1
|
Jiwa H, Xie Z, Qu X, Xu J, Huang Y, Huang X, Zhang J, Wang N, Li N, Luo J, Luo X. Casticin induces ferroptosis in human osteosarcoma cells through Fe 2+ overload and ROS production mediated by HMOX1 and LC3-NCOA4. Biochem Pharmacol 2024; 226:116346. [PMID: 38852641 DOI: 10.1016/j.bcp.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Osteosarcoma is a primary solid bone malignancy, and surgery + chemotherapy is the most commonly used treatment. However, chemotherapeutic drugs can cause a range of side effects. Casticin, a polymethoxyflavonoid, has anti-tumor therapeutic effects. This study is aim to investigate the anti-osteosarcoma activity of casticin and explore the mechanism. Crystal violet staining, MTT assay, colony formation assay, wound healing assay, transwell assay, hoechst 33,258 staining, and flow cytometry analysis were used to investigate the effects of casticin on proliferation, migration, invasion, and apoptosis of osteosarcoma cells in vitro. The intracellular Fe2+, ROS, MDA, GSH/GSSG content changes were detected using the corresponding assay kits. The mRNA sequencing + bioinformatics analysis and western blot were used to detect the possible mechanism. We found that casticin caused G2/M phase cell cycle arrest in human osteosarcoma cells, inhibited the migration and invasion, and induced cell apoptosis and ferroptosis. Mechanistic studies showed the ferroptosis pathway was enriched stronger than apoptosis. Casticin up-regulated the expression of HMOX1, LC3 and NCOA4, meanwhile it activated MAPK signaling pathways. Animal experiments proved that casticin also inhibited the growth and metastasis of osteosarcoma cell xenograft tumor in vivo. In conclusion, casticin can induce ferroptosis in osteosarcoma cells through Fe2+ overload and ROS production mediated by HMOX1 and LC3-NCOA4. This provides a new strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Habu Jiwa
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhou Xie
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiao Qu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiongjie Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Nan Wang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ningdao Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Situmorang PC, Ilyas S, Nugraha SE, Syahputra RA, Nik Abd Rahman NMA. Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways. Front Pharmacol 2024; 15:1387866. [PMID: 39104398 PMCID: PMC11298448 DOI: 10.3389/fphar.2024.1387866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer refers to the proliferation and multiplication of aberrant cells inside the human body, characterized by their capacity to proliferate and infiltrate various anatomical regions. Numerous biochemical pathways and signaling molecules have an impact on the cancer auto biogenesis process. The regulation of crucial cellular processes necessary for cell survival and proliferation, which are triggered by phytochemicals, is significantly influenced by signaling pathways. These pathways or components are regulated by phytochemicals. Medicinal plants are a significant reservoir of diverse anticancer medications employed in chemotherapy. The anticancer effects of phytochemicals are mediated by several methods, including induction of apoptosis, cessation of the cell cycle, inhibition of kinases, and prevention of carcinogenic substances. This paper analyzes the phytochemistry of seven prominent plant constituents, namely, alkaloids, tannins, flavonoids, phenols, steroids, terpenoids, and saponins, focusing on the involvement of the MAPK/ERK pathway, TNF signaling, death receptors, p53, p38, and actin dynamics. Hence, this review has examined a range of phytochemicals, encompassing their structural characteristics and potential anticancer mechanisms. It has underscored the significance of plant-derived bioactive compounds in the prevention of cancer, utilizing diverse molecular pathways. In addition, this endeavor also seeks to incentivize scientists to carry out clinical trials on anticancer medications derived from plants.
Collapse
Affiliation(s)
- Putri Cahaya Situmorang
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
3
|
Yang X, Liu Z, Xu X, He M, Xiong H, Liu L. Casticin induces apoptosis and cytoprotective autophagy while inhibiting stemness involving Akt/mTOR and JAK2/STAT3 pathways in glioblastoma. Phytother Res 2024; 38:305-320. [PMID: 37869765 DOI: 10.1002/ptr.8048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
Glioblastoma (GBM) is the most common malignant glioma. However, the current systemic drugs cannot completely cure GBM. Casticin is a methoxylated flavonol compound isolated from a traditional Chinese medicine Vitex rotundifolia L.f. and exhibits a strong antitumor activity in multiple human malignancies. This study was aimed to explore the effects and underlying mechanisms of casticin in GBM. The MTT assay and colony formation was used to evaluate the casticin-induced cell viability in GBM cells. Apoptosis was assessed by ANNEXIV/PI staining assay. Autophagy was analyzed by transmission electron microscopy and immunofluorescence assays. GBM stem cell (GSC) was analyzed by tumor-sphere formation assay and ALDEFLUOR assay. The anti-GBM effect of casticin was also determined by the U87MG xenograft model. Casticin inhibited tumor cell growth in vitro and in vivo, as well as significantly induced apoptosis and autophagy. Autophagy inhibition augmented casticin-induced apoptosis. Casticin also reduced the GSC population by suppressing Oct4, Nanog, and Sox2. Mechanistically, casticin inhibited Akt/mTOR and JAK2/STAT3 signal pathways. The antitumor effect of casticin in GBM was demonstrated by inducing apoptosis, autophagy, and reducing population of GSCs; thus, it may be a potential GBM therapeutic agent for future clinical usage.
