1
|
Ganjayi MS, Brown AM, Baumann CW. Longitudinal assessment of strength and body composition in a mouse model of chronic alcohol-related myopathy. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1653-1664. [PMID: 37431705 DOI: 10.1111/acer.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Excessive, chronic alcohol consumption can result in muscle atrophy and weakness (i.e., alcoholic myopathy) that impairs the quality of life. However, the precise mechanisms responsible for ethanol's detrimental impact on skeletal muscle have not been fully elucidated, in part due because the time course of disease development and progression are not well established. Therefore, we examined muscle strength and body composition longitudinally using an established preclinical mouse model of chronic alcoholic myopathy. METHODS To establish a time course of chronic alcoholic myopathy, we fed High Drinking in the Dark (HDID) female mice (n = 7) 20% ethanol for ~32 weeks (following a 2-week ethanol ramping period). We assessed in vivo isometric contractility of the left ankle dorsiflexor and lean mass via NMR every 4 weeks. Outcomes were compared with age-matched control HDID mice that did not consume ethanol (n = 8). RESULTS At study completion, mice who consumed ethanol were 12% weaker than control mice (p = 0.015). Compared to baseline, consuming ethanol resulted in an acute transient reduction in dorsiflexion torque at Week 4 (p = 0.032) that was followed by a second, more sustained reduction at Week 20 (p < 0.001). Changes in lean mass paralleled those of dorsiflexor torque, with ~40% of the variance in dorsiflexor torque being explained by the variance in lean mass of the ethanol group (p < 0.001). Dorsiflexor torque normalized to lean mass (mN·m/g lean mass) did not differ between the ethanol and control groups from Weeks 4 to 32 (p ≥ 0.498). CONCLUSIONS These results indicate that reductions in muscle mass and strength due to chronic, excessive ethanol intake are dynamic, not necessarily linear, processes. Moreover, the findings confirm that ethanol-induced weakness is primarily driven by muscle atrophy (i.e., loss of muscle quantity). Future studies should consider how chronic alcoholic myopathy develops and progresses rather than identifying changes after it has been diagnosed.
Collapse
Affiliation(s)
- Muni Swamy Ganjayi
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Austin M Brown
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio, USA
- Honors Tutorial College, Ohio University, Athens, Ohio, USA
| | - Cory W Baumann
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, Ohio, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
2
|
Thomes PG, Rensch G, Casey CA, Donohue TM. Ethanol Exposure to Ethanol-Oxidizing HEPG2 Cells Induces Intracellular Protein Aggregation. Cells 2023; 12:cells12071013. [PMID: 37048086 PMCID: PMC10093015 DOI: 10.3390/cells12071013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Aggresomes are collections of intracellular protein aggregates. In liver cells of patients with alcoholic hepatitis, aggresomes appear histologically as cellular inclusions known as Mallory–Denk (M–D) bodies. The proteasome is a multicatalytic intracellular protease that catalyzes the degradation of both normal (native) and abnormal (misfolded and/or damaged) proteins. The enzyme minimizes intracellular protein aggregate formation by rapidly degrading abnormal proteins before they form aggregates. When proteasome activity is blocked, either by specific inhibitors or by intracellular oxidants (e.g., peroxynitrite, acetaldehyde), aggresome formation is enhanced. Here, we sought to verify whether inhibition of proteasome activity by ethanol exposure enhances protein aggregate formation in VL-17A cells, which are recombinant, ethanol-oxidizing HepG2 cells that express both alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1). Methods: We exposed ethanol-non-oxidizing HepG2 cells (ADH−/CYP2E1−) or ethanol-oxidizing VL-17A (ADH+/CYP2E1+) to varying levels of ethanol for 24 h or 72 h. After these treatments, we stained cells for aggresomes (detected microscopically) and quantified their numbers and sizes. We also conducted flow cytometric analyses to confirm our microscopic findings. Additionally, aggresome content in liver cells of patients with alcohol-induced hepatitis was quantified. Results: After we exposed VL-17A cells to increasing doses of ethanol for 24 h or 72 h, 20S proteasome activity declined in response to rising ethanol concentrations. After 24 h of ethanol exposure, aggresome numbers in VL-17A cells were 1.8-fold higher than their untreated controls at all ethanol concentrations employed. After 72 h of ethanol exposure, mean aggresome numbers were 2.5-fold higher than unexposed control cells. The mean aggregate size in all ethanol-exposed VL-17A cells was significantly higher than in unexposed control cells but was unaffected by the duration of ethanol exposure. Co-exposure of cells to EtOH and rapamycin, the latter an autophagy activator, completely prevented EtOH-induced aggresome formation. In the livers of patients with alcohol-induced hepatitis (AH), the staining intensity of aggresomes was 2.2-fold higher than in the livers of patients without alcohol use disorder (AUD). Conclusions: We conclude that ethanol-induced proteasome inhibition in ethanol-metabolizing VL-17A hepatoma cells causes accumulation of protein aggregates. Notably, autophagy activation removes such aggregates. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Paul G. Thomes
