1
|
Haupt S, Gleim N, Ahadova A, Bläker H, Knebel Doeberitz M, Kloor M, Heuveline V. A computational model for investigating the evolution of colonic crypts during Lynch syndrome carcinogenesis. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Saskia Haupt
- Engineering Mathematics and Computing Lab (EMCL) Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University Heidelberg Germany
- Data Mining and Uncertainty Quantification (DMQ) Heidelberg Institute for Theoretical Studies (HITS) Heidelberg Germany
| | - Nils Gleim
- Engineering Mathematics and Computing Lab (EMCL) Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University Heidelberg Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology (ATB) Institute of Pathology, University Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Applied Tumor Biology German Cancer Research Center Heidelberg Germany
| | - Hendrik Bläker
- Institute of Pathology University Hospital Leipzig Leipzig Germany
| | - Magnus Knebel Doeberitz
- Department of Applied Tumor Biology (ATB) Institute of Pathology, University Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Applied Tumor Biology German Cancer Research Center Heidelberg Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology (ATB) Institute of Pathology, University Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Applied Tumor Biology German Cancer Research Center Heidelberg Germany
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL) Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University Heidelberg Germany
- Data Mining and Uncertainty Quantification (DMQ) Heidelberg Institute for Theoretical Studies (HITS) Heidelberg Germany
| |
Collapse
|
2
|
Haupt S, Zeilmann A, Ahadova A, Bläker H, von Knebel Doeberitz M, Kloor M, Heuveline V. Mathematical modeling of multiple pathways in colorectal carcinogenesis using dynamical systems with Kronecker structure. PLoS Comput Biol 2021; 17:e1008970. [PMID: 34003820 PMCID: PMC8162698 DOI: 10.1371/journal.pcbi.1008970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/28/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023] Open
Abstract
Like many other types of cancer, colorectal cancer (CRC) develops through multiple pathways of carcinogenesis. This is also true for colorectal carcinogenesis in Lynch syndrome (LS), the most common inherited CRC syndrome. However, a comprehensive understanding of the distribution of these pathways of carcinogenesis, which allows for tailored clinical treatment and even prevention, is still lacking. We suggest a linear dynamical system modeling the evolution of different pathways of colorectal carcinogenesis based on the involved driver mutations. The model consists of different components accounting for independent and dependent mutational processes. We define the driver gene mutation graphs and combine them using the Cartesian graph product. This leads to matrix components built by the Kronecker sum and product of the adjacency matrices of the gene mutation graphs enabling a thorough mathematical analysis and medical interpretation. Using the Kronecker structure, we developed a mathematical model which we applied exemplarily to the three pathways of colorectal carcinogenesis in LS. Beside a pathogenic germline variant in one of the DNA mismatch repair (MMR) genes, driver mutations in APC, CTNNB1, KRAS and TP53 are considered. We exemplarily incorporate mutational dependencies, such as increased point mutation rates after MMR deficiency, and based on recent experimental data, biallelic somatic CTNNB1 mutations as common drivers of LS-associated CRCs. With the model and parameter choice, we obtained simulation results that are in concordance with clinical observations. These include the evolution of MMR-deficient crypts as early precursors in LS carcinogenesis and the influence of variants in MMR genes thereon. The proportions of MMR-deficient and MMR-proficient APC-inactivated crypts as first measure for the distribution among the pathways in LS-associated colorectal carcinogenesis are compatible with clinical observations. The approach provides a modular framework for modeling multiple pathways of carcinogenesis yielding promising results in concordance with clinical observations in LS CRCs.
Collapse
Affiliation(s)
- Saskia Haupt
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Alexander Zeilmann
- Image and Pattern Analysis Group (IPA), Heidelberg University, Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology (ATB), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology (ATB), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology (ATB), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| |
Collapse
|
3
|
Amirkhah R, Naderi-Meshkin H, Shah JS, Dunne PD, Schmitz U. The Intricate Interplay between Epigenetic Events, Alternative Splicing and Noncoding RNA Deregulation in Colorectal Cancer. Cells 2019; 8:cells8080929. [PMID: 31430887 PMCID: PMC6721676 DOI: 10.3390/cells8080929] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting this process include chromatin remodelling, histone modifications and aberrant DNA methylation, which influence gene expression, alternative splicing and function of non-coding RNA. In this review, we first highlight epigenetic modulators, modifiers and mediators in CRC, then we elaborate on causes and consequences of epigenetic alterations in CRC pathogenesis alongside an appraisal of the complex feedback mechanisms realized through alternative splicing and non-coding RNA regulation. An emphasis in our review is put on how this intricate network of epigenetic and post-transcriptional gene regulation evolves during the initiation, progression and metastasis formation in CRC.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
| | - Hojjat Naderi-Meshkin
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad 9177949367, Iran
| | - Jaynish S Shah
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia.
