1
|
Does the Use of Proton Pump Inhibitors Increase the Risk of Pancreatic Cancer? A Systematic Review and Meta-Analysis of Epidemiologic Studies. Cancers (Basel) 2020; 12:cancers12082220. [PMID: 32784492 PMCID: PMC7463819 DOI: 10.3390/cancers12082220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022] Open
Abstract
Background: One of the most frequently used medications for treating gastrointestinal disorders is proton pump inhibitor (PPI), which reportedly has potential adverse effects. Although the relationship between the use of PPIs and the risk of pancreatic cancer has been extensively investigated, the results remain inconsistent. Hence, this meta-analysis aimed to evaluate such relationship. Methods: We searched for literature and subsequently included 10 studies (seven case–control and three cohort studies; 948,782 individuals). The pooled odds ratio (OR) and 95% confidence intervals (CI) for pancreatic cancer were estimated using a random-effects model. We also conducted sensitivity analysis and subgroup analysis. Results: The pooled OR of the meta-analysis was 1.698 (95% CI: 1.200–2.402, p = 0.003), with a substantial heterogeneity (I2 = 98.75%, p < 0.001). Even when studies were excluded one by one, the pooled OR remained statistically significant. According to the stratified subgroup analyses, PPI use, and pancreatic cancer incidence were positively associated, regardless of the study design, quality of study, country, and PPI type. Conclusion: PPI use may be associated with the increased risk of pancreatic cancer. Hence, caution is needed when using PPIs among patients with a high risk of pancreatic cancer.
Collapse
|
2
|
Mohammed A, Janakiram NB, Suen C, Stratton N, Lightfoot S, Singh A, Pathuri G, Ritchie R, Madka V, Rao CV. Targeting cholecystokinin-2 receptor for pancreatic cancer chemoprevention. Mol Carcinog 2019; 58:1908-1918. [PMID: 31313401 DOI: 10.1002/mc.23084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 02/05/2023]
Abstract
Gastrin signaling mediated through cholecystokinin-2 receptor (CCK2R) and its downstream molecules is altered in pancreatic cancer. CCK2R antagonists, YF476 (netazepide) and JNJ-26070109, were tested systematically for their effect on pancreatic intraepithelial neoplasia (PanIN) progression to pancreatic ductal adenocarcinoma (PDAC) in KrasG12D mice. After dose selection using wild-type mice, six-week-old p48Cre/+ -LSL-KrasG12D (22-24 per group) genetically engineered mice (GEM) were fed AIN-76A diets containing 0, 250, or 500 ppm JNJ-26070109 or YF-476 for 38 weeks. At termination, pancreata were collected, weighed, and evaluated for PanINs and PDAC. Results demonstrated that control-diet-fed mice showed 69% (males) and 33% (females) incidence of PDAC. Administration of low and high dose JNJ-26070109 inhibited the incidence of PDAC by 88% and 71% (P < .004) in male mice and by 100% and 24% (P > .05) in female mice, respectively. Low and high dose YF476 inhibited the incidence of PDAC by 74% (P < .02) and 69% (P < .02) in male mice and by 45% and 33% (P > .05) in female mice, respectively. Further, transcriptome analysis showed downregulation of Cldn1, Sstr1, Apod, Gkn1, Siglech, Cyp2c44, Bnc1, Fmo2, 623169, Kcne4, Slc27a6, Cma1, Rho GTPase activating protein 18, and Gpr85 genes in JNJ-26070109-treated mice compared with untreated mice. YF476-treated mouse pancreas showed downregulation of Riks, Zpbp, Ntf3, Lrrn4, Aass, Skint3, Kcnb1, Dgkb, Ddx60, and Aspn gene expressions compared with untreated mouse pancreas. Overall, JNJ-26070109 showed better chemopreventive efficacy than YF476. However, caution is recommended when selecting doses, as the agents appeared to exhibit gender-specific effects.
