1
|
Wang X, Zhou XJ, Qiao X, Falchi M, Liu J, Zhang H. The evolving understanding of systemic mechanisms in organ-specific IgA nephropathy: a focus on gut-kidney crosstalk. Theranostics 2025; 15:656-681. [PMID: 39744688 PMCID: PMC11671385 DOI: 10.7150/thno.104631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
The interplay between multiple organs, known as inter-organ crosstalk, represents a complex and essential research domain in understanding the mechanisms and therapies for kidney diseases. The kidneys not only interact pathologically with many other organs but also communicate with other systems through various signaling pathways. It is of paramount importance to comprehend these mechanisms for the development of more efficient therapeutic strategies. Despite extensive research in IgA nephropathy (IgAN), the most common kidney disease, the elaboration mechanism of IgAN remains challenging. Numerous studies suggest that alterations in the intestinal microbiome and its metabolites are pivotal in the progression of IgAN, opening new avenues for understanding its mechanisms. Interestingly, certain presumed probiotics, such as Akkermansia muciniphila, have been implicated in the onset of IgAN, making the exploration of gut microbiota in the context of IgAN pathogenesis even more intriguing. In this review, we summarize the status of gut microbiology studies of IgAN and explore the possible mechanisms and intervention prospects. Future research and treatment directions may increasingly emphasize systemic, multi-organ combined interventions to decelerate the advancement of kidney disease and enhance the overall prognosis of patients.
Collapse
Affiliation(s)
- Xin Wang
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
2
|
Li Y, Yang J, Guo L. Role and mechanism of Lactobacillus casei in the modulation of alcohol preference in mice. Int Immunopharmacol 2024; 141:112902. [PMID: 39178519 DOI: 10.1016/j.intimp.2024.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Prolonged alcohol consumption may lead to gastrointestinal tract dysfunction and cause abnormalities in the associated nervous system activity, thereby increasing the body's craving for alcohol. Lactobacillus casei is a probiotic that has been shown to reduce the incidence of alcohol-related diseases. However, it is unclear whether Lactobacillus casei can delay the development of alcohol dependence. METHODS The chronic intermittent active drinking method was used to establish a mouse alcohol dependence model. The mice were randomly divided into 4 treatment groups, as follows: (1) Control group: two bottles of distilled water alternately, 0.2 mL/d saline gavage. (2) Alcohol group: alternating water and alcohol, 0.2 mL/d saline gavage. (3) Low group: alternating water and alcohol, 0.2 mL/d 1 × 108CFU of Lactobacillus casei by gavage. (4) High group: alternating water and alcohol, 0.2 mL/d 1 × 109CFU of Lactobacillus casei by gavage. The daily water consumption (mL), alcohol consumption (mL) and body weight of each mouse were recorded. After that, pathological changes in the intestines, brain tissues and serum of the experimental animals were detected, while changes in the intestinal flora of the mice were analysed by 16S rRNA sequencing. RESULTS The Lactobacillus casei intervention did not produce a significant effect on body weight in alcohol-exposed mice (P>0.05), but significantly reduced alcohol preference in alcohol-exposed mice (P<0.05). Subsequent analyses showed that Lactobacillus casei significantly ameliorated intestinal, brain tissue, and systemic inflammatory responses in alcohol-exposed mice (P<0.05). 16S rRNA sequencing showed that alcohol-exposed mice treated with Lactobacillus casei exhibited a richer composition of intestinal microorganisms, such as f__Rikenellaceae, g__Alistipes_A_871400, and g__Bacteroides_H genera showed relative enrichment in the High group. CONCLUSION By showing that Lactobacillus casei slows down alcohol preference and alleviates gut and brain tissue inflammation in alcohol-exposed mice, our findings provide a possible strategy: Lactobacillus casei may be able to serve as a potential target for the prevention and treatment of alcohol dependence.
Collapse
Affiliation(s)
- Yangchun Li
- Mudanjiang Medical University, Mudanjiang, China
| | - Jinyue Yang
- Mudanjiang Medical University, Mudanjiang, China
| | - Lishuang Guo
- Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
3
|
Song H, Liang GQ, Yu MS, Shan Y, Shi J, Jiang CB, Ni DL, Sheng MX. Shen-yan-yi-hao oral solution ameliorates IgA nephropathy via intestinal IL-17/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118335. [PMID: 38754644 DOI: 10.1016/j.jep.2024.118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis in the world, it is one of the most common causes of kidney disease and can lead to end-stage kidney disease, however, its pathogenesis is still complicated. The Shen-yan-yi-hao oral solution (SOLI) is an effective prescription for the clinical treatment of IgAN while its specific mechanism remains to be further elucidated. AIM OF THE STUDY This study investigates SOLI's effects on IgAN in rats, particularly on the intestinal mucosal barrier, and identifies potential therapeutic targets through network pharmacology and molecular docking, validated experimentally. MATERIALS AND METHODS Target genes for SOLI in IgAN were identified and analysed through molecular docking and KEGG pathway enrichment. An IgAN rat model examined SOLI's effect on renal biomarkers and cytokines involved in specific pathways, ileum mucosal lesions, and the intestinal immune system. The IL-17 pathway's role was studied in IEC-6 cells with SOLI in vitro. RESULT Rats developed increased proteinuria and kidney damage marked by IgA deposition and inflammation. SOLI treatment significantly ameliorated these symptoms, reduced galactose-deficient Ig A1 (Gd-IgA1), and decreased cytokines like IL-17, TNF-α, IL-6 and IL-1β etc. SOLI also normalized intestinal tight junction protein expression, ameliorated intestinal damage, and regulated intestinal immune response (focused on IL-17/NF-κB signal pathway). SOLI moderated the abnormally activated IL-17 pathway, which damages intestinal epithelial cells, suggesting IgAN treatment potential. CONCLUSION SOLI reduces proteinuria and enhances intestinal mucosal function in IgAN rats, kidney protection in the IgAN rat model may initiate from modulating the intestinal IL-17/NF-κB pathway and subsequent Gd-IgA1 accumulation.