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
| |
Collapse
|
4
|
Figueiredo IN, Leal C, Romanazzi G, Engquist B. Biomathematical model for simulating abnormal orifice patterns in colonic crypts. Math Biosci 2019; 315:108221. [PMID: 31271804 DOI: 10.1016/j.mbs.2019.108221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
Colonic polyps, which are abnormal growths in the colon, are a major concern in colon cancer diagnosis and prevention. Medical studies evidence that there is a correlation between histopathology and the shapes of the orifices in colonic crypts. We propose a biomathematical model for simulating the appearance of anomalous shapes for the orifices of colonic crypts, associated to an abnormal cell proliferation. It couples a mechanical model that is a mixed elastic/viscoelastic quasi-static model describing the deformation of the crypt orifice, with a convection-diffusion model that simulates the crypt cell dynamics in space and time. The coupling resides in the variation of pressure generated by abnormal proliferative cells that induce a mechanical force and originate the change in shape of the crypt orifice. Furthermore the model is formulated in a two-dimensional setting, for emulating the top view of the colonic mucosa, observed in vivo in colonoscopy images. The primary focus of this study is on the modeling of this complex biological phenomenon, by defining an appropriate reduced biomathematical model. Additionally, a numerical procedure to determine its solution is also addressed. The overall numerical simulations indicate that an excess of cell proliferation, in different crypt locations, creates some of the anomalous patterns of the colonic crypt orifices, observed in vivo in medical images.
Collapse
Affiliation(s)
- Isabel N Figueiredo
- CMUC, Department of Mathematics, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
| | - Carlos Leal
- CMUC, Department of Mathematics, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Giuseppe Romanazzi
- Department of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Computing (IMECC), State University of Campinas (UNICAMP), Brazil
| | - Björn Engquist
- Department of Mathematics and the Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
| |
Collapse
|
5
|
Nikolov S, Santos G, Wolkenhauer O, Vera J. Model-Based Phenotypic Signatures Governing the Dynamics of the Stem and Semi-differentiated Cell Populations in Dysplastic Colonic Crypts. Bull Math Biol 2017; 80:360-384. [PMID: 29218591 DOI: 10.1007/s11538-017-0378-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023]
Abstract
Mathematical modeling of cell differentiated in colonic crypts can contribute to a better understanding of basic mechanisms underlying colonic tissue organization, but also its deregulation during carcinogenesis and tumor progression. Here, we combined bifurcation analysis to assess the effect that time delay has in the complex interplay of stem cells and semi-differentiated cells at the niche of colonic crypts, and systematic model perturbation and simulation to find model-based phenotypes linked to cancer progression. The models suggest that stem cell and semi-differentiated cell population dynamics in colonic crypts can display chaotic behavior. In addition, we found that clinical profiling of colorectal cancer correlates with the in silico phenotypes proposed by the mathematical model. Further, potential therapeutic targets for chemotherapy resistant phenotypes are proposed, which in any case will require experimental validation.
Collapse
Affiliation(s)
- Svetoslav Nikolov
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany. .,Institute of Mechanics and Biomechanics-BAS, Acad. G. Bonchev Str., Bl. 4, 1113, Sofia, Bulgaria. .,University of Transport, Geo Milev Str., 158, 1574, Sofia, Bulgaria. .,Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.
| | - Guido Santos
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Systems Biology and Mathematical Modelling Group, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Instituto de Tecnología Biomédica, CIBICAN, Universidad de La Laguna, Campus Ciencias de La Salud, 38071, La Laguna (Tenerife), Spain
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
6
|
Ciasca G, Papi M, Minelli E, Palmieri V, De Spirito M. Changes in cellular mechanical properties during onset or progression of colorectal cancer. World J Gastroenterol 2016; 22:7203-7214. [PMID: 27621568 PMCID: PMC4997642 DOI: 10.3748/wjg.v22.i32.7203] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/11/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) development represents a multistep process starting with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations confer a selective growth advantage to colonic epithelial cells that form first dysplastic crypts, and then malignant tumours and metastases. All these steps are accompanied by deep mechanical changes at the cellular and the tissue level. A growing consensus is emerging that such modifications are not merely a by-product of the malignant progression, but they could play a relevant role in the cancer onset and accelerate its progression. In this review, we focus on recent studies investigating the role of the biomechanical signals in the initiation and the development of CRC. We show that mechanical cues might contribute to early phases of the tumour initiation by controlling the Wnt pathway, one of most important regulators of cell proliferation in various systems. We highlight how physical stimuli may be involved in the differentiation of non-invasive cells into metastatic variants and how metastatic cells modify their mechanical properties, both stiffness and adhesion, to survive the mechanical stress associated with intravasation, circulation and extravasation. A deep comprehension of these mechanical modifications may help scientist to define novel molecular targets for the cure of CRC.
