHODS Adult male Wistar rats of body weight 200-230 g were used for the study. Malathion (200mg/kg b.w./day) was administered to rats by oral intubation and N-acetylcysteine (2g/l) in drinking water for 28 days. Rats were sacrificed on the 28th day, 2h after the last administration. Markers of liver injury (aspartate transaminase, alanine transaminase, alkaline phosphatase and lactate desyhdogenase), inflammation (leukocyte counts, myeloperoxidase, immunophenotyping of CD4(+) and CD8(+), interleukin-1β, interleukin-6 and interferon-γ expression) and oxidative stress (lipid peroxidation, reduced glutathione and antioxidant status) were assessed. KEY FINDINGS Malathion induced an increase in activities of hepatocellular enzymes in plasma, lipid peroxidation index, CD3(+)/CD4(+) and CD3(+)/CD4(+) percent and pro-inflammatory cytokines, when decreased antioxidant status in liver was noted. When malathion-treated rats were compared to NAC supplemented rats, leukocytosis, T cell count and IL-1β, IL-6, INF-γ expression were reduced. Furthermore, NAC restored liver enzyme activities and oxidative stress markers. SIGNIFICANCE Malathion induces hepatotoxicity, oxidative stress and liver inflammation. N-acetylcysteine showed therapeutic effects against malathion toxicity.
Collapse
|
41
|
Shen H, Li M, Wang B, Lai IK, Robertson LW, Ludewig G. Dietary antioxidants (selenium and N-acetylcysteine) modulate paraoxonase 1 (PON1) in PCB 126-exposed rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6384-99. [PMID: 23644946 PMCID: PMC3769429 DOI: 10.1007/s11356-013-1690-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/26/2013] [Indexed: 05/10/2023]
Abstract
Environmental pollutants polychlorinated biphenyls (PCBs), especially dioxin-like PCBs, cause oxidative stress and associated toxic effects, including cancer and possibly atherosclerosis. We previously reported that PCB 126, the most potent dioxin-like PCB congener, not only decreases antioxidants such as hepatic selenium (Se), Se-dependent glutathione peroxidase, and glutathione (GSH) but also increases levels of the antiatherosclerosis enzyme paraoxonase 1 (PON1) in liver and serum. To probe the interconnection of these three antioxidant systems, Se, GSH, and PON1, we examined the influence of varying levels of dietary Se and N-acetylcysteine (NAC), a scavenger of reactive oxygen species (ROS) and precursor for GSH synthesis, on PON1 in the absence and presence of PCB 126 exposure. Male Sprague-Dawley rats, fed diets with differing Se levels (0.02, 0.2, or 2 ppm) or NAC (1%), were treated with a single intraperitoneal injection of corn oil or various doses of PCB 126 and euthanized 2 weeks later. PCB 126 significantly increased liver PON1 mRNA, protein level and activity, and serum PON1 activity in all dietary groups but did not consistently increase thiobarbituric acid levels (thiobarbituric acid reactive substances, TBARS), an indicator of lipid oxidation and oxidative stress, in liver or serum. Inadequate (high or low) dietary Se decreased baseline and PCB 126-induced aryl hydrocarbon receptor (AhR) expression but further increased PCB 126-induced cytochrome P450 1A1 (CYP1A1) expression, the enzyme believed to be the cause for PCB 126-induced oxidative stress. In addition, a significant inverse relationship was observed not only between dietary Se levels and PON1 mRNA and PON1 activity but also with TBARS levels in the liver, suggesting significant antioxidant protection from dietary Se. NAC lowered serum baseline TBARS levels in controls and increased serum PON1 activity but lowered liver PON1 activities in animals treated with 1 μmol/kg PCB 126, suggesting antioxidant activity by NAC primarily in serum. These results also show an unexpected predominantly inverse relationship between Se or NAC and PON1 during control and PCB 126 exposure conditions. These interactions should be further explored in the development of dietary protection regimens.