Collapse
Affiliation(s)
- Huan Song
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China; Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Guo-Qiang Liang
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China; Suzhou Academy of Wumen Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Man-Shu Yu
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Yun Shan
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Jun Shi
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Chun-Bo Jiang
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Dao-Lei Ni
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Mei-Xiao Sheng
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
4
|
Wang C, Cai X, Lin S, Lin Y. Hydroxychloroquine ameliorates immune functionality and intestinal flora disorders of IgA nephropathy by inhibition of C1GALT1/Cosmc pathway. Immunopharmacol Immunotoxicol 2024; 46:218-228. [PMID: 38151955 DOI: 10.1080/08923973.2023.2300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Hydroxychloroquine (HCQ) has emerged as a potential and secure antiproteinuric agent in IgA nephropathy (IgAN). This study endeavored to explore the impact of HCQ on the immune functionality and intestinal flora disorders in IgAN rats, as well as to elucidate the underlying mechanisms through in vivo and in vitro experiments. METHODS IgAN model was established in Sprague-Dawley rats through the administration of BSA, LPS, and CCl4, and the IgAN rats received a continuous 8-week treatment with HCQ. Moreover, the human glomerular mesangial cells (HMCs) were incubated with IgA1 to establish an in vitro cellular model of IgAN. At the end of experimental period, samples were collected for further analysis. RESULTS HCQ ameliorated the elevated levels of 24hUTP, SCr, BUN, the number of urinary RBC, and the activation of inflammation-related proteins within the TLR4/NF-κB signaling pathway. In the IgAN rat group, there was a pronounced escalation in IgA deposition, mesangial matrix hyperplasia, and glomerular inflammatory cell infiltration, while the administration of HCQ effectively mitigated these pathological changes. In addition, the reduced production of CD4+CD25+Foxp3+ Treg in the IgAN group was effectively reversed by HCQ. Furthermore, HCQ has the capacity to restore the compromised state of the intestinal mucosal barrier induced by IgAN and mitigate the circumstances of intestinal permeability and disruption in the intestinal flora. CONCLUSION HCQ diminishes IgA aberrant glycosylation levels, ameliorates renal and intestinal histopathological damage, and attenuates intestinal flora disorders and immune dysfunction in IgAN rats by means of activating the C1GALT1/Cosmc pathway.
Collapse
Affiliation(s)
- Chaochao Wang
- Department of Nephrology, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Xiaoqiao Cai
- Department of Nephrology, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Shengfen Lin
- Department of Nephrology, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Yongqiang Lin
- Department of Nephrology, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| |
Collapse
|
5
|
Liu H, Chen W, Tian C, Deng Y, Xu L, Ouyang W, Qiu R, You Y, Jiang P, Zhou L, Cheng J, Kwan HY, Zhao X, Sun X. The mechanism of Shenbing Decoction II against IgA nephropathy renal fibrosis revealed by UPLC-MS/MS, network pharmacology and experimental verification. Heliyon 2023; 9:e21997. [PMID: 38027651 PMCID: PMC10654229 DOI: 10.1016/j.heliyon.2023.e21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background IgA nephropathy (IgAN) is a major and growing public health problem. Renal fibrosis plays a vital role in the progression of IgAN. This study is to investigate the mechanisms of action underlying the therapeutic effects of Shenbing Decoction II (SBDII) in IgAN renal fibrosis treatment based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), network pharmacology and experimental verification. Method We first used UPLC-MS/MS to explore the main compounds of SBDII, and then used network pharmacology to predict the targets and key pathways of SBDII in the treatment of IgAN renal fibrosis. Next, bovine serum albumin (BSA), lipopolysaccharide (LPS), and carbon tetrachloride (CCL4) were used to induce IgAN in rats, and then biochemical indicators, renal tissue pathology, and renal fibrosis-related indicators were examined. At the same time, part of the results predicted by network pharmacology were also verified. Result A total of 105 compounds were identified in SBDII by UPLC-MS/MS. Network pharmacology results showed that the active compounds such as acacetin, eupatilin, and galangin may mediate the therapeutic effects of SBDII in treating IgAN by targeting tumor protein p53 (TP53) and regulating phosphatidylinositol 3-kinase (PI3K)-Akt kinase (Akt) signaling pathway. Animal experiments showed that SBDII not only significantly improved renal function and fibrosis in IgAN rats, but also significantly downregulated the expressions of p53, p-PI3K and p-Akt. Conclusion This UPLC-MS/MS, network pharmacological and experimental study highlights that the TP53 as a target, and PI3K-Akt signaling pathway are the potential mechanism by which SBDII is involved in IgAN renal fibrosis treatment. Acacetin, eupatilin, and galangin are probable active compounds in SBDII, these results might provide valuable guidance for further studies of IgAN renal fibrosis treatment.