Collapse
|
7
|
Lee HG, Kim Y, Kim J. Mathematical model and its fast numerical method for the tumor growth. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2015; 12:1173-1187. [PMID: 26775855 DOI: 10.3934/mbe.2015.12.1173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we reformulate the diffuse interface model of the tumor growth (S.M. Wise et al., Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor. Biol. 253 (2008) 524--543). In the new proposed model, we use the conservative second-order Allen--Cahn equation with a space--time dependent Lagrange multiplier instead of using the fourth-order Cahn--Hilliard equation in the original model. To numerically solve the new model, we apply a recently developed hybrid numerical method. We perform various numerical experiments. The computational results demonstrate that the new model is not only fast but also has a good feature such as distributing excess mass from the inside of tumor to its boundary regions.
Collapse
Affiliation(s)
- Hyun Geun Lee
- Institute of Mathematical Sciences, Ewha Womans University, Seoul 120-750, South Korea.
| | | | | |
Collapse
|
8
|
D'Alessandro LA, Hoehme S, Henney A, Drasdo D, Klingmüller U. Unraveling liver complexity from molecular to organ level: challenges and perspectives. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:78-86. [PMID: 25433231 DOI: 10.1016/j.pbiomolbio.2014.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/28/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
Biological responses are determined by information processing at multiple and highly interconnected scales. Within a tissue the individual cells respond to extracellular stimuli by regulating intracellular signaling pathways that in turn determine cell fate decisions and influence the behavior of neighboring cells. As a consequence the cellular responses critically impact tissue composition and architecture. Understanding the regulation of these mechanisms at different scales is key to unravel the emergent properties of biological systems. In this perspective, a multidisciplinary approach combining experimental data with mathematical modeling is introduced. We report the approach applied within the Virtual Liver Network to analyze processes that regulate liver functions from single cell responses to the organ level using a number of examples. By facilitating interdisciplinary collaborations, the Virtual Liver Network studies liver regeneration and inflammatory processes as well as liver metabolic functions at multiple scales, and thus provides a suitable example to identify challenges and point out potential future application of multi-scale systems biology.
Collapse
Affiliation(s)
- L A D'Alessandro
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - S Hoehme
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Germany
| | - A Henney
- Obsidian Biomedical Consulting Ltd., Macclesfield, UK; The German Virtual Liver Network, University of Heidelberg, 69120 Heidelberg, Germany
| | - D Drasdo
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Germany; Institut National de Recherche en Informatique et en Automatique (INRIA), Domaine de Voluceau, 78150 Rocquencourt, France; University Pierre and Marie Curie and CNRS UMR 7598, LJLL, F-75005 Paris, France; CNRS, 7598 Paris, France
| | - U Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Chen Y, Lowengrub JS. Tumor growth in complex, evolving microenvironmental geometries: a diffuse domain approach. J Theor Biol 2014; 361:14-30. [PMID: 25014472 DOI: 10.1016/j.jtbi.2014.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022]
Abstract
We develop a mathematical model of tumor growth in complex, dynamic microenvironments with active, deformable membranes. Using a diffuse domain approach, the complex domain is captured implicitly using an auxiliary function and the governing equations are appropriately modified, extended and solved in a larger, regular domain. The diffuse domain method enables us to develop an efficient numerical implementation that does not depend on the space dimension or the microenvironmental geometry. We model homotypic cell-cell adhesion and heterotypic cell-basement membrane (BM) adhesion with the latter being implemented via a membrane energy that models cell-BM interactions. We incorporate simple models of elastic forces and the degradation of the BM and ECM by tumor-secreted matrix degrading enzymes. We investigate tumor progression and BM response as a function of cell-BM adhesion and the stiffness of the BM. We find tumor sizes tend to be positively correlated with cell-BM adhesion since increasing cell-BM adhesion results in thinner, more elongated tumors. Prior to invasion of the tumor into the stroma, we find a negative correlation between tumor size and BM stiffness as the elastic restoring forces tend to inhibit tumor growth. In order to model tumor invasion of the stroma, we find it necessary to downregulate cell-BM adhesiveness, which is consistent with experimental observations. A stiff BM promotes invasiveness because at early stages the opening in the BM created by MDE degradation from tumor cells tends to be narrower when the BM is stiffer. This requires invading cells to squeeze through the narrow opening and thus promotes fragmentation that then leads to enhanced growth and invasion. In three dimensions, the opening in the BM was found to increase in size even when the BM is stiff because of pressure induced by growing tumor clusters. A larger opening in the BM can increase the potential for further invasiveness by increasing the possibility that additional tumor cells could invade the stroma.