Collapse
Affiliation(s)
- Xun Yang
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
- Department of Spine Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zeyuan Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Xu Xu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Meng He
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Hongtao Xiong
- Department of Hand & Microvascular Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lijun Liu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| |
Collapse
|
4
|
Jiang H, Tang W, Song Y, Jin W, Du Q. Induction of Apoptosis by Metabolites of Rhei Radix et Rhizoma (Da Huang): A Review of the Potential Mechanism in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:806175. [PMID: 35308206 PMCID: PMC8924367 DOI: 10.3389/fphar.2022.806175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
Liver cancer is a global disease with a high mortality rate and limited treatment options. Alternations in apoptosis of tumor cells and immune cells have become an important method for detailing the underlying mechanisms of hepatocellular carcinoma (HCC). Bcl-2 family, Caspase family, Fas and other apoptosis-related proteins have also become antagonistic targets of HCC. Da Huang (Rhei Radix et Rhizoma, RR), a traditional Chinese herb, has recently demonstrated antitumor behaviors. Multiple active metabolites of RR, including emodin, rhein, physcion, aloe-emodin, gallic acid, and resveratrol, can successfully induce apoptosis and inhibit HCC. However, the underlying mechanisms of these metabolites inhibiting the occurrence and development of HCC by inducing apoptosis is complicated owing to the multi-target and multi-pathway characteristics of traditional Chinese herbs. Accordingly, this article reviews the pathways of apoptosis, the relationship between HCC and apoptosis, the role and mechanism of apoptosis induced by mitochondrial endoplasmic reticulum pathway and death receptor pathway in HCC and the mechanism of six RR metabolites inhibiting HCC by inducing apoptosis.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuyinuo Tang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
6
|
An Overview of the Potential Antineoplastic Effects of Casticin. Molecules 2020; 25:molecules25061287. [PMID: 32178324 PMCID: PMC7144019 DOI: 10.3390/molecules25061287] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer persists as one of the leading causes of deaths worldwide, contributing to approximately 9.6 million deaths per annum in recent years. Despite the numerous advancements in cancer treatment, there is still abundant scope to mitigate recurrence, adverse side effects and toxicities caused by existing pharmaceutical drugs. To achieve this, many phytochemicals from plants and natural products have been tested against cancer cell lines in vivo and in vitro. Likewise, casticin, a flavonoid extracted from the Vitex species, has been isolated from the leaves and seeds of V. trifolia and V. agnus-castus. Casticin possesses a wide range of therapeutic properties, including analgesic, anti-inflammatory, antiangiogenic, antiasthmatic and antineoplastic activities. Several studies have been conducted on the anticancer effects of casticin against cancers, including breast, bladder, oral, lung, leukemia and hepatocellular carcinomas. The compound inhibits invasion, migration and proliferation and induces apoptosis (casticin-induced, ROS-mediated and mitochondrial-dependent) and cell cycle arrest (G0/G1, G2/M, etc.) through different signaling pathways, namely the PI3K/Akt, NF-κB, STAT3 and FOXO3a/FoxM1 pathways. This review summarizes the chemo-preventive ability of casticin as an antineoplastic agent against several malignancies.
Collapse
|
7
|
Cheng ZY, Hsiao YT, Huang YP, Peng SF, Huang WW, Liu KC, Hsia TC, Way TD, Chung JG. Casticin Induces DNA Damage and Affects DNA Repair Associated Protein Expression in Human Lung Cancer A549 Cells (Running Title: Casticin Induces DNA Damage in Lung Cancer Cells). Molecules 2020; 25:E341. [PMID: 31952105 PMCID: PMC7024307 DOI: 10.3390/molecules25020341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Casticin was obtained from natural plants, and it has been shown to exert biological functions; however, no report concerns the induction of DNA damage and repair in human lung cancer cells. The objective of this study was to investigate the effects and molecular mechanism of casticin on DNA damage and repair in human lung cancer A549 cells. Cell viability was determined by flow cytometric assay. The DNA damage was evaluated by 4',6-diamidino-2-phenylindole (DAPI) staining and electrophoresis which included comet assay and DNA gel electrophoresis. The protein levels associated with DNA damage and repair were analyzed by western blotting. The expression and translocation of p-H2A.X were observed by confocal laser microscopy. Casticin reduced total viable cell number and induced DNA condensation, fragmentation, and damage in A549 cells. Furthermore, casticin increased p-ATM at 6 h and increased p-ATR and BRCA1 at 6-24 h treatment but decreased p-ATM at 24-48 h, as well as decreased p-ATR and BRCA1 at 48 h. Furthermore, casticin decreased p-p53 at 6-24 h but increased at 48 h. Casticin increased p-H2A.X and MDC1 at 6-48 h treatment. In addition, casticin increased PARP (cleavage) at 6, 24, and 48 h treatment, DNA-PKcs and MGMT at 48 h in A549 cells. Casticin induced the expressions and nuclear translocation of p-H2AX in A549 cells by confocal laser microscopy. Casticin reduced cell number through DNA damage and condensation in human lung cancer A549 cells.
Collapse
Affiliation(s)
- Zheng-Yu Cheng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Yung-Ting Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan;
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan; (Z.-Y.C.); (Y.-T.H.); (S.-F.P.); (W.-W.H.)
| |
Collapse
|
8
|
Tu Y, Zhu S, Wang J, Burstein E, Jia D. Natural compounds in the chemoprevention of alcoholic liver disease. Phytother Res 2019; 33:2192-2212. [PMID: 31264302 DOI: 10.1002/ptr.6410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD), caused by excessive consumption of alcohol, is a major cause of chronic liver disease worldwide. Much effort has been expended to explore the pathogenesis of ALD. Hepatic cell injury, oxidative stress, inflammation, regeneration, and bacterial translocation are all involved in the pathogenesis of ALD. Immediate abstinence is the most important therapeutic treatment for affected individuals. However, the medical treatment for ALD had not advanced in a long period. Intriguingly, an increasing body of research indicates the potential of natural compounds in the targeted therapy of ALD. A plethora of dietary natural products such as flavonoids, resveratrol, saponins, and β-carotene are found to exert protective effects on ALD. This occurs through various mechanisms composed of antioxidative, anti-inflammatory, iron chelation, pro-apoptosis, and/or antiproliferation of hepatic stellate cells and hepatocellular carcinoma cells. In this review, we will summarize current knowledge about the pathogenesis and treatments of ALD and focus on the potential of natural compounds in ALD therapies and underlying mechanisms.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shu Zhu
- Chinese Academy of Science and Technology for Development, Ministry of Science and Technology, Institute of Foresight and Evaluation Research, Beijing, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Lin CC, Chen KB, Tsai CH, Tsai FJ, Huang CY, Tang CH, Yang JS, Hsu YM, Peng SF, Chung JG. Casticin inhibits human prostate cancer DU 145 cell migration and invasion via Ras/Akt/NF-κB signaling pathways. J Food Biochem 2019; 43:e12902. [PMID: 31353708 DOI: 10.1111/jfbc.12902] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 05/04/2019] [Indexed: 12/29/2022]
Abstract
Casticin, a polymethoxyflavone derived from natural plants, has biological activities including induction of cell apoptosis. In this study, we showed the beneficial effects of casticin on the inhibition of prostate cancer cell metastasis. Casticin reduced total viable cell number, thus, we selected low doses of casticin for following experiments. Casticin decreased cell mobility, suppressed cell migration and invasion, and reduced cell gelatinolytic activities of MMP-2/-9. Furthermore, casticin inhibited the protein levels of AKT, GSK3 αβ, Snail, and MMPs (MMP-2, -9, -13, and -7) at 24 and 48 hr treatment. Casticin diminished the expressions of NF-κB p65, GRB2, SOS-1, MEK, p-ERK1/2, and p-JNK1/2 at 48 hr treatment only. However, casticin reduced the level of E-cadherin at 24 hr treatment but elevated at 48 hr. The novel findings suggest that casticin may represent a new and promising therapeutic agent for the metastatic prostate cancer. PRACTICAL APPLICATIONS: Casticin derived from natural plants had been used for Chinese medicine in Chinese population for thousands of years. In the present study, casticin attenuated metastatic effects, including decreasing viable cell number, inhibiting the migration, invasion, and adhesion, and reducing matrix metalloproteinases activity on human prostate DU 145 cancer cells. In addition, the results also provided possible pathways involved in casticin anti-metastasis mechanism. We conclude that casticin may be an aptitude anticancer agent or adjuvant for the metastatic prostate cancer in the future.