Collapse
Affiliation(s)
- Huaxi Liu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Weijie Chen
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunyang Tian
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yijian Deng
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Liangwo Xu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenkun Ouyang
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Renjie Qiu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanting You
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingping Jiang
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingru Cheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoshan Zhao
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaomin Sun
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Zhang F, Wu R, Liu Y, Dai S, Xue X, Li Y, Gong X. Nephroprotective and nephrotoxic effects of Rhubarb and their molecular mechanisms. Biomed Pharmacother 2023; 160:114297. [PMID: 36716659 DOI: 10.1016/j.biopha.2023.114297] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Rhubarb, in the form of a traditional Chinese medicine, is used in the treatment of chronic kidney disease (CKD). Previous studies have demonstrated that Rhubarb possesses a good nephroprotective effect, which primarily protects the kidneys from fibrosis, oxidation, inflammation, autophagy, and apoptosis. However, studies have shown that the long-term inappropriate use of Rhubarb may cause damage to renal function. Therefore, how to correctly understand and scientifically evaluate the pharmacodynamics and toxicity of Rhubarb with regard to CKD is a scientific question that urgently needs to be answered. In this review, we explain and illustrate how Rhubarb exerts its nephroprotective effect against CKD. We also describe the mechanisms of action that may cause its nephrotoxicity. Valuable and practical clinical guidance is proposed with regard to methods for mitigating the nephrotoxicity of Rhubarb.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaohong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Tang Y, Xiao Y, He H, Zhu Y, Sun W, Hu P, Xu X, Liu Z, Yan Z, Wei M. Aberrant Gut Microbiome Contributes to Barrier Dysfunction, Inflammation, and Local Immune Responses in IgA Nephropathy. Kidney Blood Press Res 2023; 48:261-276. [PMID: 36878203 PMCID: PMC10158088 DOI: 10.1159/000528973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/29/2022] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION Numerous research works have shown that serum Gal-deficient (Gd) IgA1 levels are increased in IgA nephropathy (IgAN) patients and these levels are a dangerous risk factor for IgAN. A relationship between the gut microbiota and IgAN has been reported. Whether the gut microbiota participates in the pathogenesis of IgAN was still controversial. METHODS We evaluated changes in the gut flora and the levels of Gd-IgA1 in IgAN patients and healthy controls (HCs). We investigated the Gd-IgA1 levels in both blood and urine specimens. C57BL/6 mice were given a broad-spectrum antibiotic cocktail to deplete the endogenous gut flora. We established a model of IgAN in pseudosterile mice and investigated the expression of the markers of intestinal permeability, inflammation, and local immune responses. RESULTS Studies have shown that the levels of certain gut flora differ between IgAN patients and HCs. Moreover, elevated Gd-IgA1 levels were found in both the serum and urine. Interestingly, Coprococcus, Dorea, Bifidobacterium, Blautia, and Lactococcus, selected from 10 candidate biomarkers to predict risk in IgAN patients according to random forest analysis, were inversely associated with urinary Gd-IgA1 levels. Notably, the urine level of Gd-IgA1 could best distinguish IgAN patients from HCs. Additionally, the degree of kidney damage in pseudosterile mice with IgAN was more severe than that in mice with IgAN. Furthermore, the markers of intestinal permeability were significantly elevated in pseudosterile IgAN mice. Moreover, the inflammation responses (TLR4, MyD88, and NF-κB in intestinal and renal tissues; TNF-α and IL-6 in serum) and local immune responses (BAFF and APRIL in intestinal tissue) were upregulated in pseudosterile IgAN mice. CONCLUSIONS The urine Gd-IgA1 level may be as a biomarker for the early screening of potential IgAN, and gut microbiota dysbiosis was demonstrated in IgAN, which might involve the dysfunction of the mucosal barrier, inflammation, and local immune responses.