- Liver Study Unit, VA-Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- The Depts of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Biochemistry/Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-995-3738; Fax: +1-402-449-0604
| | - Gage Rensch
- The Depts of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carol A. Casey
- Liver Study Unit, VA-Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- The Depts of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Biochemistry/Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Terrence M. Donohue
- Liver Study Unit, VA-Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- The Depts of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Biochemistry/Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Weeks O, Miller BM, Pepe-Mooney BJ, Oderberg IM, Freeburg SH, Smith CJ, North TE, Goessling W. Embryonic alcohol exposure disrupts the ubiquitin-proteasome system. JCI Insight 2022; 7:e156914. [PMID: 36477359 PMCID: PMC9746913 DOI: 10.1172/jci.insight.156914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Ethanol (EtOH) is a commonly encountered teratogen that can disrupt organ development and lead to fetal alcohol spectrum disorders (FASDs); many mechanisms of developmental toxicity are unknown. Here, we used transcriptomic analysis in an established zebrafish model of embryonic alcohol exposure (EAE) to identify the ubiquitin-proteasome system (UPS) as a critical target of EtOH during development. Surprisingly, EAE alters 20S, 19S, and 11S proteasome gene expression and increases ubiquitylated protein load. EtOH and its metabolite acetaldehyde decrease proteasomal peptidase activity in a cell type-specific manner. Proteasome 20S subunit β 1 (psmb1hi2939Tg) and proteasome 26S subunit, ATPase 6 (psmc6hi3593Tg), genetic KOs define the developmental impact of decreased proteasome function. Importantly, loss of psmb1 or psmc6 results in widespread developmental abnormalities resembling EAE phenotypes, including growth restriction, abnormal craniofacial structure, neurodevelopmental defects, and failed hepatopancreas maturation. Furthermore, pharmacologic inhibition of chymotrypsin-like proteasome activity potentiates the teratogenic effects of EAE on craniofacial structure, the nervous system, and the endoderm. Our studies identify the proteasome as a target of EtOH exposure and signify that UPS disruptions contribute to craniofacial, neurological, and endodermal phenotypes in FASDs.
Collapse
Affiliation(s)
- Olivia Weeks
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bess M. Miller
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian J. Pepe-Mooney
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott H. Freeburg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Colton J. Smith
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Trista E. North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Liu M, Guo S, Huang D, Hu D, Wu Y, Zhou W, Song W. Chronic Alcohol Exposure Alters Gene Expression and Neurodegeneration Pathways in the Brain of Adult Mice. J Alzheimers Dis 2022; 86:315-331. [PMID: 35034908 DOI: 10.3233/jad-215508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chronic alcohol consumption can alter the structure of the central nervous system and disrupt cognitive function. Alcoholics are more likely to develop neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, the role of alcohol in promoting neurotoxicity and neurodegeneration remains unclear. OBJECTIVE In this study, we aimed at estimating the effects of chronic binge alcohol exposure on brain transcriptome and behavior changes in a chronic "Drinking in the Dark" (DID) mouse model. METHODS The adult C57BL/6J male mice were exposed to alcohol for 4 weeks. RNA-seq was applied to assess the effects of chronic alcohol exposure on transcriptome in brain. The open field test and novel object recognition test were used to assess the changes of anxiety level, locomotive function, and short-term memory induced by alcohol. RNA-seq analysis revealed that chronic alcohol exposure caused significant change in the brain transcriptome, especially in prefrontal cortex. RESULTS The gene dysregulation caused by chronic alcohol exposure includes pathways related to mitochondrial energy metabolism (such as oxidative phosphorylation) and multiple neurodegenerative diseases (such as AD and PD). Furthermore, the pathway and network analyses suggest that the genes involved in mitochondrial energy metabolism, ubiquitin-proteasome system, Wnt signaling pathway, and microtubules may attribute to the neurotoxicity and neurodegeneration caused by chronic alcohol consumption. Additionally, locomotive function was also significantly impaired. CONCLUSION This work provides gene transcriptional profile data for future research on alcohol-induced neurodegenerative diseases, especially AD and PD.