Collapse
Affiliation(s)
- Chia-Chang Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Lai KC, Lu HF, Chen KB, Hsueh SC, Chung JG, Huang WW, Chen CC, Shang HS. Casticin Promotes Immune Responses, Enhances Macrophage and NK Cell Activities, and Increases Survival Rates of Leukemia BALB/c Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:223-236. [DOI: 10.1142/s0192415x19500113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Casticin, derived from Fructus Viticis, has anticancer properties in many human cancer cells, however, there is no report to show that casticin promotes immune responses and affects the survival rate of leukemia mice in vivo. The aim of this study is to evaluate the effects of casticin on immune responses and the survival rate of WEHI-3 cells generated in leukemia mice in vivo. Animals were divided into six groups: normal control mice, leukemia control mice, mice treated with ATRA (all-trans retinoic acid), and casticin (0.1, 0.2, and 0.4[Formula: see text]mg/kg) treated mice. All animals were treated for 14 days and then measured for body weights, total survival rate, cell markers, the weights of liver and spleen, phagocytosis of spleen cells, NK cell activities and cell proliferation. Results show that casticin did not affect animal appearances, however, it increased body weights and decreased the weights of liver at 0.2[Formula: see text]mg/kg and 0.4[Formula: see text]mg/kg treatment. Casticin also decreased spleen weight at 0.2[Formula: see text]mg/kg and 0.4[Formula: see text]mg/kg treatment, increased CD3 at 0.1, 0.2 and 0.4[Formula: see text]mg/kg doses and increased CD19 at 0.2[Formula: see text]mg/kg treatment but decreased CD11b and Mac-3 at 0.1, 0.2 and 0.4[Formula: see text]mg/kg treatment. Casticin (0.1, 0.2 and 0.4[Formula: see text]mg/kg) increased macrophage phagocytosis from PBMC (peripheral blood mononuclear cell) and peritoneal cavity. Furthermore, casticin increased NK cells’ cytotoxic activity and promoted T cell proliferation at 0.1–0.4[Formula: see text]mg/kg treatment with or without concanavalin A (Con A) stimulation, but only increased B cell proliferation at 0.1 mg/kg treatment. Based on these observations, casticin could be used as promoted immune responses in leukemia mice in vivo.
Collapse
Affiliation(s)
- Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Fu-Jen Catholic University, New Taipei, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shu-Ching Hsueh
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan
- Department of Family Medicine and Community Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Ching Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
Casticin protects against IL-1β-induced inflammation in human osteoarthritis chondrocytes. Eur J Pharmacol 2019; 842:314-320. [DOI: 10.1016/j.ejphar.2018.10.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
|
12
|
Lee JH, Kim C, Ko JH, Jung YY, Jung SH, Kim E, Kong M, Chinnathambi A, Alahmadi TA, Alharbi SA, Sethi G, Ahn KS. Casticin inhibits growth and enhances ionizing radiation-induced apoptosis through the suppression of STAT3 signaling cascade. J Cell Biochem 2018; 120:9787-9798. [PMID: 30520154 DOI: 10.1002/jcb.28259] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
Casticin (CTC), one of the major components of Vitex rotundifolia L., has been reported to exert significant beneficial pharmacological activities and can function as an antiprolactin, anticancer, anti-inflammatory, neuroprotective, analgesic, and immunomodulatory agent. This study aimed at investigating whether the proapoptotic effects of CTC may be mediated through the abrogation of signal transducers and activators of transcription-3 (STAT3) signaling pathway in a variety of human tumor cells. We found that CTC significantly decreased cell viability in a concentration-dependent manner and suppressed cell proliferation in 786-O, YD-8, and HN-9 cells. CTC also induced programmed cell death that was found to be mediated via caspase-3 activation and induction of poly(ADP-ribose) polymerase cleavage. Interestingly, CTC repressed both constitutive and interleukin-6-induced STAT3 activation in 786-O and YD-8 cells but only affected constitutive STAT3 phosphorylation in HN-9 cells. Moreover, CTC could potentiate ionizing radiation-induced apoptotic effects leading to the downregulation of STAT3 activation and thus may be used in combination with radiation against diverse malignancies.