Collapse
Affiliation(s)
- Yuyan Tang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou, PR China
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yong Xiao
- Department of Emergency, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yifan Zhu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Weiqian Sun
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Ping Hu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Xudong Xu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Zhen Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou, PR China
| | - Zhaowei Yan
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Jiangsu Suzhou, PR China
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou, PR China
| |
Collapse
|
8
|
Qi S, Luo R, Han X, Nie W, Ye N, Fu C, Gao F. pH/ROS Dual-Sensitive Natural Polysaccharide Nanoparticles Enhance "One Stone Four Birds" Effect of Rhein on Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50692-50709. [PMID: 36326017 DOI: 10.1021/acsami.2c17827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rhein (RH), a natural anthraquinone compound, is considered an effective treatment candidate for ulcerative colitis (UC), whose multiple biological activities contribute to UC, including anti-inflammation, antioxidation, intestinal barrier repair, and microflora regulation. However, the application of RH is severely limited by its low water solubility, low bioavailability, and poor colonic targeting. Although some nanoparticles have been developed for the oral delivery of RH, most of them mainly highlighted only one effect of some drug delivery strategies but the above multiple biological activities. Therefore, a multiple polysaccharide-based nanodelivery system, comprising chitosan (CS) and fucoidan (FU), with pH/reactive oxygen species (ROS) sensitivity and mucosal adhesion, was developed and first used to load RH as a comprehensive treatment for UC. Briefly, RH-F/C-NPs were prepared using the polyelectrolyte self-assembly method; the average size of RH-F/C-NPs was 233.1 ± 5.7 nm, and the encapsulation rate of RH was 93.67 ± 1.60%. And it could maintain gastric stability and release RH in the colon with the designed pH/ROS sensitivity contributed by the polysaccharide-based structures. Cellular uptake experiments showed that both NCM 460 cells and RAW 264.7 cells had a good uptake of RH-F/C-NPs. Importantly, the effects of RH were highlighted in in vivo experiments, the results of which showed that RH-F/C-NPs could significantly reduce DSS-induced inflammation by inhibiting the TLR4/NF-κB-mediated anti-inflammatory pathway, the Nrf2/HO-1-mediated antioxidant pathway, colonic mucosal barrier repair, and intestinal microflora regulation. In addition, pharmacokinetic studies have shown that F/C-NPs contribute to the increase in the plasma concentration and the accumulation of RH in the colon to some extent. In short, this study is the first to develop an oral multiple polysaccharide-based nanosystem with pH/ROS dual sensitivity to study the "one stone four birds" therapeutic effect of RH on UC.
Collapse
Affiliation(s)
- Shanshan Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| | - Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| | - Wenbiao Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| | - Naijing Ye
- Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu610072, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu611130, China
| |
Collapse
|
9
|
Zohny MH, Alrouji M, Alhajlah S, AlOmeir O, Ewees MGED, Ghaffar DMA, El Adle Khalaf N, Mohammed OA, Abdeldaiem MSI, El-Bahouty WB, Elrabat A, Zakaria S, Abdel-Nasser ZM, Haleem AA, El-Gharbawy DM, Abdelhady R, Kaddah MMY, Shata A, Saber S. Diacetylrhein, an anthraquinone antiarthritic agent, suppresses dextran sodium sulfate-induced inflammation in rats: A possible mechanism for a protective effect against ulcerative colitis. Biomed Pharmacother 2022; 154:113651. [PMID: 36081290 DOI: 10.1016/j.biopha.2022.113651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory life-threatening and premalignant disorder with no cure that even might end up with surgical removal of a large section or even all of the colon. It is characterized by relapsing-remitting courses of intestinal inflammation and mucosal damage in which oxidative stress and exaggerated inflammatory response play a significant role. Most of the current medications to maintain remission are symptomatic and have many adverse reactions. Therefore, the potential for improved management of patients with UC continues to increase. Yet, the benefits of using the antiarthritic agent diacetylrhein to counteract inflammation in UC are still obscure. Hence, our study was designed to explore its potential role in UC using a model of dextran sodium sulfate-induced acute colitis in rats. Our results revealed that diacetylrhein targeted the NLRP3 and inhibited the inflammasome assembly. Consequently, caspase-1 activity and the inflammatory cytokines IL-1β and IL-18 were inhibited leading to a curbed pyroptosis process. Additionally, diacetylrhein revealed a significant antiapoptotic potential as revealed by the levels of pro-apoptotic and anti-apoptotic proteins. Concomitant to these effects, diacetylrhein also interrupted NFκB signals leading to improved microscopic features of inflamed colon and decreased colon weight to length ratio, indices of disease activity, and macroscopic damage. Additionally, a reduction in the myeloperoxidase activity, IL-6, and TGF-β alongside an increase in the gene expression of Ocln and ZO-1 were detected. To conclude diacetylrhein showed a significant antioxidant and anti-inflammatory potential and therefore might represent a promising agent in the management of acute UC.
Collapse
Affiliation(s)
- Mona H Zohny
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Othman AlOmeir
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | | | - Dalia M Abdel Ghaffar
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Noura El Adle Khalaf
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia.
| | - Mahmoud Said Ibrahim Abdeldaiem
- Clinical Pharmacy Department, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Pharmacy Practice Department, Faculty of Pharmacy, Sinai University, Ismailia, Egypt.
| | | | - Amr Elrabat
- Gastroenterology and Hepatology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Sahar Zakaria
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Zeinab M Abdel-Nasser
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt.
| | - Amira A Haleem
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Doaa M El-Gharbawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt.
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| |
Collapse
|
10
|
Selvaskandan H, Barratt J, Cheung CK. Immunological drivers of IgA nephropathy: Exploring the mucosa-kidney link. Int J Immunogenet 2021; 49:8-21. [PMID: 34821031 DOI: 10.1111/iji.12561] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
IgA nephropathy (IgAN) is the most common pattern of primary glomerular disease reported worldwide. Up to 40% of those with IgAN progress to end-stage kidney disease within 20 years of diagnosis, with no currently available disease-specific treatment. This is likely to change rapidly, with evolving insights into the mechanisms driving this disease. IgAN is an immune-complex-mediated disease, and its pathophysiology has been framed by the 'four-hit hypothesis', which necessitates four events to occur for clinically significant disease to develop. However, this hypothesis does not explain the wide variability observed in its presentation or clinical progression. Recently, there has been great interest in exploring the role of the mucosal immune system in IgAN, especially given the well-established link between mucosal infections and disease flares. Knowledge of antigen-mucosal interactions is now being successfully leveraged for therapeutic purposes; the gut-directed drug Nefecon (targeted release formulation-budesonide) is on track to become the first medication to be approved specifically for the treatment of IgAN. In this review, we examine established immunological paradigms in IgAN, explore how antigen-mucosal immune responses drive disease, and discuss how this knowledge is being used to develop new treatments.
