1
|
Liu Y, Wang K, Gong X, Qu W, Xiao Y, Sun H, Kang J, Sheng J, Wu F, Dai F. Schisandra chinensis inhibits the entry of BoHV-1 by blocking PI3K-Akt pathway and enhances the m6A methylation of gD to inhibit the entry of progeny virus. Front Microbiol 2024; 15:1444414. [PMID: 39104584 PMCID: PMC11298802 DOI: 10.3389/fmicb.2024.1444414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Schisandra chinensis, a traditional Chinese medicine known for its antitussive and sedative effects, has shown promise in preventing various viral infections. Bovine herpesvirus-1 (BoHV-1) is an enveloped DNA virus that causes respiratory disease in cattle, leading to significant economic losses in the industry. Because the lack of previous reports on Schisandra chinensis resisting BoHV-1 infection, this study aimed to investigate the specific mechanisms involved. Results from TCID50, qPCR, IFA, and western blot analyses demonstrated that Schisandra chinensis could inhibit BoHV-1 entry into MDBK cells, primarily through its extract Methylgomisin O (Meth O). The specific mechanism involved Meth O blocking BoHV-1 entry into cells via clathrin- and caveolin-mediated endocytosis by suppressing the activation of PI3K-Akt signaling pathway. Additionally, findings from TCID50, qPCR, co-immunoprecipitation and western blot assays revealed that Schisandra chinensis blocked BoHV-1 gD transcription through enhancing m6A methylation of gD after virus entry, thereby hindering gD protein expression and preventing progeny virus entry into cells and ultimately inhibiting BoHV-1 replication. Overall, these results suggest that Schisandra chinensis can resist BoHV-1 infection by targeting the PI3K-Akt signaling pathway and inhibiting gD transcription.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Kang Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiao Gong
- Qingdao YeBio Bio-Engineering Co., Ltd., Qingdao, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yangyang Xiao
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
- College of Animal Science and Technology, Shihezi University, Xinjiang, China
| | - Hongtao Sun
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinliang Sheng
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
- College of Animal Science and Technology, Shihezi University, Xinjiang, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Feiyan Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Wang HY, Wang XL, Xu LQ, Liu J. Cytotoxic lanostane triterpenoids from the ethanol extract of Schisandra viridis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:321-327. [PMID: 34009066 DOI: 10.1080/10286020.2021.1918120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Three new lanostane triterpenoids, designated as 6-hydroxyl schiglausin A (1), 29-hydroxyl schiglausin D (2), and 6-hydroxyl schiglausin G (3), were isolated from the ethanol extract of the stems of Schisandra viridis. Structural elucidation of all the compounds were performed by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, in addition to high resolution mass spectrometry. The isolated compounds were tested in vitro for cytotoxic activities. As a result, compound 1 exhibited cytotoxic activities for all six tested human lung cancer cell lines with IC50 values less than 10 μM.
Collapse
Affiliation(s)
- Hai-Ying Wang
- Department of Respiratory, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiao-Ling Wang
- Department of Respiratory, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Li-Qin Xu
- Department of Respiratory, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jun Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
3
|
Inhibitory Effectiveness of Gomisin A, a Dibenzocyclooctadiene Lignan Isolated from Schizandra chinensis, on the Amplitude and Gating of Voltage-Gated Na + Current. Int J Mol Sci 2020; 21:ijms21228816. [PMID: 33233411 PMCID: PMC7700137 DOI: 10.3390/ijms21228816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Gomisin A (Gom A), a lignan isolated from Schisandra chinensis, has been reported produce numerous biological activities. However, its action on the ionic mechanisms remains largely unanswered. The present experiments were undertaken to investigate the possible perturbations of Gom A or other related compounds on different types of membrane ionic currents in electrically excitable cells (i.e., pituitary GH3 and pancreatic INS-1 cells). The exposure to Gom A led to the differential inhibition of peak and end-pulse components of voltage-gated Na+ current (INa) in GH3 cells with effective IC50 of 6.2 and 0.73 μM, respectively. The steady-state inactivation curve of INa in the presence of Gom A was shifted towards a more hyperpolarized potential. However, neither changes in the overall current-voltage relationship nor those for the gating charge of the current were demonstrated. The application of neither morin (10 μM) nor hesperidin (10 μM) perturbed the strength of INa, while sesamine could suppress it. However, in the continued presence of Gom A, the addition of sesamine failed to suppress INa further. Gom A also effectively suppressed the strength of persistent INa activated by long ramp voltage command, and further application of tefluthrin effectively attenuated Gom A-mediated inhibition of the current. The presence of Gom A mildly inhibited erg-mediated K+ current, while a lack of change in the amplitude of hyperpolarization-activated cation current was observed in its presence. Under cell-attached current recordings, the exposure to Gom A resulted in the decreased firing of spontaneous action currents with a minimal change in AC amplitude. In pancreatic INS-1 cells, the presence of Gom A was also noticed to inhibit peak and end-pulse components of INa differentially with the IC50 of 5.9 and 0.84 μM, respectively. Taken together, the emerging results presented herein provide the evidence that Gom A can differentially inhibit peak and sustained INa in endocrine cells (e.g., GH3 and INS-1 cells).