Collapse
Affiliation(s)
- Jong Hyun Lee
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chulwon Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Hyeon Ko
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young Yun Jung
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Eunok Kim
- Korean Medicine Clinical Trial Center, Korean Medicine, Hospital, Kyung Hee University, Seoul, Republic of Korea.,Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Moonkyoo Kong
- Department of Radiation Oncology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Emergency Medicine, Pediatric Emergency Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Chan EWC, Wong SK, Chan HT. Casticin from Vitex species: a short review on its anticancer and anti-inflammatory properties. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:147-152. [PMID: 29559215 DOI: 10.1016/j.joim.2018.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/18/2018] [Indexed: 01/04/2023]
Abstract
This short review provides an update of the anticancer and anti-inflammatory properties of casticin from Vitex species. Casticin is a polymethylflavone with three rings, an orthocatechol moiety, a double bond, two hydroxyl groups and four methoxyl groups. Casticin has been isolated from various tissues of plants in the Vitex genus: fruits and leaves of V. trifolia, aerial parts and seeds of V. agnus-castus and leaves of V. negundo. Studies have reported the antiproliferative and apoptotic activities of casticin from Vitex species. The compound is effective against many cancer cell lines via different molecular mechanisms. Studies have also affirmed the anti-inflammatory properties of casticin, with several molecular mechanisms identified. Other pharmacological properties include anti-asthmatic, tracheospasmolytic, analgesic, antihyperprolactinemia, immunomodulatory, opioidergic, oestrogenic, anti-angiogenic, antiglioma, lung injury protection, rheumatoid arthritis amelioration and liver fibrosis attenuation activities. Clinical trials and commercial use of the casticin-rich fruit extract of V. agnus-castus among women with premenstrual syndrome were briefly discussed.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Siu Kuin Wong
- School of Science, Monash University, Petaling Jaya, Selangor 46150, Malaysia
| | - Hung Tuck Chan
- Secretariat of International Society for Mangrove Ecosystems, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan
| |
Collapse
|
14
|
Shih YL, Chou HM, Chou HC, Lu HF, Chu YL, Shang HS, Chung JG. Casticin impairs cell migration and invasion of mouse melanoma B16F10 cells via PI3K/AKT and NF-κB signaling pathways. ENVIRONMENTAL TOXICOLOGY 2017; 32:2097-2112. [PMID: 28444820 DOI: 10.1002/tox.22417] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
Casticin, a polymethoxyflavone, is one of the major active components obtained from Fructus viticis, which have been shown to have anticancer activities including induce cell apoptosis in human cancer cells. The aim of this study was to investigate the molecular mechanisms by which casticin inhibits cell migration and invasion of mouse melanoma B16F10 cells. Cell viability was examined by MTT assay and the results indicated that casticin decreased the total percentages of viable cells in dose-dependent manners. Casticin affected cell migration and invasion in B16F10 cells were examined by wound healing mobility assay and Boyden chamber migration and invasion assay and results indicated that casticin inhibited cell migration and invasion in dose-dependent manners. Western blotting was used to examine the protein expression of B16F10 cells after exposed to casticin and the results showed that casticin decreased the expressions of MMP-9, MMP-2, MMP-1, FAK, 14-3-3, GRB2, Akt, NF-κB p65, SOS-1, p-EGFR, p-JNK 1/2, uPA, and Rho A in B16F10 cells. Furthermore, cDNA microarray assay was used to show that casticin affected associated gene expression of cell migration and invasion and the results indicated that casticin affected some of the gene expression such as increased SCN1B (cell adhesion molecule 1) and TIMP2 (TIMP metallopeptidase inhibitor 2) and decreased NDUFS4 (NADH dehydrogenase (ubiquinone) Fe-S protein4), VEGFA (vascular endothelial growth factor A), and DDIT3 (DNA-damage-inducible transcript 3) which associated cell migration and invasion in B16F10 cells. Based on those observations, we suggest that casticin could be used as a novel anticancer metastasis of melanoma cancer in the future.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Hsiao-Min Chou
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsiu-Chen Chou
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, Taiwan
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hung-Sheng Shang
- Department of Pathology, National Defense Medical Center, Division of Clinical Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
15
|
Zhou L, Dong X, Wang L, Shan L, Li T, Xu W, Ding Y, Lai M, Lin X, Dai M, Bai X, Jia C, Zheng H. Casticin attenuates liver fibrosis and hepatic stellate cell activation by blocking TGF-β/Smad signaling pathway. Oncotarget 2017; 8:56267-56280. [PMID: 28915589 PMCID: PMC5593560 DOI: 10.18632/oncotarget.17453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 04/14/2017] [Indexed: 01/18/2023] Open
Abstract
Although many advances have been made in understanding the pathogenesis of liver fibrosis, few options are available for treatment. Casticin, one of the major flavonoids in Fructus Viticis extracts, has shown hepatoprotective potential, but its effects on liver fibrosis are not clear. In this study, we investigated the antifibrotic activity of casticin and its underlying mechanism in vivo and in vitro. Male mice were injected intraperitoneally with carbon tetrachloride (CCl4) or underwent bile duct ligation (BDL) to induce liver fibrosis, followed by treatment with casticin or vehicle. In addition, transforming growth factor-β1(TGF-β1)-activated LX-2 cells were used. In vivo experiments showed that treatment with casticin alone had no toxic effect while significantly attenuating CCl4-or BDL-induced liver fibrosis, as indicated by reductions in the density of fibrosis, hydroxyproline content, expression of α-SMA and collagen α1(I) mRNA. Moreover, casticin inhibited LX2 proliferation, induced apoptosis in a time- and dose-dependent manner in vitro. The underlying molecular mechanisms for the effect of casticin involved inhibition of hepatic stellate cell (HSC) activation and reduced the expression of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 resulting from blocking TGF-β1/Smad signaling, as well as increased the apoptosis of HSCs. The results suggest that casticin has potential benefits in the attenuation and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoying Dong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Linlin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lanlan Shan
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Ding
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingqiang Lai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojun Lin
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng Dai
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunhong Jia
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hang Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
RETRACTED ARTICLE: Casticin inhibits epithelial-mesenchymal transition of EBV-infected human retina pigmental epithelial cells through the modulation of intracellular lipogenesis. Graefes Arch Clin Exp Ophthalmol 2016; 255:557. [PMID: 27838737 DOI: 10.1007/s00417-016-3551-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022] Open
|
17
|
Chung YH, Kim D. RIP kinase-mediated ROS production triggers XAF1 expression through activation of TAp73 in casticin-treated bladder cancer cells. Oncol Rep 2016; 36:1135-42. [PMID: 27349281 DOI: 10.3892/or.2016.4895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/01/2016] [Indexed: 11/05/2022] Open
Abstract
The p53 family protein p73 plays an important role in apoptosis induced by chemotherapeutic drugs. Transcriptionally active (TA) p73 (TAp73) substitutes for p53 in the response to stress. XIAP associated factor 1 (XAF1) is a novel predictive and prognostic factor in patients with bladder cancer, but the association between TAp73 and XAF1 expression in bladder cancer cells is poorly understood. Here, we investigated the status of TAp73 and XAF1 in T24 bladder cancer cells to identify molecular mechanisms in casticin‑exposed T24 cells. Casticin induced activation of JNK/p38 MAPK that preceded activation of the caspase cascade and disruption of the mitochondria membrane potential (∆ψm). Expression of XAF1 and TAp73 was also upregulated in casticin-treated T24 cells. Casticin treatment of T24 cells induced receptor-interacting protein (RIP) kinase expression and increased intracellular production of reactive oxygen species (ROS). Casticin-mediated ROS induced an increase in phosphorylated JNK/p38 MAPK, resulting in progressive upregulation of TAp73, which in turn led to XAF1 expression. Our data suggest that the apoptotic activity of casticin in T24 cells is mediated by activation of the TAp73-XAF1 signaling pathway through RIP kinase-mediated ROS production.