Collapse
Affiliation(s)
- Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
11
|
Towards Drug Repurposing in Cancer Cachexia: Potential Targets and Candidates. Pharmaceuticals (Basel) 2021; 14:ph14111084. [PMID: 34832866 PMCID: PMC8618795 DOI: 10.3390/ph14111084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
As a multifactorial and multiorgan syndrome, cancer cachexia is associated with decreased tolerance to antitumor treatments and increased morbidity and mortality rates. The current approaches for the treatment of this syndrome are not always effective and well established. Drug repurposing or repositioning consists of the investigation of pharmacological components that are already available or in clinical trials for certain diseases and explores if they can be used for new indications. Its advantages comparing to de novo drugs development are the reduced amount of time spent and costs. In this paper, we selected drugs already available or in clinical trials for non-cachexia indications and that are related to the pathways and molecular components involved in the different phenotypes of cancer cachexia syndrome. Thus, we introduce known drugs as possible candidates for drug repurposing in the treatment of cancer-induced cachexia.
Collapse
|
12
|
Chang M, Yang B, Li L, Si Y, Zhao M, Hao W, Zhao J, Zhang Y. Modified Huangqi Chifeng Decoction Attenuates Proteinuria by Reducing Podocyte Injury in a Rat Model of Immunoglobulin a Nephropathy. Front Pharmacol 2021; 12:714584. [PMID: 34381367 PMCID: PMC8350133 DOI: 10.3389/fphar.2021.714584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 02/05/2023] Open
Abstract
Modified Huangqi Chifeng decoction (MHCD) has been used to reduce proteinuria in immunoglobulin A nephropathy (IgAN) for many years. Previously, we have demonstrated its protective role in glomerular mesangial cells. Podocyte injury, another key factor associated with proteinuria in IgAN, has also attracted increasing attention. However, whether MHCD can reduce proteinuria by protecting podocytes remains unclear. The present study aimed to investigate the protective effects of MHCD against podocyte injury in a rat model of IgAN. To establish the IgAN model, rats were administered bovine serum albumin, carbon tetrachloride, and lipopolysaccharide. MHCD in three doses or telmisartan was administered once daily for 8 weeks (n = 10 rats/group). Rats with IgAN developed proteinuria at week 6, which worsened over time until drug intervention. After drug intervention, MHCD reduced proteinuria and had no effect on liver and kidney function. Furthermore, MHCD alleviated renal pathological lesions, hyperplasia of mesangial cells, mesangial matrix expansion, and podocyte foot process fusion. Western blot analysis revealed that MHCD increased the expression of the podocyte-associated proteins nephrin and podocalyxin. Additionally, we stained podocyte nuclei with an antibody for Wilms’ tumor protein one and found that MHCD increased the podocyte number in rats with IgAN. In conclusion, these results demonstrate that MHCD attenuates proteinuria by reducing podocyte injury.
Collapse
Affiliation(s)
- Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liusheng Li
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Si
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Hao
- Medical Animal Experimental Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinning Zhao
- Medical Animal Experimental Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Yu J, Shen Y, Zhou N. Advances in the role and mechanism of zonulin pathway in kidney diseases. Int Urol Nephrol 2021; 53:2081-2088. [PMID: 33428167 DOI: 10.1007/s11255-020-02756-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
The intestinal barrier is the first line of defense against foreign antigens. Tight junctions play an important role in maintaining the function of the intestinal wall. Zonulin is the only physiological protein discovered in recent years that can reversibly regulate tight junctions in human body. It changes the permeability of intestinal epithelial cells by regulating the state of tight junctions. Increased intestinal permeability can lead to abnormal activation of intestinal mucosal immune and bacterial translocation, then inducing systemic inflammation. It has already been reported that zonulin plays an important pathogenic role in a variety of diseases by regulating tight junctions leading to an abnormal increase of intestinal permeability. However, the research on the pathogenic role and mechanism of zonulin pathway in kidney disease is still in its infancy. Therefore, we reviewed the progress on pathophysiological characteristics of zonulin as well as the pathogenesis of zonulin in kidney disease in this paper.