Collapse
Affiliation(s)
- Altaf Mohammed
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, Maryland
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Chen Suen
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, Maryland
| | - Nicole Stratton
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Stanley Lightfoot
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Anil Singh
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Rebekah Ritchie
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
3
|
Gastrin stimulates pancreatic cancer cell directional migration by activating the Gα12/13-RhoA-ROCK signaling pathway. Exp Mol Med 2018; 50:1-14. [PMID: 29717112 PMCID: PMC5938061 DOI: 10.1038/s12276-018-0081-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
The mechanism by which gastrin promotes pancreatic cancer cell metastasis is unclear. The process of directing polarized cancer cells toward the extracellular matrix is principally required for invasion and distant metastasis; however, whether gastrin can induce this process and its underlying mechanism remain to be elucidated. In this study, we found that gastrin-induced phosphorylation of paxillin at tyrosine 31/118 and RhoA activation as well as promoted the metastasis of PANC-1 cancer cells. Depletion of Gα12 and Gα13 inhibited the phosphorylation of paxillin and downstream activation of GTP-RhoA, blocked the formation and aggregation of focal adhesions and facilitated polarization of actin filaments induced by gastrin. Suppression of RhoA and ROCK also exhibited identical results. Selective inhibition of the CCKBR–Gα12/13–RhoA–ROCK signaling pathway blocked the reoriented localization of the Golgi apparatus at the leading edge of migrated cancer cells. YM022 and Y-27632 significantly suppressed hepatic metastasis of orthotic pancreatic tumors induced by gastrin in vivo. Collectively, we demonstrate that gastrin promotes Golgi reorientation and directional polarization of pancreatic cancer cells by activation of paxillin via the CCKBR–Gα12/13–RhoA–ROCK signal pathway. A hormone found in high levels in pancreatic cancer sufferers helps the disease spread by co-ordinating cellular migration. Pancreatic cancer is one of the most deadly forms of cancer, being highly aggressive and likely to metastasize. Honggang Yu at Renmin Hospital of Wuhan University and scientists across China have demonstrated that gastrin, a hormone expressed at higher levels in patients with pancreatic cancer, helps to co-ordinate directional cell migration and ensure the disease spreads effectively. By activating two key molecules via a specific signalling pathway, gastrin ensures the correct orientation of the Golgi apparatus, a cellular organelle tasked with packaging proteins for transportation. This in turn activates directional migration of the cancer cells. The results explain why gastrin is over-expressed in both tumors and blood in cancer patients, and may inform future therapies.
Collapse
|
4
|
Li Q, Yang G, Feng M, Zheng S, Cao Z, Qiu J, You L, Zheng L, Hu Y, Zhang T, Zhao Y. NF-κB in pancreatic cancer: Its key role in chemoresistance. Cancer Lett 2018; 421:127-134. [PMID: 29432846 DOI: 10.1016/j.canlet.2018.02.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/18/2018] [Accepted: 02/06/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is considered a lethal disease with a high mortality and an extremely low five-year survival rate. Chemotherapy plays a pivotal role in pancreatic cancer treatment both in an adjuvant setting after complete resection and in the case of unresectable metastatic disease. However, none of the available combination chemotherapy regimens has resulted in satisfactory survival outcomes. Recent studies have revealed that both constitutive and induced activation of nuclear factor kappa B (NF-κB) in pancreatic cancer cells are closely associated with cell proliferation, invasion, anti-apoptosis, inflammation, angiogenesis and chemotherapeutic resistance. Therefore, NF-κB inhibitors in combination with cytotoxic compounds have been reported as novel agents that improve chemotherapy sensitivity in pancreatic cancer. In this review, we outline recent developments in the understanding of the role of the NF-κB signaling pathway and its associated genes in the progression of pancreatic cancer and highlight some potentially effective strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Quanxiao Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Suli Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
He Q, Gao H, Gao M, Qi S, Yang K, Zhang Y, Wang J. Immunogenicity and safety of a novel tetanus toxoid-conjugated anti-gastrin vaccine in BALB/c mice. Vaccine 2018; 36:847-852. [PMID: 29306507 DOI: 10.1016/j.vaccine.2017.12.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
The objective of this study is to determine the immunogenicity and safety of our novel anti-gastrin vaccine that is composed of the common amino-terminal portions of human carboxy-amidated gastrin-17 (G17) and glycine-extended gastrin-17 (gly-G17) as well as the common carboxy-terminal portion of the gastrin precursor progastrin (in a 50:50 mixture) all covalently linked to tetanus toxoid (TT) via peptide spacers. The vaccine, or immunogen, was injected intramuscularly into the legs of BALB/c mice, which produced high serum titres of specific IgG antibodies and IFN-γ in their spleen cells, identifiable by enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot assay (ELISPOT), respectively. TT as the protein carrier effectively enhanced the antigenic epitopes' humoural and cellular immune responses, unlike the antigenic epitopes alone or the immunogen's adjuvant emulsion system (AES), all of which failed to provoke any obvious immune response. Notably, the animals' body weights increased significantly after immunization (P < .01), while their haematology and serum biochemistry were all generally normal, and the gross anatomy of their main organs (e.g., heart, liver, spleen, lung, kidney) showed no obvious histopathological changes.