Collapse
Affiliation(s)
- Yoon Hee Chung
- Department of Anatomy, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
18
|
Shiue YW, Lu CC, Hsiao YP, Liao CL, Lin JP, Lai KC, Yu CC, Huang YP, Ho HC, Chung JG. Casticin Induced Apoptosis in A375.S2 Human Melanoma Cells through the Inhibition of NF-[Formula: see text]B and Mitochondria-Dependent Pathways In Vitro and Inhibited Human Melanoma Xenografts in a Mouse Model In Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:637-61. [PMID: 27109154 DOI: 10.1142/s0192415x1650035x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a xenotransplantation model. Therefore, casticin might be a potential therapeutic agent for the treatment of skin cancer in the future.
Collapse
Affiliation(s)
- Yin-Wen Shiue
- * Department of Biological Science and Technology, China Medical University Taichung 404, Taiwan
| | - Chi-Cheng Lu
- † School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Ping Hsiao
- ‡ Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.,§ Department of Dermatology, Chung Shan Medical University Hospital Taichung 402, Taiwan
| | - Ching-Lung Liao
- ¶ Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Jing-Pin Lin
- ∥ School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Kuang-Chi Lai
- ** School of Medicine, China Medical University, Taichung 404, Taiwan.,†† Department of Surgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan
| | - Chien-Chih Yu
- ‡‡ School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yi-Ping Huang
- §§ Department of Physiology, China Medical University, Taichung 404, Taiwan
| | - Heng-Chien Ho
- ** School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Jing-Gung Chung
- * Department of Biological Science and Technology, China Medical University Taichung 404, Taiwan.,¶¶ Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
19
|
Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1. Molecules 2016; 21:384. [PMID: 27007357 PMCID: PMC6274196 DOI: 10.3390/molecules21030384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/14/2023] Open
Abstract
Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells’ adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9) activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future.
Collapse
|
20
|
Rasul A, Zhao BJ, Liu J, Liu B, Sun JX, Li J, Li XM. Molecular Mechanisms of Casticin Action: an Update on its Antitumor Functions. Asian Pac J Cancer Prev 2014; 15:9049-58. [DOI: 10.7314/apjcp.2014.15.21.9049] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Meng FM, Yang JB, Yang CH, Jiang Y, Zhou YF, Yu B, Yang H. Vitexicarpin induces apoptosis in human prostate carcinoma PC-3 cells through G2/M phase arrest. Asian Pac J Cancer Prev 2014; 13:6369-74. [PMID: 23464460 DOI: 10.7314/apjcp.2012.13.12.6369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Vitexicarpin (3', 5-dihydroxy-3, 4', 6, 7-tetramethoxyflavone), a polymethoxyflavone isolated from Viticis Fructus (Vitex rotundifolia Linne fil.), has long been used as an anti-inflammatory herb in traditional Chinese medicine. It has also been reported that vitexicarpin can inhibit the growth of various cancer cells. However, there is no report elucidating its effect on human prostate carcinoma cells. The aim of the present study was to examine the apoptotic induction activity of vitexicarpin on PC-3 cells and molecular mechanisms involved. MTT studies showed that vitexicarpin dose-dependently inhibited growth of PC-3 cells with an IC50~28.8 μM. Hoechst 33258 staining further revealed that vitexicarpin induced apoptotic cell death. The effect of vitexicarpin on PC-3 cells apoptosis was tested using prodium iodide (PI)/Annexin V-FITC double staining and flow cytometry. The results indicated that vitexicarpin induction of apoptotic cell death in PC-3 cells was accompanied by cell cycle arrest in the G2/M phase. Furthermore, our study demonstrated that vitexicarpin induction of PC-3 cell apoptosis was associated with upregulation of the proapoptotic protein Bax, and downregulation of antiapoptotic protein Bcl-2, release of Cytochrome c from mitochondria and decrease in mitochondrial membrane potential. Our findings suggested that vitexicarpin may become a potential leading drug in the therapy of prostate carcinoma.
Collapse
Affiliation(s)
- Fan-Min Meng
- School of life sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Millimouno FM, Dong J, Yang L, Li J, Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res (Phila) 2014; 7:1081-107. [PMID: 25161295 DOI: 10.1158/1940-6207.capr-14-0136] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the incidences are increasing day after day, scientists and researchers taken individually or by research group are trying to fight against cancer by several ways and also by different approaches and techniques. Sesquiterpenes, flavonoids, alkaloids, diterpenoids, and polyphenolic represent a large and diverse group of naturally occurring compounds found in a variety of fruits, vegetables, and medicinal plants with various anticancer properties. In this review, our aim is to give our perspective on the current status of the natural compounds belonging to these groups and discuss their natural sources, their anticancer activity, their molecular targets, and their mechanism of actions with specific emphasis on apoptosis pathways, which may help the further design and conduct of preclinical and clinical trials. Unlike pharmaceutical drugs, the selected natural compounds induce apoptosis by targeting multiple cellular signaling pathways including transcription factors, growth factors, tumor cell survival factors, inflammatory cytokines, protein kinases, and angiogenesis that are frequently deregulated in cancers and suggest that their simultaneous targeting by these compounds could result in efficacious and selective killing of cancer cells. This review suggests that they provide a novel opportunity for treatment of cancer, but clinical trials are still required to further validate them in cancer chemotherapy.
Collapse
Affiliation(s)
- Faya M Millimouno
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China. Dental Hospital, Jilin University, Changchun, China. Higher Institute of Science and Veterinary Medicine of Dalaba, Dalaba, Guinea
| | - Jia Dong
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Liu Yang
- Dental Hospital, Jilin University, Changchun, China
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun, China.