Collapse
Affiliation(s)
- Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Daochao Huang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China.,International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
New-Aaron M, Thomes PG, Ganesan M, Dagur RS, Donohue TM, Kusum KK, Poluektova LY, Osna NA. Alcohol-Induced Lysosomal Damage and Suppression of Lysosome Biogenesis Contribute to Hepatotoxicity in HIV-Exposed Liver Cells. Biomolecules 2021; 11:biom11101497. [PMID: 34680130 PMCID: PMC8533635 DOI: 10.3390/biom11101497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Although the causes of hepatotoxicity among alcohol-abusing HIV patients are multifactorial, alcohol remains the least explored "second hit" for HIV-related hepatotoxicity. Here, we investigated whether metabolically derived acetaldehyde impairs lysosomes to enhance HIV-induced hepatotoxicity. We exposed Cytochrome P450 2E1 (CYP2E1)-expressing Huh 7.5 (also known as RLW) cells to an acetaldehyde-generating system (AGS) for 24 h. We then infected (or not) the cells with HIV-1ADA then exposed them again to AGS for another 48 h. Lysosome damage was assessed by galectin 3/LAMP1 co-localization and cathepsin leakage. Expression of lysosome biogenesis-transcription factor, TFEB, was measured by its protein levels and by in situ immunofluorescence. Exposure of cells to both AGS + HIV caused the greatest amount of lysosome leakage and its impaired lysosomal biogenesis, leading to intrinsic apoptosis. Furthermore, the movement of TFEB from cytosol to the nucleus via microtubules was impaired by AGS exposure. The latter impairment appeared to occur by acetylation of α-tubulin. Moreover, ZKSCAN3, a repressor of lysosome gene activation by TFEB, was amplified by AGS. Both these changes contributed to AGS-elicited disruption of lysosome biogenesis. Our findings indicate that metabolically generated acetaldehyde damages lysosomes and likely prevents their repair and restoration, thereby exacerbating HIV-induced hepatotoxicity.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Correspondence: (M.N.-A.); (N.A.O.)
| | - Paul G. Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Raghubendra Singh Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Kharbanda K. Kusum
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (P.G.T.); (M.G.); (R.S.D.); (T.M.D.J.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA;
- Correspondence: (M.N.-A.); (N.A.O.)
| |
Collapse
|
6
|
Donohue TM, Osna NA, Kharbanda KK, Thomes PG. Lysosome and proteasome dysfunction in alcohol-induced liver injury. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Liu HM, Ferrington DA, Baumann CW, Thompson LV. Denervation-Induced Activation of the Standard Proteasome and Immunoproteasome. PLoS One 2016; 11:e0166831. [PMID: 27875560 PMCID: PMC5119786 DOI: 10.1371/journal.pone.0166831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/05/2016] [Indexed: 01/07/2023] Open
Abstract
The standard 26S proteasome is responsible for the majority of myofibrillar protein degradation leading to muscle atrophy. The immunoproteasome is an inducible form of the proteasome. While its function has been linked to conditions of atrophy, its contribution to muscle proteolysis remains unclear. Therefore, the purpose of this study was to determine if the immunoproteasome plays a role in skeletal muscle atrophy induced by denervation. Adult male C57BL/6 wild type (WT) and immunoproteasome knockout lmp7-/-/mecl-1-/- (L7M1) mice underwent tibial nerve transection on the left hindlimb for either 7 or 14 days, while control mice did not undergo surgery. Proteasome activity (caspase-, chymotrypsin-, and trypsin- like), protein content of standard proteasome (β1, β5 and β2) and immunoproteasome (LMP2, LMP7 and MECL-1) catalytic subunits were determined in the gastrocnemius muscle. Denervation induced significant atrophy and was accompanied by increased activities and protein content of the catalytic subunits in both WT and L7M1 mice. Although denervation resulted in a similar degree of muscle atrophy between strains, the mice lacking two immunoproteasome subunits showed a differential response in the extent and duration of proteasome features, including activities and content of the β1, β5 and LMP2 catalytic subunits. The results indicate that immunoproteasome deficiency alters the proteasome’s composition and activities. However, the immunoproteasome does not appear to be essential for muscle atrophy induced by denervation.
Collapse
Affiliation(s)
- Haiming M. Liu
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cory W. Baumann
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - LaDora V. Thompson
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
8
|
de la Monte SM, Tong M, Agarwal AR, Cadenas E. Tobacco Smoke-Induced Hepatic Injury with Steatosis, Inflammation, and Impairments in Insulin and Insulin-Like Growth Factor Signaling. ACTA ACUST UNITED AC 2016; 6. [PMID: 27525191 PMCID: PMC4979551 DOI: 10.4172/2161-0681.1000269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Alcoholic liver disease (ALD) is associated with impairments in hepatic insulin and insulin-like growth factor (IGF) signaling through cell growth, survival, and metabolic pathways. Since not all heavy drinkers develop ALD, co-factors may be important. Epidemiologic data indicate that most heavy drinkers smoke tobacco and experimental data revealed that low-level nitrosamine exposures, including those from tobacco, can cause steatohepatitis with hepatic insulin/IGF resistance and exacerbate ALD. We hypothesize that cigarette smoke (CS) exposures also cause liver injury with impaired hepatic insulin/IGF signaling, and thereby contribute to ALD. Methods Adult male A/J mice were exposed to air for 8 weeks (A8), CS for 4 (CS4) or 8 (CS8) weeks, or CS for 8 weeks with 2 weeks recovery (CS8+R). Results CS exposures caused progressive liver injury with disruption of the normal hepatic chord architecture, lobular inflammation, apoptosis or necrosis, micro-steatosis, sinusoidal dilatation, and nuclear pleomorphism. Histopathological liver injury scores increased significantly from A8 to CS4 and then further to CS8 (P<0.0001). The mean histological grade was also higher in CS8+R relative to A8 (P<0.0001) but lower than in CS4, reflecting partial resolution of injury by CS withdrawal. CS exposures impaired insulin and IGF-1 signaling through IRS-1, Akt, GSK-3β, and PRAS40. Livers from CS8+R mice had normalized or elevated levels of insulin receptor, pYpY-Insulin-R, 312S-IRS-1, 473S-Akt, S9-GSK-3β, and pT246-PRAS40 relative to A8, CS4, or CS8, reflecting partial recovery. Conclusion CS-mediated liver injury and steatohepatitis with impairments in insulin/IGF signalling are reminiscent of the findings in ALD. Therefore, CS exposures (either first or second-hand) may serve as a co-factor in ALD. The persistence of several abnormalities following CS exposure cessation suggests that some aspects of CS-mediated hepatic metabolic dysfunction are not readily reversible.