Collapse
Affiliation(s)
- Qing He
- Biotechnology Center, Department of Pharmacy, Fourth Military Medical University, Xian, China; National Institutes for Food and Drug Control, Beijing, China
| | - Hua Gao
- National Institutes for Food and Drug Control, Beijing, China
| | | | | | - Kun Yang
- Biotechnology Center, Department of Pharmacy, Fourth Military Medical University, Xian, China
| | - Yingqi Zhang
- Biotechnology Center, Department of Pharmacy, Fourth Military Medical University, Xian, China
| | - Junzhi Wang
- Biotechnology Center, Department of Pharmacy, Fourth Military Medical University, Xian, China; National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
6
|
Zhang Y, Cao G, Zhu L, Chen F, Zar MS, Wang S, Hu X, Wei Y, Xue R, Gong C. Integrin beta and receptor for activated protein kinase C are involved in the cell entry of Bombyx mori cypovirus. Appl Microbiol Biotechnol 2017; 101:3703-3716. [PMID: 28175946 DOI: 10.1007/s00253-017-8158-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
Receptor-mediated endocytosis using a β1 integrin-dependent internalization was considered as the primary mechanism for the initiation of mammalian reovirus infection. Bombyx mori cypovirus (BmCPV) is a member of Reoviridae family which mainly infects the midgut epithelium of silkworm; the cell entry of BmCPV is poorly explored. In this study, co-immunoprecipitation (Co-IP), virus overlay protein binding assay (VOPBA), and BmCPV-protein interaction on the polyvinylidene difluoride membrane (BmCPV-PI-PVDF) methods were employed to screen the interacting proteins of BmCPV, and several proteins including integrin beta and receptor for activated protein kinase C (RACK1) were identified as the candidate interacting proteins for establishing the infection of BmCPV. The infectivity of BmCPV was investigated in vivo and in vitro by RNA interference (RNAi) and antibody blocking methods, and the results showed that the infectivity of BmCPV was significantly reduced by either small interfering RNA-mediated silencing of integrin beta and RACK1 or antibody blocking of integrin beta and RACK1. The expression level of integrin beta or RACK1 is not the highest in the silkworm midgut which is a principal target tissue of BmCPV, suggesting that the molecules other than integrin beta or RACK1 might play a key role in determining the tissue tropism of BmCPV infection. The establishment of BmCPV infection depends on other factors, and these factors interacted with integrin beta and RACK1 to form receptor complex for the cell entry of BmCPV.
Collapse
Affiliation(s)
- Yiling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Suzhou Municipal Key Laboratory of Molecular Diagnostics and Therapeutics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Liyuan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fei Chen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Mian Sahib Zar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Simei Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Department of Hematology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuhong Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Sellam F, Harir N, Khaled MB, Mrabent NM, Belkralladi H, Tou A, Diaf M, Salah R, Moulessehoul S. Immunohistochemical examination of cholecystokinin and gastrin receptors (CCK-2/gastrin-R) expression in normal and exocrine cancerous human pancreatic tissues. Pancreatology 2015; 15:661-6. [PMID: 26520651 DOI: 10.1016/j.pan.2015.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Evaluating tissue samples of normal and exocrine cancerous human pancreas on the expression of CCK2/gastrin receptor. We performed an immunohistochemical protocol that allows efficient detection of this receptor in formalin-fixed, paraffin-embedded human tissues. METHODS Twenty (20) paraffin blocks of pancreatic tissue sections were collected from the Departments of pathology, Central University Hospital of Sidi-bel-Abbes City (Western Algeria) for the period 2004-2013; ten (10) of them were normal pancreatic samples; and ten (10) cancerous pancreatic sections. The samples were studied using an immunohistochemical protocol for CCK-2/gastrin receptors. RESULTS Our immunohistochemical analysis revealed that CCK-2/gastrin receptors were expressed in both normal and malignant pancreatic cells but with different immunoreactivity levels and different immunostaining intensity i.e., CCK-2/gastrin receptors were highly expressed within the cytoplasmic area of cancerous cells; 40% of the samples had an immunoreactivity (IR) of (+++) and 60% (++++); the immunostaining was as well very intense since we reported a dark brown staining of the malignant cells. However; in normal pancreatic tissues; CCK-2/gastrin receptors IR levels were very low; 80% of the samples had an IR of (+); and 20% had (++) and the immunostaining was less intense; we noted a light brown staining of few normal pancreatic cells. CONCLUSION The gastrointestinal peptides CCK could be very interesting targets for exocrine pancreatic cancer therapies; thus further surveys such as western blotting and RTPCR could indentify CCK-2/gastrin receptors as a helpful biomarker for exocrine pancreatic cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Feriel Sellam
- Department of Biology, Djillali Liabes University of Sidi bel Abbes, Algeria.