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| |
Collapse
|
23
|
Qu L, Liu FX, Cao XC, Xiao Q, Yang X, Ren KQ. Activation of the apoptosis signal-regulating kinase 1/c-Jun N-terminal kinase pathway is involved in the casticin-induced apoptosis of colon cancer cells. Exp Ther Med 2014; 8:1494-1500. [PMID: 25289048 PMCID: PMC4186484 DOI: 10.3892/etm.2014.1934] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/16/2014] [Indexed: 01/07/2023] Open
Abstract
Casticin is one of the main components of the fruits of Vitex rotundifolia L. Studies have shown that casticin inhibits the growth of various cancer cells, including colon cancer. In the present study, the anti-carcinogenic effects of casticin on human colon cancer and the underlying mechanisms were investigated. The results revealed that casticin significantly induced apoptosis of HT-29, HCT-116, SW480 and Caco-2 cells, induced the accumulation of reactive oxygen species (ROS) and increased the protein levels of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK) and B-cell lymphoma 2-interacting mediator of cell death (Bim) in HT-29 cells. Pretreatment with N-acetylcysteine, an antioxidant chemical compound, inhibited the activation of ASK1, JNK and Bim, as well as the apoptosis induced by casticin. Small interfering RNA targeting ASK1 significantly attenuated the induction of JNK and Bim activation and apoptotic cell death by casticin treatment. SP600125, a specific JNK inhibitor, attenuated Bim activation and apoptosis, but did not alter ASK1 phosphorylation levels. In addition, casticin treatment resulted in apoptosis by the same mechanism in HCT-116, SW480 and Caco-2 cells. These results suggest that casticin significantly induced apoptosis by the activation of the ASK1-JNK-Bim signaling cascade and the accumulation of ROS in colon cancer cells.
Collapse
Affiliation(s)
- Lin Qu
- Department of Examination, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Feng-Xia Liu
- Department of Examination, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiao-Cheng Cao
- Laboratory of Medicine, Medical College, Hunan Normal University, Changsha, Hunan 410016, P.R. China
| | - Qiao Xiao
- Laboratory of Medicine, Medical College, Hunan Normal University, Changsha, Hunan 410016, P.R. China
| | - Xiaohong Yang
- Laboratory of Medicine, Medical College, Hunan Normal University, Changsha, Hunan 410016, P.R. China
| | - Kai-Qun Ren
- Laboratory of Medicine, Medical College, Hunan Normal University, Changsha, Hunan 410016, P.R. China
| |
Collapse
|
24
|
He G, Cao X, He M, Sheng X, Wu Y, Ai X. Casticin inhibits self-renewal of liver cancer stem cells from the MHCC97 cell line. Oncol Lett 2014; 7:2023-2028. [PMID: 24932283 PMCID: PMC4049684 DOI: 10.3892/ol.2014.1972] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/18/2014] [Indexed: 12/28/2022] Open
Abstract
Casticin exerts anticarcinogenic activity in several types of cancers, including human hepatocellular carcinoma (HCC). The aim of the present study was to investigate the effects of casticin, which is derived from Fructus Viticis Simplicifoliae, on the self-renewal capacity of liver cancer stem cells (LCSCs) derived from the HCC MHCC97 cell line. The present study demonstrated that casticin significantly inhibited the proliferation of LCSCs from the MHCC97 cell line in a dose-dependent manner (P<0.05), the half maximal inhibitory concentration of the parental cells and LCSCs was 17.9 and 0.5 μmol/l, respectively. Furthermore, casticin reduced the sphere-forming capacity of LCSCs and downregulated β-catenin protein expression in a concentration-dependent manner. Lithium chloride, an agonist known to activate the Wnt/β-catenin signaling pathway, attenuated the casticin-induced downregulation of β-catenin protein expression and inhibited the self-renewal capacity. To the best of our knowledge, the present study is the first to demonstrate that casticin effectively eradicates LCSCs and β-catenin was identified as the potential target. Thus, casticin may offer a novel therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Guicheng He
- Department of Oncology, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaocheng Cao
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Meng He
- Department of Oncology, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xifeng Sheng
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Youhua Wu
- Department of Oncology, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohong Ai
- Department of Oncology, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
25
|
Liu LP, Cao XC, Liu F, Quan MF, Sheng XF, Ren KQ. Casticin induces breast cancer cell apoptosis by inhibiting the expression of forkhead box protein M1. Oncol Lett 2014; 7:1711-1717. [PMID: 24765206 PMCID: PMC3997681 DOI: 10.3892/ol.2014.1911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/27/2014] [Indexed: 11/25/2022] Open
Abstract
Casticin is an active ingredient derived from Fructus Viticis, a traditional Chinese medicine. This study aimed to investigate the role of forkhead box O3 (FOXO3a) in breast cancer cells and examine the regulatory mechanisms of FOXO3a in response to casticin treatment of the cells by ELISA, flow cytometry, small interfering RNA (siRNA) transfection and western blot analysis. Casticin treatment induced apoptosis and reduced the expression of the transcription factor forkhead box protein M1 (FOXM1). In addition, FOXM1 repression induced by casticin treatment was associated with the activation of FOXO3a via increased dephosphorylation. Notably, silencing FOXO3a expression by siRNA-mediated gene knockdown attenuated casticin-mediated apoptosis. Collectively, these findings suggest that FOXO3a is a critical mediator of the inhibitory effects of casticin on apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Li-Ping Liu
- The Breast Department, Hunan Province Tumor Hospital, Changsha, Hunan 410013, P.R. China
| | - Xiao-Cheng Cao
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Fei Liu
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Mei-Fang Quan
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Xi-Feng Sheng
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Kai-Qun Ren
- Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
26
|
He M, Cao XC, He GC, Sheng XF, Ai XH, Wu YH. Casticin inhibits epithelial-mesenchymal transition of liver cancer stem cells of the SMMC-7721 cell line through downregulating Twist. Oncol Lett 2014; 7:1625-1631. [PMID: 24765190 PMCID: PMC3997701 DOI: 10.3892/ol.2014.1899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 01/03/2014] [Indexed: 12/21/2022] Open
Abstract
The existence of cancer stem cells (CSCs) is central to the pathogenesis and therapeutic target of human hepatocellular carcinoma. The aim of this study was to investigate the effects of casticin on epithelial-mesenchymal transition (EMT) of liver cancer stem cells (LCSCs) derived from the SMMC-7721 cell line. Our results demonstrated that CD133+ sphere-forming cells (SFCs) sorted from the SMMC-7721 cell line not only possessed a higher capacity to form tumor spheroids in vitro, but also had a greater potential to form tumors when implanted in Balb/c-nu mice, indicating that CD133+ SFCs possessed similar traits to LCSCs. Casticin increased the expression levels of E-cadherin and decreased those of N-cadherin in LCSCs. Treatment of LCSCs with casticin for 48 h also decreased the levels of the EMT-associated transcription factor, Twist. Overexpression of Twist attenuated the casticin-induced regulation of E-cadherin and N-cadherin protein expression, as well as the EMT capacity of LCSCs. In conclusion, CD133+ SFCs of the SMMC-7721 cell line may represent a subpopulation of LCSCs with the characteristics of EMT. Furthermore, casticin targeted LCSCs through the inhibition of EMT by downregulating Twist.