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Liver Research Center, Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, USA; Division of Neuropathology and Departments of Pathology, Neurology, and Neurosurgery, Rhode Island Hospital and the Alpert Medical School of Brown University, USA
| | - M Tong
- Liver Research Center, Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, USA
| | - A R Agarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - E Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Zabala V, Silbermann E, Re E, Andreani T, Tong M, Ramirez T, Gundogan F, de la Monte SM. Potential Co-Factor Role of Tobacco Specific Nitrosamine Exposures in the Pathogenesis of Fetal Alcohol Spectrum Disorder. GYNECOLOGY AND OBSTETRICS RESEARCH : OPEN JOURNAL 2016; 2:112-125. [PMID: 28845454 PMCID: PMC5570438 DOI: 10.17140/goroj-2-125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cerebellar developmental abnormalities in Fetal Alcohol Spectrum Disorder (FASD) are linked to impairments in insulin signaling. However, co-morbid alcohol and tobacco abuses during pregnancy are common. Since smoking leads to tobacco specific Nitrosamine (NNK) exposures which have been shown to cause brain insulin resistance, we hypothesized that neurodevelopmental abnormalities in FASD could be mediated by ethanol and/or NNK. METHODS Long Evans rat pups were intraperitoneal (IP) administered ethanol (2 g/kg) on postnatal days (P) 2, 4, 6 and/or NNK (2 mg/kg) on P3, P5, and P7 to simulate third trimester human exposures. The Cerebellar function, histology, insulin and Insulin-like Growth Factor (IGF) signaling, and neuroglial protein expression were assessed. RESULTS Ethanol, NNK and ethanol+NNK groups had significant impairments in motor function (rotarod tests), abnormalities in cerebellar structure (Purkinje cell loss, simplification and irregularity of folia, and altered white matter), signaling through the insulin and IGF-1 receptors, IRS-1, Akt and GSK-3β, and reduced expression of several important neuroglial proteins. Despite similar functional effects, the mechanisms and severity of NNK and ethanol+NNK induced alterations in cerebellar protein expression differed from those of ethanol. CONCLUSIONS Ethanol and NNK exert independent but overlapping adverse effects on cerebellar development, function, insulin signaling through cell survival, plasticity, metabolic pathways, and neuroglial protein expression. The results support the hypothesis that tobacco smoke exposure can serve as a co-factor mediating long-term effects on brain structure and function in FASD.
Collapse
Affiliation(s)
- Valerie Zabala
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, RI, USA
| | | | - Edward Re
- Alpert Medical School of Brown University, Providence, RI, USA
| | - Tomas Andreani
- Graduate Program in Neuroscience, Northwestern University, Chicago, IL, USA
| | - Ming Tong
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Fusun Gundogan
- Department of Pathology, Women and Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Departments of Neurology, Neurosurgery, and Pathology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Andreani T, Tong M, Gundogan F, Silbermann E, de la Monte SM. Differential Effects of 3rd Trimester-Equivalent Binge Ethanol and Tobacco-Specific Nitrosamine Ketone Exposures on Brain Insulin Signaling in Adolescence. JOURNAL OF DIABETES AND RELATED DISORDERS 2016; 1:105. [PMID: 29242853 PMCID: PMC5726776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is associated with impairments in insulin and insulin-like growth factor (IGF) signaling through Akt pathways and altered expression of neuro-glial proteins needed for structural and functional integrity of the brain. However, alcohol abuse correlates with smoking, and tobacco smoke contains 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which like other nitrosamines, impairs insulin and IGF signaling. HYPOTHESIS NNK exposure can serve as a co-factor in mediating long-term neuro-developmental abnormalities associated with FASD. DESIGN Long Evans rat pups were IP administered ethanol (2 g/kg) on postnatal days (P) 2, 4, 6 and/or NNK (2 mg/kg) on P3, P5, and P7, simulating third trimester human exposures. Temporal lobes from P30 rats (young adolescent) were used to measure signaling through the insulin/IGF-1/Akt pathways by multiplex ELISAs, and expression of neuroglial proteins by duplex ELISAs. RESULTS Ethanol, NNK, and ethanol + NNK exposures significantly inhibited insulin receptor tyrosine phosphorylation, and IRS-1 and myelin-associated glycoprotein expression. However, the major long-term adverse effects on Akt pathway downstream signaling and its targeted proteins including choline acetyltransferase, Tau, pTau, ubiquitin, and aspartate-β-hydroxylase were due to NNK rather than ethanol. CONCLUSION Alcohol and tobacco exposures can both contribute to long-term brain abnormalities currently regarded fetal ethanol effects. However, the findings suggest that many of the adverse effects on brain function are attributable to smoking, including impairments in signaling through survival and metabolic pathways, and altered expression of genes that regulate myelin synthesis, maturation and integrity and synaptic plasticity. Therefore, public health measures should address both substances of abuse to prevent "FASD".