Collapse
Affiliation(s)
- Ying Chen
- Department of Mathematics, University of California, Irvine, USA.
| | - John S Lowengrub
- Department of Mathematics, Department of Biomedical Engineering, Center for Complex Biological Systems, University of California, Irvine, USA.
| |
Collapse
|
10
|
Chen Y, Wise SM, Shenoy VB, Lowengrub JS. A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:726-754. [PMID: 24443369 PMCID: PMC4149601 DOI: 10.1002/cnm.2624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 11/06/2014] [Accepted: 11/27/2014] [Indexed: 05/28/2023]
Abstract
In this paper, we extend the 3D multispecies diffuse-interface model of the tumor growth, which was derived in Wise et al. (Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor. Biol. 253 (2008) 524-543), and incorporate the effect of a stiff membrane to model tumor growth in a confined microenvironment. We then develop accurate and efficient numerical methods to solve the model. When the membrane is endowed with a surface energy, the model is variational, and the numerical scheme, which involves adaptive mesh refinement and a nonlinear multigrid finite difference method, is demonstrably shown to be energy stable. Namely, in the absence of cell proliferation and death, the discrete energy is a nonincreasing function of time for any time and space steps. When a simplified model of membrane elastic energy is used, the resulting model is derived analogously to the surface energy case. However, the elastic energy model is actually nonvariational because certain coupling terms are neglected. Nevertheless, a very stable numerical scheme is developed following the strategy used in the surface energy case. 2D and 3D simulations are performed that demonstrate the accuracy of the algorithm and illustrate the shape instabilities and nonlinear effects of membrane elastic forces that may resist or enhance growth of the tumor. Compared with the standard Crank-Nicholson method, the time step can be up to 25 times larger using the new approach.
Collapse
Affiliation(s)
- Ying Chen
- Department of Mathematics, University of California, Irvine, CA, USA
| | | | | | | |
Collapse
|
11
|
Thomas F, Fisher D, Fort P, Marie JP, Daoust S, Roche B, Grunau C, Cosseau C, Mitta G, Baghdiguian S, Rousset F, Lassus P, Assenat E, Grégoire D, Missé D, Lorz A, Billy F, Vainchenker W, Delhommeau F, Koscielny S, Itzykson R, Tang R, Fava F, Ballesta A, Lepoutre T, Krasinska L, Dulic V, Raynaud P, Blache P, Quittau-Prevostel C, Vignal E, Trauchessec H, Perthame B, Clairambault J, Volpert V, Solary E, Hibner U, Hochberg ME. Applying ecological and evolutionary theory to cancer: a long and winding road. Evol Appl 2012; 6:1-10. [PMID: 23397042 PMCID: PMC3567465 DOI: 10.1111/eva.12021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/07/2012] [Indexed: 12/16/2022] Open
Abstract
Since the mid 1970s, cancer has been described as a process of Darwinian evolution, with somatic cellular selection and evolution being the fundamental processes leading to malignancy and its many manifestations (neoangiogenesis, evasion of the immune system, metastasis, and resistance to therapies). Historically, little attention has been placed on applications of evolutionary biology to understanding and controlling neoplastic progression and to prevent therapeutic failures. This is now beginning to change, and there is a growing international interest in the interface between cancer and evolutionary biology. The objective of this introduction is first to describe the basic ideas and concepts linking evolutionary biology to cancer. We then present four major fronts where the evolutionary perspective is most developed, namely laboratory and clinical models, mathematical models, databases, and techniques and assays. Finally, we discuss several of the most promising challenges and future prospects in this interdisciplinary research direction in the war against cancer.
Collapse
Affiliation(s)
- Frédéric Thomas
- MIVEGEC (UMR CNRS/IRD/UM1) 5290 Montpellier Cedex 5, France ; CREEC Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lo WC, Martin EW, Hitchcock CL, Friedman A. Mathematical model of colitis-associated colon cancer. J Theor Biol 2012; 317:20-9. [PMID: 23026764 DOI: 10.1016/j.jtbi.2012.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/28/2012] [Accepted: 09/18/2012] [Indexed: 02/07/2023]
Abstract
As a result of chronic inflammation of their colon, patients with ulcerative colitis or Crohn's disease are at risk of developing colon cancer. In this paper, we consider the progression of colitis-associated colon cancer. Unlike normal colon mucosa, the inflammed colon mucosa undergoes genetic mutations, affecting, in particular, tumor suppressors TP53 and adenomatous polyposis coli (APC) gene. We develop a mathematical model that involves these genes, under chronic inflammation, as well as NF-κB, β-catenin, MUC1 and MUC2. The model demonstrates that increased level of cells with TP53 mutations results in abnormal growth and proliferation of the epithelium; further increase in the epithelium proliferation results from additional APC mutations. The model may serve as a conceptual framework for further data-based study of the early stage of colon cancer.