| | - Noria Harir
- Department of Biology, Djillali Liabes University of Sidi bel Abbes, Algeria; Laboratory of Molecular Microbiology, Proteomics and Health, Algeria
| | - Méghit B Khaled
- Department of Biology, Djillali Liabes University of Sidi bel Abbes, Algeria
| | - Nesrine M Mrabent
- Department of Biology, Djillali Liabes University of Sidi bel Abbes, Algeria
| | - Houria Belkralladi
- Department of Pathology, Hassani Abdelkader University Hospital, Sidi bel Abbes, Algeria
| | - Abdelnacer Tou
- Department of Pathology, Hassani Abdelkader University Hospital, Sidi bel Abbes, Algeria; Laboratory of Environment and Cancer, Algeria
| | - Mustapha Diaf
- Department of Biology, Djillali Liabes University of Sidi bel Abbes, Algeria
| | - Rachida Salah
- Department of Biology, Djillali Liabes University of Sidi bel Abbes, Algeria
| | - Soraya Moulessehoul
- Department of Biology, Djillali Liabes University of Sidi bel Abbes, Algeria
| |
Collapse
|
8
|
You LL, Cao DH, Jiang J, Hou Z, Suo YE, Wang SD, Cao XY. Transgenic mouse models of gastric cancer: Pathological characteristic and applications. Shijie Huaren Xiaohua Zazhi 2015; 23:2754-2760. [DOI: 10.11569/wcjd.v23.i17.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transgenic animal models of gastric cancer have high specificity and similar tumor characteristics to human gastric cancer. Current research and application of transgenic animal models of gastric cancer are wide, and several models have been developed. In transgenic animal models of gastric cancer, primary gastric carcinoma can develop spontaneously. These transgenic animal models have been widely used to study the mechanism of gastric cancer development, and have great significance for clinical diagnosis and treatment of gastric cancer. This paper systematically summarizes several different kinds of transgenic animal models and describes the molecular pathogenic mechanisms and pathological characteristics of gastric mucosal lesions in these models as well as their applications.
Collapse
|
9
|
Suntravat M, Barret HS, Jurica CA, Lucena SE, Perez JC, Sánchez EE. Recombinant disintegrin (r-Cam-dis) from Crotalus adamanteus inhibits adhesion of human pancreatic cancer cell lines to laminin-1 and vitronectin. JOURNAL OF VENOM RESEARCH 2015; 6:1-10. [PMID: 26045944 PMCID: PMC4440708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/27/2015] [Accepted: 04/12/2015] [Indexed: 11/27/2022]
Abstract
Pancreatic cancer is a malignant cancer common worldwide having poor prognosis, even when diagnosed at its early stage. Cell adhesion plays a critical role in cancer invasion and metastasis. Integrins are major mediators of cell adhesion and play an important role in invasion and metastatic growth of human pancreatic cancer cells. Snake disintegrins are the most potent ligands of several integrins and have potential therapeutic applications for cancers. We have previously cloned and expressed a new recombinant RGD-disintegrin from Crotalus adamanteus (r-Cam-dis). This recently published r-Cam-dis has an extra nine amino acids derived from the vector (SPGARGSEF) at the N-terminus end and has strong anti-platelet activity. However, this r-Cam-dis contains the contamination of the cleavage of the N-terminal end of the pET-43.1a cloning vector. In this study, we have cloned r-Cam-dis in a different cloning vector (pGEX-4T-1) showing five different amino acids (GSPEF) at the N-terminal part. This new r-Cam-dis was expressed and tested for inhibition of platelet aggregation, specific binding activity with seven different integrins, and inhibition of adhesion of three different pancreatic cancer cell lines on laminin-1 and vitronectin. The r-Cam-dis showed potent binding to αvβ3 integrin, but was moderate to weak with αvβ5, αvβ6, α2β1, and α6β1. Interestingly, the inhibition of r-Cam-dis on pancreatic cancer cell lines adhesion to laminin-1 was more effective than that to vitronectin. Based on our binding results to integrin receptors and previous adhesion studies using function-blocking monoclonal antibodies, it is suggested that r-Cam-dis could be inhibiting adhesion of pancreatic cancer cell lines through integrins α2β1, α6β1, αvβ5, and αvβ6.