Collapse
Affiliation(s)
- Tomas Andreani
- Department of Medicine, Division of Gastroenterology, and the Liver
Research Center Rhode Island Hospital, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Division of Gastroenterology, and the Liver
Research Center Rhode Island Hospital, Providence, RI, USA
- Warren Alpert Medical School of Brown University, Providence, RI,
USA
| | - Fusun Gundogan
- Department of Pathology, Women and Infants Hospital of Rhode Island,
Providence, RI, USA
- Warren Alpert Medical School of Brown University, Providence, RI,
USA
| | | | - Suzanne M. de la Monte
- Department of Medicine, Division of Gastroenterology, and the Liver
Research Center Rhode Island Hospital, Providence, RI, USA
- Departments of Pathology and Neurology, and the Division of
Neuropathology, Rhode Island Hospital, Providence, RI, USA
- Warren Alpert Medical School of Brown University, Providence, RI,
USA
| |
Collapse
|
11
|
Tong M, Yu R, Deochand C, de la Monte SM. Differential Contributions of Alcohol and the Nicotine-Derived Nitrosamine Ketone (NNK) to Insulin and Insulin-Like Growth Factor Resistance in the Adolescent Rat Brain. Alcohol Alcohol 2015; 50:670-9. [PMID: 26373814 DOI: 10.1093/alcalc/agv101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/17/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS Since epidemiologic studies suggest that tobacco smoke toxins, e.g. the nicotine-derived nitrosamine ketone (NNK) tobacco-specific nitrosamine, can be a co-factor in alcohol-related brain disease (ARBD), we examined the independent and additive effects of alcohol and NNK exposures on spatial learning/memory, and brain insulin/IGF signaling, neuronal function and oxidative stress. METHODS Adolescent Long Evans rats were fed liquid diets containing 0 or 26% caloric ethanol for 8 weeks. During weeks 3-8, rats were treated with i.p. NNK (2 mg/kg, 3×/week) or saline. In weeks 7-8, ethanol groups were binge-administered ethanol (2 g/kg; 3×/week). In week 8, at 12 weeks of age, rats were subjected to Morris Water Maze tests. Temporal lobes were used to assess molecular indices of insulin/IGF resistance, oxidative stress and neuronal function. RESULTS Ethanol and NNK impaired spatial learning, and NNK ± ethanol impaired memory. Linear trend analysis demonstrated worsening performance from control to ethanol, to NNK, and then ethanol + NNK. Ethanol ± NNK, caused brain atrophy, inhibited insulin signaling through the insulin receptor and Akt, activated GSK-3β, increased protein carbonyl and 3-nitrotyrosine, and reduced acetylcholinesterase. NNK increased NTyr. Ethanol + NNK had synergistic stimulatory effects on 8-iso-PGF-2α, inhibitory effects on p-p70S6K, tau and p-tau and trend effects on insulin-like growth factor type 1 (IGF-1) receptor expression and phosphorylation. CONCLUSIONS Ethanol, NNK and combined ethanol + NNK exposures that begin in adolescence impair spatial learning and memory in young adults. The ethanol and/or NNK exposures differentially impair insulin/IGF signaling through neuronal growth, survival and plasticity pathways, increase cellular injury and oxidative stress and reduce expression of critical proteins needed for neuronal function.