Collapse
Affiliation(s)
- Meng He
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Cheng Cao
- Laboratory of Medicine Engineering, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Gui-Cheng He
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi-Feng Sheng
- Laboratory of Medicine Engineering, Medical College, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Xiao-Hong Ai
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - You-Hua Wu
- Department of Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
27
|
Liu F, Cao X, Liu Z, Guo H, Ren K, Quan M, Zhou Y, Xiang H, Cao J. Casticin suppresses self-renewal and invasion of lung cancer stem-like cells from A549 cells through down-regulation of pAkt. Acta Biochim Biophys Sin (Shanghai) 2014; 46:15-21. [PMID: 24247269 DOI: 10.1093/abbs/gmt123] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A subpopulation of cancer stem cells is recognized as the cause of tumorigenesis and spreading. To investigate the effects of casticin (5,3'-dihydroxy-3,6,7,4'-tetramethoxyflavone), derived from Fructus Viticis Simplicifoliae, on lung cancer stem cells, we isolated and identified a subpopulation of lung cancer stem-like cells (LCSLCs) from non-small-cell lung carcinoma A549 cells with the features including self-renewal capacity and high invasiveness in vitro, elevated tumorigenic activity in vivo, and high expression of stemness markers CD133, CD44, and aldehyde dehydrogenase 1 (ALDH1), using serum-free suspension sphere-forming culture method. We then found that casticin could suppress the proliferation of LCSLCs in a concentration-dependent manner with an IC50 value of 0.4 μmol/L, being much stronger than that in parental A549 cells. In addition, casticin could suppress the self-renewal and invasion of LCSLCs concomitant with decreased CD133, CD44, and ALDH1 protein expression and reduced MMP-9 activity. Further experiments showed that casticin suppressed self-renewal and invasion at least partly through down-regulation of Akt phosphorylation. In conclusion, casticin suppressed the characteristics of LCSLCs, suggesting that casticin may be a candidate compound for curing lung cancer via eliminating cancer stem cells.
Collapse
Affiliation(s)
- Fei Liu
- College of Medicine, Hunan Normal University, Changsha 410013, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tang S, Yuan G, Yu Z, Yin L, Jiang H. The flavonoid casticin enhances TRAIL-induced apoptosis of colon cancer cells through endoplasmic reticulum stress-mediated up-regulation of DR5. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s10330-013-1180-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Kucuksayan E, Cort A, Timur M, Ozdemir E, Yucel SG, Ozben T. N-acetyl-L-cysteine inhibits bleomycin induced apoptosis in malignant testicular germ cell tumors. J Cell Biochem 2013; 114:1685-94. [DOI: 10.1002/jcb.24510] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/24/2013] [Indexed: 11/05/2022]
|
30
|
Jiang L, Cao XC, Cao JG, Liu F, Quan MF, Sheng XF, Ren KQ. Casticin induces ovarian cancer cell apoptosis by repressing FoxM1 through the activation of FOXO3a. Oncol Lett 2013; 5:1605-1610. [PMID: 23761826 PMCID: PMC3678892 DOI: 10.3892/ol.2013.1258] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/24/2013] [Indexed: 01/22/2023] Open
Abstract
Casticin, a polymethoxyflavone, is reported to have anticancer activities. The aim of the present study was to examine the molecular mechanisms by which casticin induces apoptosis in ovarian cancer cells. The human ovarian cancer cell lines SKOV3 and A2780 were cultured in vitro. Various molecular techniques, including histone/DNA enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), western blot analysis and gene transfection, were used to assess the expression of FOXO3a and forkhead box protein M1 (FoxM1) in casticin-treated ovarian cancer cell lines. Casticin-induced apoptotic cell death was accompanied by the activation of transcription factor FOXO3a, with a concomitant decrease in the expression levels of FoxM1 and its downstream target factors, namely survivin and polo-like kinase 1 (PLK1), and an increase in p27KIP1. A small inhibitory RNA (siRNA) knockout of FoxM1 potentiated casticin-induced apoptosis in ovarian cancer cells. Silencing FOXO3a expression using siRNA increased FoxM1 expression levels and clearly attenuated the induction of apoptosis by casticin treatment. These results show that casticin-induced apoptosis in ovarian cancer may be caused by the activation of FOXO3a, leading to FoxM1 inhibition.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Gynaecology and Obstetrics, The People's Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Changsha 410005
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhou Y, Tian L, Long L, Quan M, Liu F, Cao J. Casticin potentiates TRAIL-induced apoptosis of gastric cancer cells through endoplasmic reticulum stress. PLoS One 2013; 8:e58855. [PMID: 23536831 PMCID: PMC3594187 DOI: 10.1371/journal.pone.0058855] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 02/08/2013] [Indexed: 11/30/2022] Open
Abstract
Background Casticin is one of the main active components obtained from Fructus Viticis and has been reported to exert anti-carcinogenic activity on a variety of cancer cells but the precise mechanism underlying this activity remains unclear. Materials and Methods Apoptotic activities of casticin (1.0 µmol/l) and TRAIL (25, 50 ng/ml) alone or in combination in the gastric cancer cell lines BGC-823, SGC-7901 and MGC-803 were detected by the use of a cell apoptosis ELISA detection kit, flow cytometry (FCM) with propidium iodide (PI) staining and activities of caspase-3, -8 and -9 by ELISA and cleavage of polyADP-ribose polymerase (PARP) protein using western blot analysis. Death receptors (DR) expression levels were evaluated using FCM analysis and western blotting. 2′, 7′-dichlorofluorescein diacetate (DCFH-DA) was used as a probe to measure the increase in reactive oxygen species (ROS) levels in cells. Multiple interventions, such as siRNA transfection and pharmacological inhibitors were used to explore the mechanisms of these actions. Results Subtoxic concentrations of casticin significantly potentiated TRAIL-induced cytotoxicity and apoptosis in BGC-823, SGC-7901 and MGC-803 cells. Casticin dramatically upregulated DR5 receptor expression but had no effects on DR4 or decoy receptors. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by the co-application of TRAIL and casticin. Gene silencing of the CCAAT/enhancer binding protein homologous protein (CHOP) and pretreatment with salubrinal, an endoplasmic reticulum (ER) stress inhibitor, attenuated casticin-induced DR5 receptor expression, and apoptosis and ROS production. Casticin downregulated the expression levels of the cell survival proteins cFLIP, Bcl-2, XIAP, and survivin. In addition, casticin also induced the expressions of DR5 protein in other gastric cancer cells (SGC-7901 and MGC-803). Conclusion/Significance Casticin enhances TRAIL-induced apoptosis through the downregulation of cell survival proteins and the upregulation of DR5 receptors through actions on the ROS-ER stress-CHOP pathway.