Collapse
Affiliation(s)
- Wing-Cheong Lo
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
13
|
Strategies for cancer stem cell elimination: Insights from mathematical modeling. J Theor Biol 2012; 298:32-41. [DOI: 10.1016/j.jtbi.2011.12.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 09/29/2011] [Accepted: 12/15/2011] [Indexed: 01/28/2023]
|
14
|
Andasari V, Roper RT, Swat MH, Chaplain MAJ. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion. PLoS One 2012; 7:e33726. [PMID: 22461894 PMCID: PMC3312894 DOI: 10.1371/journal.pone.0033726] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/16/2012] [Indexed: 01/01/2023] Open
Abstract
In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and β-catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach.
Collapse
Affiliation(s)
- Vivi Andasari
- Division of Mathematics, University of Dundee, Dundee, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
15
|
van de Ven AL, Wu M, Lowengrub J, McDougall SR, Chaplain MAJ, Cristini V, Ferrari M, Frieboes HB. Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP ADVANCES 2012; 2:11208. [PMID: 22489278 PMCID: PMC3321519 DOI: 10.1063/1.3699060] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/05/2011] [Indexed: 05/15/2023]
Abstract
Inefficient vascularization hinders the optimal transport of cell nutrients, oxygen, and drugs to cancer cells in solid tumors. Gradients of these substances maintain a heterogeneous cell-scale microenvironment through which drugs and their carriers must travel, significantly limiting optimal drug exposure. In this study, we integrate intravital microscopy with a mathematical model of cancer to evaluate the behavior of nanoparticle-based drug delivery systems designed to circumvent biophysical barriers. We simulate the effect of doxorubicin delivered via porous 1000 x 400 nm plateloid silicon particles to a solid tumor characterized by a realistic vasculature, and vary the parameters to determine how much drug per particle and how many particles need to be released within the vasculature in order to achieve remission of the tumor. We envision that this work will contribute to the development of quantitative measures of nanoparticle design and drug loading in order to optimize cancer treatment via nanotherapeutics.
Collapse
|
16
|
Hawkins-Daarud A, van der Zee KG, Oden JT. Numerical simulation of a thermodynamically consistent four-species tumor growth model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:3-24. [PMID: 25830204 DOI: 10.1002/cnm.1467] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we develop a thermodynamically consistent four-species model of tumor growth on the basis of the continuum theory of mixtures. Unique to this model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models. A mixed finite element spatial discretization is developed and implemented to provide numerical results demonstrating the range of solutions this model can produce. A time-stepping algorithm is then presented for this system, which is shown to be first order accurate and energy gradient stable. The results of an array of numerical experiments are presented, which demonstrate a wide range of solutions produced by various choices of model parameters.
Collapse
Affiliation(s)
- Andrea Hawkins-Daarud
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, 1 University Station C0200, Austin, TX 78712, USA
| | | | | |
Collapse
|
17
|
|
18
|
Kaur J, Sanyal SN. Diclofenac, a selective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF. Mol Carcinog 2011; 50:707-18. [PMID: 21268133 DOI: 10.1002/mc.20736] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/04/2010] [Accepted: 12/13/2010] [Indexed: 11/08/2022]
Abstract
Angiogenesis is a physiological process involving growth of new blood vessels from pre-existing ones; however, it also plays a critical role in tumor progression. It favors the transition from hyperplasia to neoplasia, that is, from a state of cellular multiplication to uncontrolled proliferation. Therefore targeting angiogenesis will be profitable as a mechanism to inhibit tumor's lifeline. Further, it is important to understand the cross-communication between vascular endothelial growth factor (VEGF)-master switch in angiogenesis and other molecules in the neoplastic and pro-inflammatory milieu. We studied the role of two important chemokines [monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory protein (MIP)-lα] alongwith VEGF and matrix metalloproteinases (MMPs) in non-steroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effect in experimental colon cancer in rat. 1,2-Dimethylhydrazine (DMH, 30 mg/kg body weight, subcutaneously (s.c.) once-a-week) for 18 wk was used as pro-carcinogen and diclofenac (8 mg/kg body weight, orally daily) as the preferential cyclooxygenase-2 (COX-2) inhibitor. Expression of COX-2 and VEGF was found to be significantly elevated in the DMH-treated group as compared to the control, which was lowered notably by Diclofenac co-administration with DMH. Gelatin zymography showed prominent MMP-9 activity in the DMH-treated rats, while the activity was nearly absent in all the other groups. Expression of MCP-1 was found to be markedly increased whereas MIP-1α expression was found to be decreased in colonic mucosa from DMH-treated rats, which was reversed in the DMH + Diclofenac group. Our results indicate potential role of chemokines alongwith VEGF in angiogenesis in DMH-induced cancer and its chemoprevention with diclofenac.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | | |
Collapse
|
19
|
Frieboes HB, Chaplain MA, Thompson AM, Bearer EL, Lowengrub JS, Cristini V. Physical oncology: a bench-to-bedside quantitative and predictive approach. Cancer Res 2011; 71:298-302. [PMID: 21224346 PMCID: PMC3073485 DOI: 10.1158/0008-5472.can-10-2676] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer models relating basic science to clinical care in oncology may fail to address the nuances of tumor behavior and therapy, as in the case, discussed herein, of the complex multiscale dynamics leading to the often-observed enhanced invasiveness, paradoxically induced by the very antiangiogenic therapy designed to destroy the tumor. Studies would benefit from approaches that quantitatively link the multiple physical and temporal scales from molecule to tissue in order to offer outcome predictions for individual patients. Physical oncology is an approach that applies fundamental principles from the physical and biological sciences to explain certain cancer behaviors as observable characteristics arising from the underlying physical and biochemical events. For example, the transport of oxygen molecules through tissue affects phenotypic characteristics such as cell proliferation, apoptosis, and adhesion, which in turn underlie the patient-scale tumor growth and invasiveness. Our review of physical oncology illustrates how tumor behavior and treatment response may be a quantifiable function of marginally stable molecular and/or cellular conditions modulated by inhomogeneity. By incorporating patient-specific genomic, proteomic, metabolomic, and cellular data into multiscale physical models, physical oncology could complement current clinical practice through enhanced understanding of cancer behavior, thus potentially improving patient survival.