Collapse
Affiliation(s)
- Ming Tong
- Department of Medicine, Division of Gastroenterology, and the Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rosa Yu
- Departments of Pathology and Neurology, and the Division of Neuropathology, Rhode Island Hospital, Providence, RI, USA
| | - Chetram Deochand
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Suzanne M de la Monte
- Department of Medicine, Division of Gastroenterology, and the Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA Departments of Pathology and Neurology, and the Division of Neuropathology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
12
|
Kaake RM, Kao A, Yu C, Huang L. Characterizing the dynamics of proteasome complexes by proteomics approaches. Antioxid Redox Signal 2014; 21:2444-56. [PMID: 24423446 PMCID: PMC4241863 DOI: 10.1089/ars.2013.5815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE The proteasome is the degradation machine of the ubiquitin-proteasome system, which is critical in controlling many essential biological processes. Aberrant regulation of proteasome-dependent protein degradation can lead to various human diseases, and general proteasome inhibitors have shown efficacy for cancer treatments. Though clinically effective, current proteasome inhibitors have detrimental side effects and, thus, better therapeutic strategies targeting proteasomes are needed. Therefore, a comprehensive characterization of proteasome complexes will provide the molecular details that are essential for developing new and improved drugs. RECENT ADVANCES New mass spectrometry (MS)-based proteomics approaches have been developed to study protein interaction networks and structural topologies of proteasome complexes. The results have helped define the dynamic proteomes of proteasome complexes, thus providing new insights into the mechanisms underlying proteasome function and regulation. CRITICAL ISSUES The proteasome exists as heterogeneous populations in tissues/cells, and its proteome is highly dynamic and complex. In addition, proteasome complexes are regulated by various mechanisms under different physiological conditions. Consequently, complete proteomic profiling of proteasome complexes remains a major challenge for the field. FUTURE DIRECTIONS We expect that proteomic methodologies enabling full characterization of proteasome complexes will continue to evolve. Further advances in MS instrumentation and protein separation techniques will be needed to facilitate the detailed proteomic analysis of low-abundance components and subpopulations of proteasome complexes. The results will help us understand proteasome biology as well as provide new therapeutic targets for disease diagnostics and treatment.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Physiology and Biophysics, University of California , Irvine, Irvine, California
| | | | | | | |
Collapse
|
13
|
Decreased inflammatory responses of human lung epithelial cells after ethanol exposure are mimicked by ethyl pyruvate. Mediators Inflamm 2014; 2014:781519. [PMID: 25530684 PMCID: PMC4233669 DOI: 10.1155/2014/781519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/27/2014] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose. Leukocyte migration into alveolar space plays a critical role in pulmonary inflammation resulting in lung injury. Acute ethanol (EtOH) exposure exerts anti-inflammatory effects. The clinical use of EtOH is critical due to its side effects. Here, we compared effects of EtOH and ethyl pyruvate (EtP) on neutrophil adhesion and activation of cultured alveolar epithelial cells (A549). Experimental Approach. Time course and dose-dependent release of interleukin- (IL-) 6 and IL-8 from A549 were measured after pretreatment of A549 with EtP (2.5–10 mM), sodium pyruvate (NaP, 10 mM), or EtOH (85–170 mM), and subsequent lipopolysaccharide or IL-1beta stimulation. Neutrophil adhesion to pretreated and stimulated A549 monolayers and CD54 surface expression were determined. Key Results. Treating A549 with EtOH or EtP reduced substantially the cytokine-induced release of IL-8 and IL-6. EtOH and EtP (but not NaP) reduced the adhesion of neutrophils to monolayers in a dose- and time-dependent fashion. CD54 expression on A549 decreased after EtOH or EtP treatment before IL-1beta stimulation. Conclusions and Implications. EtP reduces secretory and adhesive potential of lung epithelial cells under inflammatory conditions. These findings suggest EtP as a potential treatment alternative that mimics the anti-inflammatory effects of EtOH in early inflammatory response in lungs.
Collapse
|
14
|
Osna NA, Ganesan M, Donohue TM. Proteasome- and ethanol-dependent regulation of HCV-infection pathogenesis. Biomolecules 2014; 4:885-96. [PMID: 25268065 PMCID: PMC4279161 DOI: 10.3390/biom4040885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/05/2014] [Accepted: 09/16/2014] [Indexed: 02/05/2023] Open
Abstract
This paper reviews the role of the catabolism of HCV and signaling proteins in HCV protection and the involvement of ethanol in HCV-proteasome interactions. HCV specifically infects hepatocytes, and intracellularly expressed HCV proteins generate oxidative stress, which is further exacerbated by heavy drinking. The proteasome is the principal proteolytic system in cells, and its activity is sensitive to the level of cellular oxidative stress. Not only host proteins, but some HCV proteins are degraded by the proteasome, which, in turn, controls HCV propagation and is crucial for the elimination of the virus. Ubiquitylation of HCV proteins usually leads to the prevention of HCV propagation, while accumulation of undegraded viral proteins in the nuclear compartment exacerbates infection pathogenesis. Proteasome activity also regulates both innate and adaptive immunity in HCV-infected cells. In addition, the proteasome/immunoproteasome is activated by interferons, which also induce "early" and "late" interferon-sensitive genes (ISGs) with anti-viral properties. Cleaving viral proteins to peptides in professional immune antigen presenting cells and infected ("target") hepatocytes that express the MHC class I-antigenic peptide complex, the proteasome regulates the clearance of infected hepatocytes by the immune system. Alcohol exposure prevents peptide cleavage by generating metabolites that impair proteasome activity, thereby providing escape mechanisms that interfere with efficient viral clearance to promote the persistence of HCV-infection.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-402-995-3735; Fax: +1-402-449-0604
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
15
|
Kharbanda KK, Bardag-Gorce F, Barve S, Molina PE, Osna NA. Impact of altered methylation in cytokine signaling and proteasome function in alcohol and viral-mediated diseases. Alcohol Clin Exp Res 2013; 37:1-7. [PMID: 22577887 PMCID: PMC3421055 DOI: 10.1111/j.1530-0277.2012.01840.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/18/2012] [Indexed: 02/05/2023]
Abstract
Data from several laboratories have shown that ethanol (EtOH) feeding impairs many essential methylation reactions that contribute to alcoholic liver disease (ALD). EtOH is also a comorbid factor in the severity of hepatitis C virus-induced liver injury. The presence of viral proteins further exacerbates the methylation defects to disrupt multiple pathways that promote the pathogenesis of liver disease. This review is a compilation of presentations that linked the methylation reaction defects with proteasome inhibition, decreased antigen presentation, and impaired interferon (IFN) signaling in the hepatocytes and dysregulated TNFα expression in macrophages. Two therapeutic modalities, betaine and S-adenosylmethionine, can correct methylation defects to attenuate many EtOH-induced liver changes, as well as improve IFN signaling pathways, thereby overcoming viral treatment resistance.