Collapse
Affiliation(s)
- Jie Yu
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health (Beijing), Beijing, China
| | - Ying Shen
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health (Beijing), Beijing, China.,Key Laboratory of Chronic Kidney Disease and Blood Purification in Childhood (Beijing), Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Nan Zhou
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, China. .,National Center for Children's Health (Beijing), Beijing, China. .,Key Laboratory of Chronic Kidney Disease and Blood Purification in Childhood (Beijing), Beijing, China. .,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| |
Collapse
|
14
|
Pei S, Li Y. Huangkui Capsule in Combination with Leflunomide Improves Immunoglobulin A Nephropathy by Inhibiting the TGF-β1/Smad3 Signaling Pathway. Clinics (Sao Paulo) 2021; 76:e2904. [PMID: 34909911 PMCID: PMC8614623 DOI: 10.6061/clinics/2021/e2904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES To investigate the efficacy and potential molecular mechanism of Huangkui capsule in combination with leflunomide (HKL) for the treatment of immunoglobulin A nephropathy (IgAN). METHODS IgAN rat models were constructed by treating rats with bovine serum albumin, lipopolysaccharide, and tetrachloromethane. Th22 cells were isolated from the blood samples of patients with IgAN using a CD4+ T cell isolation kit. The expression levels of the components of the TGF-β1/Smad3 signaling pathway, namely, TGF-β1, Smad2, Smad3, Smad4, and Smad7, were detected using quantitative reverse transcription polymerase chain reaction. Cell proliferation was determined using the MTT assay, cell viability was determined using the WST 1 method, and the chemotaxis of Th22 cells was observed using the wound healing assay. Changes in the histology of the kidney tissues were analyzed using hematoxylin and eosin staining. RESULTS Compared with IgAN rats, the rats subjected to HKL treatment showed good improvement in kidney injuries, and the combined drug treatment performed much better than the single-drug treatment. In addition, following HKL treatment, the viability, proliferation, and chemotaxis of Th22 cells dramatically decreased (*p<0.05, **p<0.01, and ***p<0.001). In addition, CCL20, CCL22, and CCL27 levels decreased and the expression of the key components of the TGF-β1/Smad3 signaling pathway was downregulated in IgAN rats and Th22 cells (*p<0.05, ***p<0.001). CONCLUSIONS By targeting the TGF-β1/Smad3 signaling pathway, HKL treatment can improve kidney injury in IgAN rats as well as the excessive proliferation and metastasis of Th22 cells.
Collapse
Affiliation(s)
- Shuwen Pei
- Department of Nephrology, Harbin First Hospital, Harbin, Heilongjiang 15000, China
- Corresponding author. E-mail:
| | - Yan Li
- Intensive Care Unit, Harbin First Hospital, Harbin, Heilongjiang 15000, China
| |
Collapse
|
15
|
Xiao SL, Guan LJ, Jiang RF, Wang XG, Li X, Cai W. The Metabolism and Pharmacokinetics of Rhein and Aurantio-Obtusin. Curr Drug Metab 2020; 21:960-968. [PMID: 32682364 DOI: 10.2174/1389200221666200719002128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anthraquinones, rhein and aurantio-obtusin were isolated from the herb Duhaldea nervosa for the first time by our group, which were also found in plants that belong to the plant family Compositae. Anthraquinone compounds have a range of pharmacological activities such as anti-inflammatory, anti-cancer, antioxidation, anti-diabetes, etc. and can be used as a laxative, for liver protection, treatment of chronic renal failure, etc. However, in recent years, anthraquinones have been reported to be cytotoxic to the liver and kidneys. Therefore, it is very important to study the pharmacokinetics and metabolism of rhein and aurantio-obtusin, which are common ingredients in many traditional Chinese medicines (TCM). According to our research, the pharmacokinetics and metabolism of rhein and aurantio-obtusin are comprehensively summarized in the paper for the first time. OBJECTIVE The study provides comprehensive information on pharmacokinetics and metabolism of rhein and aurantio- obtusin in different Species; meanwhile, the aim of this review is also to provide a reference for a reasonable application of TCM enriched with these two ingredients. METHODS The metabolism and pharmacokinetics of rhein and aurantio-obtusin were searched by the Web of Science, PubMed, Google scholar and some Chinese literature databases. RESULTS Rhein and aurantio-obtusin exist mainly in the form of metabolites in the body. Rhein and aurantio-obtusin and its metabolites might be responsible for pharmacological effects in the body. Therefore, the significance of studying the in vivo metabolites of rhein and aurantio-obtusin is not only essential to clarify their pharmacological mechanism, but also to find new active compound ingredients. The metabolism of rhein is different in different species, so the toxicity effects of rhein may also be different after oral administration in different species; however, the metabolic profiles of aurantio-obtusin in the liver microsomes of different species are similar. CONCLUSION This paper not only provides detail regarding the pharmacokinetics of rhein and aurantio-obtusin, but it is anticipated that it will also facilitate further study on the metabolism of rhein and aurantio-obtusin.