Collapse
Affiliation(s)
- Hermann B. Frieboes
- Department of Bioengineering, University of Louisville, KY
- James Graham Brown Cancer Center, University of Louisville, KY
- Formerly at: School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX
| | | | - Alastair M. Thompson
- Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | - Elaine L. Bearer
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | | | - Vittorio Cristini
- Department of Pathology, University of New Mexico, Albuquerque, NM
- Department of Chemical Engineering, University of New Mexico, Albuquerque, NM
- Formerly at: School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX
| |
Collapse
|
20
|
Wise S, Lowengrub J, Cristini V. An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models. MATHEMATICAL AND COMPUTER MODELLING 2011; 53:1-20. [PMID: 21076663 PMCID: PMC2976552 DOI: 10.1016/j.mcm.2010.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper we give the details of the numerical solution of a three-dimensional multispecies diffuse interface model of tumor growth, which was derived in (Wise et al., J. Theor. Biol. 253 (2008)) and used to study the development of glioma in (Frieboes et al., NeuroImage 37 (2007) and tumor invasion in (Bearer et al., Cancer Research, 69 (2009)) and (Frieboes et al., J. Theor. Biol. 264 (2010)). The model has a thermodynamic basis, is related to recently developed mixture models, and is capable of providing a detailed description of tumor progression. It utilizes a diffuse interface approach, whereby sharp tumor boundaries are replaced by narrow transition layers that arise due to differential adhesive forces among the cell-species. The model consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-diffusion equations for the substrate components. Numerical solution of the model is challenging because the equations are coupled, highly nonlinear, and numerically stiff. In this paper we describe a fully adaptive, nonlinear multigrid/finite difference method for efficiently solving the equations. We demonstrate the convergence of the algorithm and we present simulations of tumor growth in 2D and 3D that demonstrate the capabilities of the algorithm in accurately and efficiently simulating the progression of tumors with complex morphologies.
Collapse
Affiliation(s)
- S.M. Wise
- Mathematics Department, University of Tennessee, Knoxville, TN 37996-1300, USA
| | - J.S. Lowengrub
- Mathematics Department, University of California, Irvine, CA 92697-3875, USA
- Biomedical Engineering Department, University of California, Irvine, CA 92697-2715, USA
| | - V. Cristini
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712-0238, USA
| |
Collapse
|
21
|
Chauviere AH, Hatzikirou H, Lowengrub JS, Frieboes HB, Thompson AM, Cristini V. Mathematical Oncology: How Are the Mathematical and Physical Sciences Contributing to the War on Breast Cancer? CURRENT BREAST CANCER REPORTS 2010; 2:121-129. [PMID: 21151486 PMCID: PMC2987530 DOI: 10.1007/s12609-010-0020-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mathematical modeling has recently been added as a tool in the fight against cancer. The field of mathematical oncology has received great attention and increased enormously, but over-optimistic estimations about its ability have created unrealistic expectations. We present a critical appraisal of the current state of mathematical models of cancer. Although the field is still expanding and useful clinical applications may occur in the future, managing over-expectation requires the proposal of alternative directions for mathematical modeling. Here, we propose two main avenues for this modeling: 1) the identification of the elementary biophysical laws of cancer development, and 2) the development of a multiscale mathematical theory as the framework for models predictive of tumor growth. Finally, we suggest how these new directions could contribute to addressing the current challenges of understanding breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Arnaud H. Chauviere
- School of Biomedical Informatics, The University of Texas Health Science Center, 7000 Fannin Street, Houston, TX 77030 USA
| | - Haralampos Hatzikirou
- School of Biomedical Informatics, The University of Texas Health Science Center, 7000 Fannin Street, Houston, TX 77030 USA
| | - John S. Lowengrub
- Department of Mathematics, The University of California at Irvine, Irvine, CA 92697 USA
- Department of Biomedical Engineering, The University of California at Irvine, Irvine, CA 92697 USA
| | - Hermann B. Frieboes
- School of Biomedical Informatics, The University of Texas Health Science Center, 7000 Fannin Street, Houston, TX 77030 USA
| | - Alastair M. Thompson
- Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, Dundee, DD1 9SY UK
- Department of Surgical Oncology, M.D. Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, 77030 USA
| | - Vittorio Cristini
- School of Biomedical Informatics, The University of Texas Health Science Center, 7000 Fannin Street, Houston, TX 77030 USA
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX USA
- Department of Biomedical Engineering, The University of Texas, Austin, TX USA
| |
Collapse
|
22
|
Abstract