Collapse
Affiliation(s)
- Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, 68105, USA; Phone: 1-402-995-3752; Fax: +1-402-449-0604
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA; Phone: 1-402-995-3735; Fax: +1-402-449-0604
- Corresponding author: Kusum K. Kharbanda, Ph.D., Research Service, Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, Nebraska, 68105, USA Tel.:+1-402-995-3752; Fax: 1+402-449-0604;
| | - Fawzia Bardag-Gorce
- Department of Pathology, Los Angeles Biomedical Research Institute, Harbor UCLA Medical Center, 1124 W Carson St., Torrance, CA, 90502, USA; Phone: +1-310-222-1846; Fax: +1-310-222-3614
| | - Shirish Barve
- Department of Medicine and Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA, Phone: +1-502-852-5245; Fax: +1-502-852-8927
| | - Patricia E. Molina
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Department of Physiology, Louisiana State University Health Sciences Center, 1901 Perdido Street, Medical Education Building, New Orleans, LA 70112; Phone: 504-568-6187; Fax: 504-568-6158
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, 68105, USA; Phone: 1-402-995-3752; Fax: +1-402-449-0604
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA; Phone: 1-402-995-3735; Fax: +1-402-449-0604
| |
Collapse
|
16
|
Osna NA, Bardag-Gorce F, White RL, Weinman SA, Donohue TM, Kharbanda KK. Ethanol and hepatitis C virus suppress peptide-MHC class I presentation in hepatocytes by altering proteasome function. Alcohol Clin Exp Res 2012; 36:2028-35. [PMID: 22551112 PMCID: PMC3414636 DOI: 10.1111/j.1530-0277.2012.01813.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/21/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previously, we reported that exposure of hepatitis C virus (HCV) core-expressing ethanol (EtOH)-metabolizing cells to EtOH significantly suppresses proteasome activity which exists as 26S (20S and 19S) and as an unassociated 20S particle. The replacement of the constitutive proteasomal subunits with immunoproteasome (IPR) favors antigen processing. Here, we examined the effects of EtOH consumption by HCV core transgenic mice on proteasome activity in hepatocytic lysates and in partially purified 26S proteasome and the impact of these changes on antigen presentation. METHODS HCV (-) and HCV (+) core transgenic mice were fed chow diet with or without 20% (v/v) EtOH in water for 4 weeks. Following the feeding regimen, hepatocytes were isolated and examined for chymotrypsin-like proteasome activity, oxidative stress, and the presentation of SIINFEKL-H2Kb complex. Additionally, the constitutive proteasome and IPR were purified for further analysis and identification of proteasome-interacting proteins (PIPs). RESULTS EtOH significantly decreased proteasome activity in hepatocytes of HCV (+) mice, and this finding correlated with oxidative stress and dysregulated methylation reactions. In isolated 26S proteasome, EtOH suppressed proteasome activity equally in HCV (+) and HCV (-) mice. EtOH feeding caused proteasome instability and lowered the content of both constitutive and IPR subunits in the 20S proteasome. In addition, the level of other PIPs, PA28 and UCHL5, were also suppressed after EtOH exposure. Furthermore, in EtOH-fed mice and, especially, in HCV (+) mice, the presentation of SIINFEKL-H2Kb complex in hepatocytes was also decreased. CONCLUSIONS Proteasomal dysfunction induced by EtOH feeding and exacerbated by the presence of HCV structural proteins led to suppression of SIINFEKL-H2Kb presentation in hepatocytes.