Collapse
Affiliation(s)
- Shun-Li Xiao
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Liang-Jun Guan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ren-Feng Jiang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Xiang-Gen Wang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Xing Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, Hunan, China
| |
Collapse
|
16
|
Zhou N, Shen Y, Fan L, Sun Q, Huang C, Hao J, Lan J, Yan H. The Characteristics of Intestinal-Barrier Damage in Rats With IgA Nephropathy. Am J Med Sci 2019; 359:168-176. [PMID: 32089158 DOI: 10.1016/j.amjms.2019.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intestinal-barrier damage plays an important pathogenic role in immunoglobulin A nephropathy (IgAN). In this study, we explored the characteristics of the intestinal barrier in rats with IgAN. MATERIALS AND METHODS We randomly divided 17 Sprague Dawley (SD) male rats into a normal control group (NC; n = 9) and an IgAN model group (n = 8). Feces in the distal ileum were taken for intestinal-microbiota 16sDNA sequencing. We also took a segment of terminal ileum to analyze intestinal morphology and to detect mRNA and protein expression of the tight-junction proteins zonula occludens-1 (ZO-1) and occludin (OCLN), as well as of mucin 2 (MUC2). We then measured levels of serum diamine oxidase (DAO) and D-lactic acid (D-LA), the biomarkers of intestinal permeability. RESULTS Compared with the NC group, mRNA expression levels of ZO-1 (t = 4.216, P = 0.0007), OCLN (t = 2.413, P = 0.029) and MUC2 (t = 0.859, P < 0.0001) were significantly decreased in the IgAN model group. Protein expression of ZO-1 (t = 7.349, P < 0.0001) and OCLN (t = 6.367, P < 0.0001) was also decreased in the IgAN model group. Conversely, serum DAO (t = 3.758, P = 0.0024) and D-LA (t = 2.246, P = 0.0427) levels increased in this group. At the genus level, the relative abundance of Ruminococcus2 (P = 0.0086) was increased in the IgAN model group. CONCLUSIONS Decreased expression of ZO-1, OCLN and MUC2, plus intestinal-microbiota dysbiosis, are associated with intestinal-barrier damage in IgAN rats.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Nephrology,; National Center for Children's Health (Beijing), Beijing, China; Key Laboratory of Chronic Kidney Disease and Blood Purification in Childhood (Beijing), Beijing, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Ying Shen
- Department of Nephrology,; National Center for Children's Health (Beijing), Beijing, China; Key Laboratory of Chronic Kidney Disease and Blood Purification in Childhood (Beijing), Beijing, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Lirong Fan
- Department of Traditional Chinese Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China; National Center for Children's Health (Beijing), Beijing, China
| | - Qiang Sun
- Department of Nephrology,; National Center for Children's Health (Beijing), Beijing, China; Key Laboratory of Chronic Kidney Disease and Blood Purification in Childhood (Beijing), Beijing, China; Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Canxing Huang
- Department of Neonatology, Longyan People's Hospital, Longyan City, Fujian, China
| | - Jing Hao
- Department of Traditional Chinese Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China; National Center for Children's Health (Beijing), Beijing, China
| | - Jingchao Lan
- Department of Nephrology,; National Center for Children's Health (Beijing), Beijing, China
| | - Huimin Yan
- Department of Traditional Chinese Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China; National Center for Children's Health (Beijing), Beijing, China.
| |
Collapse
|
17
|
Rhein protects against barrier disruption and inhibits inflammation in intestinal epithelial cells. Int Immunopharmacol 2019; 71:321-327. [PMID: 30952096 DOI: 10.1016/j.intimp.2019.03.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Intestinal epithelial barrier and intestinal inflammation play indispensable roles in the development of intestinal diseases. The major aims of the current study were to investigate the potential of rhein, a major flavonoid compound isolated from Rheum rhabarbarum, in the treatment of intestinal diseases and its underlying mechanisms in vitro. METHODS The protective role of rhein on intestinal epithelial barrier was evaluated in a monolayer of IEC-6 cells stimulated by TNF-α, while the anti-inflammatory effects were investigated in an IEC-6 cell model with LPS stimulation. RESULTS Rhein inhibited the increase of phenol red flux and the decrease of TEER, as well as recovered the expression and distribution of ZO-1 and weakened MLC phosphorylation, MLCK expression and NF-κB activation. Meanwhile, LPS-stimulated IL-1β and IL-6 were down-regulated, expression levels of TLR4, NLRP3 and cleaved caspase1 were weakened and NF-κB was inactivated. CONCLUSIONS These results suggested that rhein has potential therapeutic effects against intestinal diseases by maintaining intestinal epithelial barrier and suppressing intestinal inflammation.
Collapse
|
18
|
Zhuang S, Yu R, Zhong J, Liu P, Liu Z. Rhein from Rheum rhabarbarum Inhibits Hydrogen-Peroxide-Induced Oxidative Stress in Intestinal Epithelial Cells Partly through PI3K/Akt-Mediated Nrf2/HO-1 Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2519-2529. [PMID: 30779558 DOI: 10.1021/acs.jafc.9b00037] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rheum rhabarbarum has been widely used as a herbal medicine and food in China. The objective of this study was to investigate the cytoprotective action and underlying mechanisms of rhein, one active ingredient isolated from R. rhabarbarum, on H2O2-challenged rat small intestine epithelial cells (IEC-6 cells). H2O2-challenged IEC-6 cells were incubated in the pretreatment with or without rhein or LY294002, a PI3K/Akt inhibitor. The cell viability, apoptosis, intracellular reactive oxygen species (ROS), and antioxidants were measured. The expressions of heme oxygenase 1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), Akt, and p-Akt were evaluated by western blotting. Meanwhile, LY294002 was also used to investigate the role of PI3K/Akt in the rhein-induced cytoprotective role. The results showed that pretreatment of rhein could reverse the inhibition of cell viability and suppress the apoptosis, caspase-3 activity, and intracellular ROS induced by H2O2. Rhein also supported SOD activity catalase activity, glutathione S-transferase activity, and glutathione content. Furthermore, rhein induced the protein expression of HO-1 together with its upstream mediator Nrf2 and activated the phosphorylation of Akt in IEC-6 cells. LY294002 inhibited increased cell viability, upregulated the lowered apoptotic rate, and enhanced the weakened ROS levels. Although the inhibition of PI3K/Akt did not inhibit the Nrf2 nuclear level under 4 μM rhein, LY294002 inhibited the Nrf2 nuclear level under 2 μM rhein and blocked HO-1 expression. These data demonstrated that rhein protected IEC-6 cells against oxidative damage partly via PI3K/Akt and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Shen Zhuang