Research in Barrett's oesophagus, and neoplastic progression to OAC (oesophageal adenocarcinoma), is hobbled by the lack of good pre-clinical models that capture the evolutionary dynamics of Barrett's cell populations. Current models trade off tractability for realism. Computational models are perhaps the most tractable and can be used both to interpret data and to develop intuitions and hypotheses for neoplastic progression. Tissue culture models include squamous cell lines, Barrett's oesophagus cell lines and OAC cell lines, although it was recognized recently that BIC-1, SEG-1 and TE-7 are not true OAC cell lines. Some of the unrealistic aspects of the micro-environment in two-dimensional tissue culture may be overcome with the development of three-dimensional organotypic cultures of Barrett's oesophagus. The most realistic, but least tractable, model is a canine surgical model that generates reflux and leads to an intestinal metaplasia. Alternatively, rat surgical models have gained popularity and should be tested for the common genetic features of Barrett's oesophagus neoplastic progression in humans including loss of CDKN2A (cyclin-dependent kinase inhibitor 2A) and TP53 (tumour protein 53), generation of aneuploidy and realistic levels of genetic diversity. This last feature will be important for studying the effects of cancer-prevention interventions. In order to study the dynamics of progression and the effects of an experimental intervention, there is a need to follow animals longitudinally, with periodic endoscopic biopsies. This is now possible and represents an exciting opportunity for the future.
Collapse
|
23
|
Pham K, Frieboes HB, Cristini V, Lowengrub J. Predictions of tumour morphological stability and evaluation against experimental observations. J R Soc Interface 2010; 8:16-29. [PMID: 20519213 DOI: 10.1098/rsif.2010.0194] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The hallmark of malignant tumours is their spread into neighbouring tissue and metastasis to distant organs, which can lead to life threatening consequences. One of the defining characteristics of aggressive tumours is an unstable morphology, including the formation of invasive fingers and protrusions observed both in vitro and in vivo. In spite of extensive biological, clinical and modelling study and research at physical scales ranging from the molecular to the tissue, the driving dynamics of tumour invasiveness are not completely understood, partly because it is challenging to observe and study cancer as a multi-scale system. Mathematical modelling has been applied to provide further insights into these complex invasive and metastatic behaviours. Modelling a solid tumour as an incompressible fluid, we consider three possible constitutive relations to describe tumour growth, namely Darcy's law, Stokes' law and the combined Darcy-Stokes law. We study the tumour morphological stability described by each model and evaluate the consistency between theoretical model predictions and experimental data from in vitro three-dimensional multicellular tumour spheroids. The analysis reveals that the Stokes model is the most consistent with the experimental observations, and that it predicts our experimental tumour growth is marginally stable. We further show that it is feasible to extract parameter values from a limited set of data and create a self-consistent modelling framework that can be extended to the multi-scale study of cancer.
Collapse
Affiliation(s)
- Kara Pham
- Department of Mathematics, University of California, Irvine, CA 92697-3875, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Research in Barrett's oesophagus, and neoplastic progression to OAC (oesophageal adenocarcinoma), is hobbled by the lack of good pre-clinical models that capture the evolutionary dynamics of Barrett's cell populations. Current models trade off tractability for realism. Computational models are perhaps the most tractable and can be used both to interpret data and to develop intuitions and hypotheses for neoplastic progression. Tissue culture models include squamous cell lines, Barrett's oesophagus cell lines and OAC cell lines, although it was recognized recently that BIC-1, SEG-1 and TE-7 are not true OAC cell lines. Some of the unrealistic aspects of the micro-environment in two-dimensional tissue culture may be overcome with the development of three-dimensional organotypic cultures of Barrett's oesophagus. The most realistic, but least tractable, model is a canine surgical model that generates reflux and leads to an intestinal metaplasia. Alternatively, rat surgical models have gained popularity and should be tested for the common genetic features of Barrett's oesophagus neoplastic progression in humans including loss of CDKN2A (cyclin-dependent kinase inhibitor 2A) and TP53 (tumour protein 53), generation of aneuploidy and realistic levels of genetic diversity. This last feature will be important for studying the effects of cancer-prevention interventions. In order to study the dynamics of progression and the effects of an experimental intervention, there is a need to follow animals longitudinally, with periodic endoscopic biopsies. This is now possible and represents an exciting opportunity for the future.