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Oxidative Stress and the ER Stress Response in a Murine Model for Early-Stage Alcoholic Liver Disease. J Toxicol 2012; 2012:207594. [PMID: 22829816 PMCID: PMC3399426 DOI: 10.1155/2012/207594] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/12/2012] [Accepted: 04/18/2012] [Indexed: 12/30/2022] Open
Abstract
Alcoholic liver disease (ALD) is a primary cause of morbidity and mortality in the United States and constitutes a significant socioeconomic burden. Previous work has implicated oxidative stress and endoplasmic reticulum (ER) stress in the etiology of ALD; however, the complex and interrelated nature of these cellular responses presently confounds our understanding of ethanol-induced hepatopathy. In this paper, we assessed the pathological contribution of oxidative stress and ER stress in a time-course mouse model of early-stage ALD. Ethanol-treated mice exhibited significant hepatic panlobular steatosis and elevated plasma ALT values compared to isocaloric controls. Oxidative stress was observed in the ethanol-treated animals through a significant increase in hepatic TBARS and immunohistochemical staining of 4-HNE-modified proteins. Hepatic glutathione (GSH) levels were significantly decreased as a consequence of decreased CBS activity, increased GSH utilization, and increased protein glutathionylation. At the same time, immunoblot analysis of the PERK, IRE1α, ATF6, and SREBP pathways reveals no significant role for these UPR pathways in the etiology of hepatic steatosis associated with early-stage ALD. Collectively, our results indicate a primary pathogenic role for oxidative stress in the early initiating stages of ALD that precedes the involvement of the ER stress response.
Collapse
|
18
|
Deng MZ, Tao KX, Wang GB, Liu XH. SiRNA-mediated silencing of the USP22 gene inhibits cell proliferation in human gastric cancer cell line AGS. Shijie Huaren Xiaohua Zazhi 2011; 19:1985-1989. [DOI: 10.11569/wcjd.v19.i19.1985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the impact of silencing of the USP22 gene by small interfering RNA (siRNA) on the proliferation of human gastric cancer AGS cells.
METHODS: Three USP22-specific siRNAs and a negative siRNA were designed and transfected into AGS cells using Lipofectamine 2000. Quantitative real-time PCR (qRT-PCR) and Western blot were utilized to detect the expression levels of USP22 mRNA and protein, respectively. Cell proliferation was measured using Cell Counting Kit-8 (CCK-8). The distribution of cell cycle was determined by flow cytometry.
RESULTS: All three USP22-specific siRNAs could silence the expression of the USP22 gene. Forty-eight hours after transfection, the expression levels of USP22 mRNA and protein were reduced by 80.47% ± 2.99% and 79.40% ± 3.58%, respectively; the reduced rate of cell proliferation was 27.33% ± 3.49%; and the proportion of gastric cancer cells arrested in G0/G1 phase increased significantly, while those arrested in S phase decreased significantly.
CONCLUSION: Transfection of USP22-specific siRNAs could effectively inhibit the expression of the USP22 gene and significantly suppress cell growth in human gastric cancer cell line AGS.
Collapse
|
19
|
Bardag-Gorce F, Oliva J, Lin A, Li J, French BA, French SW. Proteasome inhibitor up regulates liver antioxidative enzymes in rat model of alcoholic liver disease. Exp Mol Pathol 2010; 90:123-30. [PMID: 21036165 DOI: 10.1016/j.yexmp.2010.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 10/23/2010] [Indexed: 12/22/2022]
Abstract
Oxidative stress occurs in the liver of rats fed with alcohol chronically due to ethanol metabolism by CYP2E1, causing liver injury. The proteasome is considered as an antioxidant defense in the cell because of its activity in removing damaged and oxidized proteins, but a growing body of evidence shows that proteasome inhibitor treatment, at a non toxic low dose, provides protection against oxidative stress. In the present study, rats were fed with ethanol for 4 weeks and were treated with the proteasome inhibitor PS-341 (Bortezomib, Velcade®). Exposure to proteasome inhibitor elicited the elevation of antioxidative defense by enhancing the levels of mRNA and protein expression transcripts of glutathione reductase (GSR), glutathione synthetase (GSS), glutathione peroxidase 2 (GPX2), and superoxide dismutase 2 (SOD2) in the liver of rats fed with ethanol chronically, while ethanol alone did not increase these genes' mRNA. Our results also showed that glutamate cysteine ligase catalytic subunit (GCLC), a rate-limiting enzyme in glutathione biosynthesis, was also up regulated in the liver of rats fed with ethanol and injected with PS-431. Nrf2 mRNA level was significantly decreased in the liver of ethanol fed rats, as well as in the livers of animal fed with ethanol and treated with proteasome inhibitor, indicating that the mechanism by which proteasome inhibitor up regulates the antioxidant response element is not due to regulation of Nrf2. However, ATF4, a major regulator of antioxidant response elements, was significantly up regulated by proteasome inhibitor treatment. The beneficial effects of proteasome inhibitor treatment also reside in the reversibility of the drug because the proteasome activity was significantly increased 72 h post treatment. In conclusion, proteasome inhibitor treatment used at a non toxic low dose has potential protective effects against oxidative stress due to chronic ethanol feeding.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- Department of Pathology, LABioMed at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Liver is known as an organ that is primarily affected by alcohol. Alcoholic liver disease (ALD) is the cause of an increased morbidity and mortality worldwide. Progression of ALD is driven by “second hits”. These second hits include the complex of nutritional, pharmacological, genetic and viral factors, which aggravate liver pathology. However, in addition to liver failure, ethanol causes damage to other organs and systems. These extrahepatic manifestations are regulated via the similar hepatitis mechanisms. In the Topic Highlight series, we provide an update of current knowledge in the field of ALD.
Collapse
|