Collapse
Affiliation(s)
- Montamas Suntravat
- αNational Natural Toxins Research Center, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Henriquez S Barret
- αNational Natural Toxins Research Center, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Cameron A Jurica
- αNational Natural Toxins Research Center, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Sara E Lucena
- αNational Natural Toxins Research Center, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - John C Perez
- αNational Natural Toxins Research Center, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Elda E Sánchez
- αNational Natural Toxins Research Center, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA,βDepartment of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA,*Correspondence to: Elda Sánchez, , +1 361 5933796; +1 361 5933798
| |
Collapse
|
10
|
Li W, Wang G, Liang W, Kang K, Guo K, Zhang Y. Integrin β3 is required in infection and proliferation of classical swine fever virus. PLoS One 2014; 9:e110911. [PMID: 25340775 PMCID: PMC4207786 DOI: 10.1371/journal.pone.0110911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022] Open
Abstract
Classical Swine Fever (CSF) is a highly infectious fatal pig disease, resulting in huge economic loss to the swine industry. Integrins are membrane-bound signal mediators, expressed on a variety of cell surfaces and are known as receptors or co-receptors for many viruses. However, the role of integrin β3 in CSFV infection is unknown. Here, through quantitive PCR, immunofluorescence (IFC) and immunocytohistochemistry (ICC), we revealed that ST (swine testicles epithelial) cells have a prominent advantage in CSFV proliferation as compared to EC (swine umbilical vein endothelial cell), IEC (swine intestinal epithelial cell) and PK (porcine kidney epithelial) cells. Meanwhile, ST cells had remarkably more integrin β3 expression as compared to EC, IEC and PK cells, which was positively correlated with CSFV infection and proliferation. Integrin β3 was up-regulated post CSFV infection in all the four cell lines, while the CSFV proliferation rate was decreased in integrin β3 function-blocked cells. ShRNA1755 dramatically decreased integrin β3, with a deficiency of 96% at the mRNA level and 80% at the protein level. CSFV proliferation was dramatically reduced in integrin β3 constantly-defected cells (ICDC), with the deficiencies of 92.6%, 99% and 81.7% at 24 h, 48 h and 72 h post CSFV infection, respectively. These results demonstrate that integrin β3 is required in CSFV infection and proliferation, which provide a new insight into the mechanism of CSFV infection.
Collapse
Affiliation(s)
- Weiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Gang Wang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wulong Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
11
|
Buckway B, Wang Y, Ray A, Ghandehari H. Overcoming the stromal barrier for targeted delivery of HPMA copolymers to pancreatic tumors. Int J Pharm 2013; 456:202-11. [PMID: 23933441 DOI: 10.1016/j.ijpharm.2013.07.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/12/2013] [Accepted: 07/19/2013] [Indexed: 12/18/2022]
Abstract
Delivery of macromolecules to pancreatic cancer is inhibited by a dense extracellular matrix composed of hyaluronic acid, smooth muscle actin and collagen fibers. Hyaluronic acid causes a high intratumoral fluidic pressure which prevents diffusion and penetration into the pancreatic tumor. This study involves the breaking down of hyaluronic acid by treating CAPAN-1 xenograft tumors in athymic nu/nu mice with targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers radiolabeled with (111)In for single photon emission computerized tomography (SPECT) imaging. Two targeting strategies were investigated including αvβ3 integrin and HER2 receptors. HPMA copolymers were targeted to these receptors by conjugating short peptide ligands cRGDfK and KCCYSL to the side chains of the copolymer. Results demonstrate that tumor targeting can be achieved in vivo after treatment with hyaluronidase. This approach shows promise for enhanced delivery of polymer-peptide conjugates to solid tumors.