Collapse
Affiliation(s)
- Kirill Pavlov
- University Medical Center Groningen, Division of Surgical Oncology, Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1 9700 RB, Groningen, The Netherlands
| | - Carlo C. Maley
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce St. Philadelphia, PA, 19104, U.S.A. Genomics and Computational Biology Graduate Program and the Cell and Molecular Biology Graduate Program, University of Pennsylvania, phone: 215-495-6838
| |
Collapse
|
25
|
Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V. Nonlinear modelling of cancer: bridging the gap between cells and tumours. NONLINEARITY 2010; 23:R1-R9. [PMID: 20808719 PMCID: PMC2929802 DOI: 10.1088/0951-7715/23/1/r01] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis.
Collapse
Affiliation(s)
- J S Lowengrub
- Department of Biomedical Engineering, Center for Mathematical and Computational Biology, University of California at Irvine, Irvine, CA 92697, USA
| | - H B Frieboes
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - F Jin
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - Y-L Chuang
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - X Li
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - P Macklin
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - S M Wise
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - V Cristini
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
26
|
van Leeuwen IMM, Mirams GR, Walter A, Fletcher A, Murray P, Osborne J, Varma S, Young SJ, Cooper J, Doyle B, Pitt-Francis J, Momtahan L, Pathmanathan P, Whiteley JP, Chapman SJ, Gavaghan DJ, Jensen OE, King JR, Maini PK, Waters SL, Byrne HM. An integrative computational model for intestinal tissue renewal. Cell Prolif 2009; 42:617-36. [PMID: 19622103 PMCID: PMC6495810 DOI: 10.1111/j.1365-2184.2009.00627.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/24/2008] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The luminal surface of the gut is lined with a monolayer of epithelial cells that acts as a nutrient absorptive engine and protective barrier. To maintain its integrity and functionality, the epithelium is renewed every few days. Theoretical models are powerful tools that can be used to test hypotheses concerning the regulation of this renewal process, to investigate how its dysfunction can lead to loss of homeostasis and neoplasia, and to identify potential therapeutic interventions. Here we propose a new multiscale model for crypt dynamics that links phenomena occurring at the subcellular, cellular and tissue levels of organisation. METHODS At the subcellular level, deterministic models characterise molecular networks, such as cell-cycle control and Wnt signalling. The output of these models determines the behaviour of each epithelial cell in response to intra-, inter- and extracellular cues. The modular nature of the model enables us to easily modify individual assumptions and analyse their effects on the system as a whole. RESULTS We perform virtual microdissection and labelling-index experiments, evaluate the impact of various model extensions, obtain new insight into clonal expansion in the crypt, and compare our predictions with recent mitochondrial DNA mutation data. CONCLUSIONS We demonstrate that relaxing the assumption that stem-cell positions are fixed enables clonal expansion and niche succession to occur. We also predict that the presence of extracellular factors near the base of the crypt alone suffices to explain the observed spatial variation in nuclear beta-catenin levels along the crypt axis.
Collapse
Affiliation(s)
- I M M van Leeuwen
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Munro AJ. Bystander effects and their implications for clinical radiotherapy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2009; 29:A133-A142. [PMID: 19454811 DOI: 10.1088/0952-4746/29/2a/s09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Radiation-induced bystander effects are defined as those biological effects expressed, after irradiation, by cells whose nuclei have not been directly irradiated. Radiation oncologists are only gradually beginning to appreciate the clinical relevance of radiation-induced bystander effects and associated phenomena: adaptive responses, genomic instability and abscopal effects. Incorporating bystander effects into the science underpinning clinical radiotherapy will involve moving beyond simple mechanistic models and towards a more systems-based approach. It is, given the protean nature of bystander effects, difficult to devise a coherent research strategy to investigate the clinical impact and relevance of bystander phenomena. Epidemiological approaches will be required, the traditional research models based on randomised controlled trials are unlikely to be adequate for the task. Any consideration of bystander effects challenges not only clinicians' preconceptions concerning the effects of radiation on tumours and normal tissues but also their ingenuity. This review covers, from a clinical perspective, the issues and problems associated with radiation-induced bystander effects.
Collapse
Affiliation(s)
- Alastair J Munro
- Radiation Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|