Collapse
Affiliation(s)
- Hua Shen
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Miao Li
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Bingxuan Wang
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Ian K. Lai
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Larry W. Robertson
- The University of Iowa Department of Occupational & Environmental Health, The University of Iowa, Iowa City, Iowa
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Gabriele Ludewig
- The University of Iowa Department of Occupational & Environmental Health, The University of Iowa, Iowa City, Iowa
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
42
|
Ordoñez R, Carbajo-Pescador S, Prieto-Dominguez N, García-Palomo A, González-Gallego J, Mauriz JL. Inhibition of matrix metalloproteinase-9 and nuclear factor kappa B contribute to melatonin prevention of motility and invasiveness in HepG2 liver cancer cells. J Pineal Res 2014; 56:20-30. [PMID: 24117795 DOI: 10.1111/jpi.12092] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/30/2013] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal human cancers worldwide because of its high incidence and its metastatic potential. Extracellular matrix degradation by matrix metalloproteinases (MMPs) has been connected with cancer cell invasion, and it has been suggested that inhibition of MMPs by synthetic and natural inhibitors may be of great importance in the HCC therapies. Melatonin, the main product of the pineal gland, exerts antiproliferative, proapoptotic, and antiangiogenic properties in HepG2 human hepatocellular cells, and exhibits anti-invasive and antimetastatic activities by suppressing the enzymatic activity of MMP-9 in different tumor types. However, the underlying mechanism of anti-invasive activity in HCC models has not been fully elucidated. Here, we demonstrate that 1 mm melatonin dosage reduced in IL-1β-induced HepG2 cells MMP-9 gelatinase activity and inhibited cell invasion and motility through downregulation of MMP-9 gene expression and upregulation of the MMP-9-specific inhibitor tissue inhibitor of metalloproteinases (TIMP)-1. No significant changes were observed in the expression and activity of MMP-2, the other proteinase implicated in matrix collagen degradation, and its tissue inhibitor, TIMP-2. Also, melatonin significantly suppressed IL-1β-induced nuclear factor-kappaB (NF-κB) translocation and transcriptional activity. In summary, we demonstrate that melatonin modulates motility and invasiveness of HepG2 cell in vitro through a molecular mechanism that involves TIMP-1 upregulation and attenuation of MMP-9 expression and activity via NF-κB signal pathway inhibition.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain; Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Histopathological and immunohistochemical analysis of Tilapia (Oreochromis niloticus) exposed to cylindrospermopsin and the effectiveness of N-Acetylcysteine to prevent its toxic effects. Toxicon 2013; 78:18-34. [PMID: 24291634 DOI: 10.1016/j.toxicon.2013.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 11/24/2022]
Abstract
Cylindrospermopsin (CYN) is a cytotoxic cyanotoxin produced by several cyanobacteria species. It has been demonstrated that CYN is a potent protein and glutathione synthesis inhibitor, and induces genotoxicity and oxidative stress. The present study investigated the protective role of two different doses of N-Acetylcysteine (NAC) (22 and 45 mg/fish/day) against the pathological changes induced in tilapia (Oreochromis niloticus) orally exposed to a single dose of pure CYN or CYN from an Aphanizomenon ovalisporum CYN-producer strain (200 μg/kg of CYN in both cases). Moreover, an immunohistochemical (IHC) analysis was carried out in order to elucidate the CYN distribution in exposed fish. The histological findings were more pronounced when fish were intoxicated with CYN from the cyanobacterial strain, being liver and kidney the main targets for CYN toxicity. NAC pre-treatment was effective reducing the damage induced by CYN, especially at the highest dose employed (45 mg/fish/day), with a total prevention in all organs. The IHC analysis showed that CYN-antigen appeared mainly in the liver and gastrointestinal tract, although it was also present in kidney and gills. In this case, the immunopositive results were more abundant in those fish exposed to pure CYN. NAC reduced the number of immunopositive cases in a dose-dependent way. Therefore, NAC can be considered a useful chemoprotectant in the prophylaxis and treatment of CYN-related intoxications in fish.
Collapse
|
44
|
Bernal C, Martín-Pozuelo G, Lozano AB, Sevilla Á, García-Alonso J, Canovas M, Periago MJ. Lipid biomarkers and metabolic effects of lycopene from tomato juice on liver of rats with induced hepatic steatosis. J Nutr Biochem 2013; 24:1870-81. [DOI: 10.1016/j.jnutbio.2013.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 04/12/2013] [Accepted: 05/08/2013] [Indexed: 12/11/2022]
|
45
|
Walenbergh SMA, Koek GH, Bieghs V, Shiri-Sverdlov R. Non-alcoholic steatohepatitis: the role of oxidized low-density lipoproteins. J Hepatol 2013. [PMID: 23183522 DOI: 10.1016/j.jhep.2012.11.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is hallmarked by lipid accumulation in the liver (steatosis) along with inflammation (hepatitis). The transition from simple steatosis towards NASH represents a key step in pathogenesis, as it will set the stage for further severe liver damage. Yet, the pathogenesis behind hepatic inflammation is still poorly understood. It is of relevance to better understand the underlying mechanisms involved in NASH in order to apply new knowledge to potential novel therapeutic approaches. In the current review, we propose oxidized cholesterol as a novel risk factor for NASH. Here, we summarize mouse and human studies that provide possible mechanisms for the involvement of oxidized low-density lipoproteins in NASH and consequent potential novel diagnostic tools and treatment strategies for hepatic inflammation.