Collapse
|
4
|
Liu Y, Hu J, Lv Y, Huang XY, Zhang GX. Cytotoxic lanostane triterpenoids from the stems of Schisandra glaucescens. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:727-733. [PMID: 30010405 DOI: 10.1080/10286020.2018.1492564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Phytochemical investigation on the stems of Schisandra glaucescens resulted into the isolation of three new lanostane triterpenoids, 12-hydroxyschiglausin B (1), 12-hydroxykadsuphilactone B (2), and 20R-hydroxyschinalactone C (3). Structural elucidation of all the compounds was accomplished by spectral methods. The isolated compounds were tested in vitro for cytotoxic activities. As a result, triterpenoids 1 and 2 showed cytotoxic activities for all six tested tumor cell lines with IC50 values less than 15 μM.
Collapse
Affiliation(s)
- Yan Liu
- a Department of Public Courses , Qujing Medical College , Qujing 655011 , China
- b College of Biological Resources and Food Engineering , Qujing Normal University , Qujing 655011 , China
| | - Jiang Hu
- b College of Biological Resources and Food Engineering , Qujing Normal University , Qujing 655011 , China
| | - Yan Lv
- a Department of Public Courses , Qujing Medical College , Qujing 655011 , China
| | - Xiao-Yun Huang
- a Department of Public Courses , Qujing Medical College , Qujing 655011 , China
| | - Guo-Xu Zhang
- c Department of Nuclear Medicine , General Hospital of Shenyang Military Area Command , Shenyang 110840 , China
| |
Collapse
|
5
|
Li Z, He X, Liu F, Wang J, Feng J. A review of polysaccharides from Schisandra chinensis and Schisandra sphenanthera: Properties, functions and applications. Carbohydr Polym 2018; 184:178-190. [DOI: 10.1016/j.carbpol.2017.12.058] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/03/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
|
6
|
Evaluation of the In Vivo Therapeutic Effects of Radix Paeoniae Rubra Ethanol Extract with the Hypoglycemic Activities Measured from Multiple Cell-Based Assays. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3262790. [PMID: 28018473 PMCID: PMC5153506 DOI: 10.1155/2016/3262790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 01/28/2023]
Abstract
Background. Radix Paeoniae Rubra (Chi Shao) contains several phytochemicals with hypoglycemic actions. Current research aims to explore potential insulinotropic effects and long-term therapeutic efficacy of such herb against type 2 diabetes. Methods. Composition analysis for the ethanol extract (PRExt) was executed by high performance liquid chromatography. Polyphenol-enriched fraction was characterized by high pressure size exclusion chromatography. Multiple cell platforms were employed to evaluate hypoglycemic bioactivities. In animal experiments, blood glucose, the homeostasis model assessment (HOMA)-index assessment, glucose tolerance test, and in vivo glucose uptake were all measured. Additional effects of PRExt on obesity and hepatic steatosis were evaluated by serum and histological analysis. Results. PRExt provides multiple hypoglycemic effects including the enhancement of glucose-mediated insulin secretion. Pentagalloylglucose and polyphenol-enriched fraction are two insulinotropic constituents. Moreover, PRExt intraperitoneal injection causes acute hypoglycemic effects on fasted db/db mice. Oral administration of PRExt (200 mg/kg b.w.) gradually reduces blood glucose in db/db mice to the level similar to that in C57J/B6 mice after 30 days. The improvement of glucose intolerance, HOMA-index, and in vivo glucose uptake is evident in addition to the weight loss effect and attenuation of hepatic steatosis. Conclusion. PRExt is an effective antidiabetic herbal extract with multiple hypoglycemic bioactivities.
Collapse
|
7
|
Prevention effects of Schisandra polysaccharide on radiation-induced immune system dysfunction. Int J Biol Macromol 2015; 76:63-9. [DOI: 10.1016/j.ijbiomac.2015.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 11/15/2022]
|
8
|
El-Abhar HS, Schaalan MF. Phytotherapy in diabetes: Review on potential mechanistic perspectives. World J Diabetes 2014; 5:176-197. [PMID: 24748931 PMCID: PMC3990312 DOI: 10.4239/wjd.v5.i2.176] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/07/2014] [Accepted: 03/14/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (DM) is a widely spread epidemic disease that results from the absence of insulin, decreased secretion and/or impaired function. Since DM is a multi-factorial disease, the available pharmaceuticals, despite their sensible treatment, target mostly one pathway to control hyperglycemia and encounter several side effects. Therefore, new therapeutic paradigms aim to hit several pathways using only one agent. Traditionally, antidiabetic plants and/or their active constituents may fulfill this need. More than 200 species of plants possess antidiabetic properties which were evaluated mostly by screening tests without digging far for the exact mode of action. Searching among the different literature resources and various database and in view of the above aspects, the present article provides a comprehensive review on the available antidiabetic plants that have been approved by pharmacological and clinical evaluations, and which their mechanism(s) of action is assured. These plants are categorized according to their proved mode of action and are classified into those that act by inhibiting glucose absorption from intestine, increasing insulin secretion from the pancreas, inhibiting glucose production from hepatocytes, or enhancing glucose uptake by adipose and muscle tissues. The current review also highlights those that mimic in their action the new peptide analogs, such as exenatide, liraglutide and dipeptidylpeptidase-4 inhibitors that increase glucagon-like peptide-1 serum concentration and slow down the gastric emptying.
Collapse
|