Collapse
Affiliation(s)
- Yuan Zhou
- Medical College, Hunan Normal University, Changsha, China.
| | | | | | | | | | | |
Collapse
|
32
|
Wang X, Ning SB, Shen EY, Guo LM. Synergistic cytotoxic effect of anti-human DR5 monoclonal antibody hCTB006 and irinotecan on gastric cancer BGC823 and SGC7901 cells. Shijie Huaren Xiaohua Zazhi 2012; 20:3130-3134. [DOI: 10.11569/wcjd.v20.i32.3130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the cytotoxic effect of combined anti-human DR5 monoclonal antibody hCTB006 and irinotecan on human gastric cancer BGC823 and SGC7901 cells in vitro.
METHODS: The cytotoxic effect of hCTB006 and irinotecan, alone or in combination, was evaluated using ATP lite assay. DR5 expression in tumor cells was examined using ELISA. The level of cytoplasmic XIAP was detected by Western blot.
RESULTS: Irinotecan exerted a cytotoxic effect on gastric cancer cells in a concentration-dependent manner, while the effect of hCTB006 on gastric cancer cells was not concentration-dependent. hCTB006 combined with irinotecan resulted in a synergistic cytotoxic effect on BGC823 cells, but not on SGC7901 cells. Irinotecan treatment did not significantly alter DR5 expression. Combined irinotecan and hCTB006 down-regulated XIAP expression in BGC823 cells, but not in SGC7901 cells.
CONCLUSION: Irinotecan can inhibit the growth of gastric cancer dose-dependently. Anti-human DR5 monoclonal antibody hCTB006 and irinotecan exert a synergistic cytotoxic effect on gastric cancer cells possibly by regulating the expression of XIAP.
Collapse
|
33
|
TANG SANYUAN, ZHONG MEIZUO, YUAN GUANGJIN, HOU SUPING, YIN LEILAN, JIANG HAO, YU ZHENGYANG. Casticin, a flavonoid, potentiates TRAIL-induced apoptosis through modulation of anti-apoptotic proteins and death receptor 5 in colon cancer cells. Oncol Rep 2012; 29:474-80. [DOI: 10.3892/or.2012.2127] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/17/2012] [Indexed: 11/06/2022] Open
|
34
|
He L, Yang X, Cao X, Liu F, Quan M, Cao J. Casticin induces growth suppression and cell cycle arrest through activation of FOXO3a in hepatocellular carcinoma. Oncol Rep 2012; 29:103-8. [PMID: 23064420 DOI: 10.3892/or.2012.2076] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/27/2012] [Indexed: 11/06/2022] Open
Abstract
Casticin, a polymethoxyflavone, has been reported to exert anticancer activities. The objectives of this study were to examine the molecular mechanisms by which casticin induces the growth inhibition and cell cycle arrest in human hepatocellular carcinoma (HCC) cells. The HCC cell lines Hep G2 and PLC/PRF/5 were cultured in vitro. The growth inhibitory effects of casticin were evaluated using clonogenic assays. The distribution of phases in the cell cycle was analyzed using flow cytometry (FCM) analysis with propidium iodide (PI) staining. Multiple molecular techniques, such as western blotting and gene transfection, were used to explore the molecular mechanisms of action. Our data demonstrated that casticin significantly inhibited cell viability and colony formation in HCC cells. Furthermore, it induced cell cycle arrest in the G2/M phase. Casticin inhibited phosphorylation of the FOXO3a protein and decreased the expression of FoxM1 and its downstream genes, such as cyclin-dependent kinase (CDK1), cdc25B and cyclin B and increased the expression of p27KIP1. Silencing of FOXO3a expression by small interfering RNA (siRNA) transfection clearly attenuated the inhibitory effects of casticin on FOXM1 expression and cell growth. Our findings provided clear evidence that casticin induces growth suppression and cell cycle arrest through inhibition of FOXO3a phosphorylation causing inactivation of FOXM1 in HCC cells.
Collapse
Affiliation(s)
- Lihua He
- Medical College, Hunan Normal University, Changsha 410013, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Zeng F, Tian L, Liu F, Cao J, Quan M, Sheng X. Induction of apoptosis by casticin in cervical cancer cells: reactive oxygen species-dependent sustained activation of Jun N-terminal kinase. Acta Biochim Biophys Sin (Shanghai) 2012; 44:442-9. [PMID: 22427461 DOI: 10.1093/abbs/gms013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Casticin, a polymethoxyflavone from Fructus viticis used as an anti-inflammatory agent in Chinese traditional medicine, has been reported to have anti-cancer activity. The purpose of this study was to examine the apoptotic activity of casticin on human cervical cancer cells and its molecular mechanism. We revealed a novel mechanism by which casticin-induced apoptosis occurs and showed for the first time that the apoptosis induced by casticin is mediated through generation of reactive oxygen species (ROS) and sustained activation of c-Jun N-terminal kinase (JNK) in HeLa cells. Casticin markedly increased the levels of intracellular ROS and induced the expression of phosphorylated JNK and c-Jun protein. Pre-treatment with N-acetylcysteine and SP600125 effectively attenuated induction of apoptosis by casticin in HeLa cells. Moreover, casticin induced ROS production and apoptotic cell death in other cervical cancer cell lines, such as CasKi and SiHa. Importantly, casticin did not cause generation of ROS or induction of apoptosis in normal human peripheral blood mononuclear cells and embryonic kidney epithelium 293 cells. These results suggest that ROS generation and sustained JNK activation by casticin play a role in casticin-induced apoptosis and raise the possibility that treatment with casticin might be promising as a new therapy against human cervical cancer.
Collapse
Affiliation(s)
- Fanxiang Zeng
- Department of Gynaecology and Obstetrics, First Affiliated Hospital of University of South China, Hengyang, China
| | | | | | | | | | | |
Collapse
|