Collapse
Affiliation(s)
- Sofie M A Walenbergh
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
46
|
Carbajo-Pescador S, Steinmetz C, Kashyap A, Lorenz S, Mauriz JL, Heise M, Galle PR, González-Gallego J, Strand S. Melatonin induces transcriptional regulation of Bim by FoxO3a in HepG2 cells. Br J Cancer 2012; 108:442-9. [PMID: 23257900 PMCID: PMC3566813 DOI: 10.1038/bjc.2012.563] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Melatonin induces apoptosis in many different cancer cell lines, including hepatocellular carcinoma cells. However, the responsible pathways have not been clearly elucidated. A member of the forkhead transcription factors' family, FoxO3a, has been implicated in the expression of the proapoptotic protein Bim (a Bcl-2-interacting mediator of cell death). In this study, we used human HepG2 liver cancer cells as an in vitro model to investigate whether melatonin treatment induces Bim through regulation by the transcription factor FoxO3a. Methods: Cytotoxicity of melatonin was compared in HepG2 hepatoblastoma cells and primary human hepatocytes. Proapoptotic Bim expression was analysed by reverse transcriptase–polymerase chain reaction and western blot. Reporter gene assays and chromatin immunoprecipitation assays were performed to analyse whether FoxO3a transactivates the Bim promoter. Small interfering RNA (siRNA) was used to study the role of FoxO3a in Bim expression. Immunofluorescence was performed to analyse FoxO3a localisation in HepG2 cells. Results: Melatonin treatment induces apoptosis in HepG2 cells, but not in primary human hepatocytes. The proapoptotic effect was mediated by increased expression of the BH3-only protein Bim. During melatonin treatment, we observed increased transcriptional activity of the forkhead-responsive element and could demonstrate that FoxO3a binds to a specific sequence within the Bim promoter. Furthermore, melatonin reduced phosphorylation of FoxO3a at Thr32 and Ser253, and induced its increased nuclear localisation. Moreover, silencing experiments with FoxO3a siRNA prevented Bim upregulation. Conclusion: This study shows that melatonin can induce apoptosis in HepG2 hepatocarcinoma cells through the upregulation of proapoptotic Bim mediated by nuclear translocation and activation of the transcription factor FoxO3a.
Collapse
Affiliation(s)
- S Carbajo-Pescador
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Institute of Biomedicine, University of León, León, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Au AY, Hasenwinkel JM, Frondoza CG. Hepatoprotective effects of S-adenosylmethionine and silybin on canine hepatocytes in vitro. J Anim Physiol Anim Nutr (Berl) 2012; 97:331-41. [PMID: 22320165 DOI: 10.1111/j.1439-0396.2012.01275.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inflammation and oxidative stress are associated with liver injury and development of liver disease. The transcription factors nuclear factor-kappa beta (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) play critical roles in modulating liver injury and damage. Activation of NF-κB induces production of pro-inflammatory molecules including prostaglandin E2 (PGE2 ), interleukin-8 (IL-8) and macrophage chemotactic protein-1 (MCP-1). Nrf2 regulates genes controlling antioxidants. Our laboratory previously showed that hepatocytes, the primary functional cell type comprising liver tissue, respond to the cytokine interleukin-1 beta (IL-1β) by increased production of PGE2 , IL-8 and MCP-1. This increase is associated with nuclear translocation of NF-κB. In this study, we evaluated whether primary canine hepatocytes pre-treated with the combination of S-adenosylmethionine (SAMe; 30 and 2000 ng/ml) and silybin (SB; 298 ng/ml), agents with known anti-inflammatory and antioxidant properties, could attenuate IL-1β-induced inflammation and oxidative stress. The SAMe and SB combination reduced cytokine-induced PGE2 , IL-8 and MCP-1 production while also inhibiting NF-κB nuclear translocation. These changes were accompanied by increased antioxidant enzyme-reduced glutathione (GSH) comparable to control levels. The study shows for the first time that the SAMe and SB combination inhibits both inflammation and oxidative stress through two separate signalling pathways.
Collapse
Affiliation(s)
- A Y Au
- Research and Development, Nutramax Laboratories, Inc., 2208 Lakeside Blvd., Edgewood, MD 21040, USA
| | | | | |
Collapse
|
48
|
Chronic Hepatitis. Integr Med (Encinitas) 2012. [DOI: 10.1016/b978-1-4377-1793-8.00019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
McCarty MF. Full-spectrum antioxidant therapy featuring astaxanthin coupled with lipoprivic strategies and salsalate for management of non-alcoholic fatty liver disease. Med Hypotheses 2011; 77:550-6. [DOI: 10.1016/j.mehy.2011.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/09/2011] [Accepted: 06/12/2011] [Indexed: 12/13/2022]
|
50
|
Koek G, Liedorp P, Bast A. The role of oxidative stress in non-alcoholic steatohepatitis. Clin Chim Acta 2011; 412:1297-305. [DOI: 10.1016/j.cca.2011.04.013] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 12/12/2022]
|