Collapse
Affiliation(s)
- Brandon Buckway
- Department of Pharmaceutics and Pharmaceutical Chemistry, and of Bioengineering, Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S Wasatch Dr, 5205 SMBB, Salt Lake City, UT 84112, USA; Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
12
|
Abstract
C-terminally amidated gastrins act at cholecystokinin-2 receptors (CCK2R), which are normally expressed by gastric parietal and enterochromaffin-like (ECL) cells and smooth muscle; there is also extensive expression in the CNS where the main endogenous ligand is cholecystokinin. A variety of neoplasms express CCK2R, or splice variants, including neuroendocrine, pancreatic, medullary thyroid and lung cancers. Other products of the gastrin gene (progastrin, the Gly-gastrins) may stimulate cell proliferation but are not CCK2R ligands. Depending on the cell type, stimulation of CCK2R evokes secretion, increases proliferation and cell migration, inhibits apoptosis, and controls the expression of various genes. These effects are mediated by increased intracellular calcium and activation of protein kinase C, MAPkinase and other protein kinase cascades. There has been recent progress in developing CCK2R ligands that can be used for imaging tumours expressing the receptor. New antagonists have also been developed, and there is scope for using these for suppression of gastric acid and for treatment of neuroendocrine and other CCK2R-expressing tumours.
Collapse
|
13
|
Matters GL, Clawson GA. A Speculative Role for Stromal Gastrin Signaling in Development and Dissemination of Pancreatic Ductal Adenocarcinoma. ACTA ACUST UNITED AC 2013; Suppl 4:003. [PMID: 25346875 PMCID: PMC4208305 DOI: 10.4172/2165-7092.s4-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The peptide growth factor gastrin and its receptor, the G-protein coupled cholecystokinin receptor type B (CCKBR), play an integral role in the growth and progression of pancreatic ductal adenocarcinoma (PDAC). Gastrin immunoreactivity is found in the fetal pancreas but its expression is not detected in normal pancreas after birth, except when it is re-expressed in malignant lesions.
Collapse
Affiliation(s)
- Gail L Matters
- Department of Biochemistry and Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA
| | - Gary A Clawson
- Department of Biochemistry and Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA ; Gittlen Cancer Research Foundation and Departments of Pathology, Biochemistry and Molecular Biology, USA
| |
Collapse
|
14
|
Fino KK, Matters GL, McGovern CO, Gilius EL, Smith JP. Downregulation of the CCK-B receptor in pancreatic cancer cells blocks proliferation and promotes apoptosis. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1244-52. [PMID: 22442157 PMCID: PMC3378167 DOI: 10.1152/ajpgi.00460.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastrin stimulates the growth of pancreatic cancer cells through the activation of the cholecystokinin-B receptor (CCK-BR), which has been found to be overexpressed in pancreatic cancer. In this study, we proposed that the CCK-BR drives growth of pancreatic cancer; hence, interruption of CCK-BR activity could potentially be an ideal target for cancer therapeutics. The effect of CCK-BR downregulation in the human pancreatic adenocarcinoma cells was examined by utilizing specific CCK-BR-targeted RNA interference reagents. The CCK-BR receptor expression was both transiently and stably downregulated by transfection with selective CCK-BR small-interfering RNA or short-hairpin RNA, respectively, and the effects on cell growth and apoptosis were assessed. CCK-BR downregulation resulted in reduced cancer cell proliferation, decreased DNA synthesis, and cell cycle arrest as demonstrated by an inhibition of G(1) to S phase progression. Furthermore, CCK-BR downregulation increased caspase-3 activity, TUNEL-positive cells, and decreased X-linked inhibitor of apoptosis protein expression, suggesting apoptotic activity. Pancreatic cancer cell mobility was decreased when the CCK-BR was downregulated, as assessed by a migration assay. These results show the importance of the CCK-BR in regulation of growth and apoptosis in pancreatic cancer. Strategies to decrease the CCK-BR expression and activity may be beneficial for the development of new methods to improve the treatment for patients with pancreatic cancer.
Collapse
Affiliation(s)
| | - Gail L. Matters
- Departments of 1Medicine and ,2Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | | | | | | |
Collapse
|