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Ruyang Yu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Jia Zhong
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Ping Liu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Zhongjie Liu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| |
Collapse
|
19
|
Zhen-wu-tang protects against podocyte injury in rats with IgA nephropathy via PPARγ/NF-κB pathway. Biomed Pharmacother 2018. [PMID: 29518610 DOI: 10.1016/j.biopha.2018.02.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zhen-wu-tang (ZWT) has been widely applied in chronic kidney diseases. However, the mechanism of ZWT remains unclear. Peroxisome proliferator-activated receptors-γ (PPARγ) is known as a protective factor for podocyte and kidney function. This study is aimed to investigate the protective effects of ZWT on IgA nephropathy (IgAN) in rats against podocyte injury and the underlying mechanism related to PPARγ. IgAN model rats were induced by administering bovine serum albumin, lipopolysaccharide, and carbon tetrachloride. ZWT at two doses and GW9662 (PPARγ antagonist) was administered once daily for 4 weeks respectively. Cultured podocyte induced by LPS were used to evaluate the podocyte-protective effect and related mechanism of ZWT in vitro. Results showed that ZWT observably reduced proteinuria and hematuria excretion, as well as the levels of blood urea nitrogen, serum creatinine, serum uric acid, low-density lipoprotein cholesterol, total cholesterol and triglycerides, but increased the contents of high-density lipoprotein cholesterol, ameliorating renal function and hyperlipidemia state in IgAN rats. Besides, both ZWT administration groups alleviated kidney pathological lesion, macrophage infiltration, IgA and C3 deposition in glomeruli. To further demonstrate the protective effects of ZWT, we found that podocyte damage was markedly ameliorated with ZWT treatments in IgAN rats and LPS-induced podocyte injury model by suppressing the expressions of desmin, reducing podocyte apoptosis and augmenting nephrin and podocin levels. Moreover, ZWT inhibited the phosphorylation of NF-κB and IκBα, simultaneously upregulated PPARγ. However, GW9662 made no difference in all the above effects compared to the model group, and was reversed by ZWT in vitro study. In conclusion, these results demonstrated that ZWT ameliorated IgAN-induced podocyte injury via upregulation PPARγ and the underlying mechanism might involve the inhibition of NF-κB pathway.
Collapse
|
20
|
Interaction between rhein acyl glucuronide and methotrexate based on human organic anion transporters. Chem Biol Interact 2017; 277:79-84. [DOI: 10.1016/j.cbi.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022]
|
21
|
Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats. Int J Biol Macromol 2017; 94:1-9. [DOI: 10.1016/j.ijbiomac.2016.09.099] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022]
|
22
|
Using Light Microscopy and Liquid Chromatography Tandem Mass Spectrometry for Qualitative and Quantitative Control of a Combined Three-Herb Formulation in Different Preparations. Molecules 2016; 21:molecules21121673. [PMID: 27929444 PMCID: PMC6274395 DOI: 10.3390/molecules21121673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/24/2022] Open
Abstract
Artemisia capillaries Thunb, Gardenia jasminoides Ellis, and Rheum officinale Baill have been combined to treat jaundice for thousands of years. Studies have revealed that these herbs induce anti-hepatic fibrosis and anti-hepatic apoptosis and alleviate hepatic oxidative stress. This study aims to determine the quality and quantity of an herbal formulation (Chinese name: Yin-Chen-Hao-Tang) using physical and chemical examinations. Physical examination of Yin-Chen-Hao-Tang in pharmaceutical herbal products, raw fiber powders, and decoction preparations was performed using Congo red and iodine-potassium staining. A sensitive and validated method employing ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was developed to simultaneously quantify the bioactive compounds scoparone, geniposide, and rhein in the Yin-Chen-Hao-Tang formulation in different preparations. Physical examination indicated that cellulose fibers with irregular round shapes were present in the pharmaceutical herbal products. The developed UHPLC-MS/MS method showed good linearity and was well validated. The quantification results revealed that the decoction preparations had the highest amounts of geniposide and rhein. Scoparone appeared in pharmaceutical herbal products from two manufacturers. This experiment provides a qualitative and quantitative method using physical and chemical examinations to test different preparations of herbal products. The results provide a reference for clinical herbal product preparations and further pharmacokinetic research.
Collapse
|
23
|
Zhang Q, Yin S, Liu L, Liu Z, Cao W. Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice. Sci Rep 2016; 6:34597. [PMID: 27703201 PMCID: PMC5050540 DOI: 10.1038/srep34597] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/15/2016] [Indexed: 11/15/2022] Open
Abstract
Renal fibrosis is the hallmark of chronic kidney diseases (CKD) and its development and progression are significantly affected by epigenetic modifications. Rhein, a plant-derived anthraquinone, displays strong anti-fibrosis properties, but its protective mode of action remains incompletely understood. Here we explore the mechanism of Rhein anti-renal fibrosis by investigating its regulation of Klotho, a known renal anti-fibrotic protein whose suppression after renal injury reportedly involves aberrant DNA methylation. We report that Rhein is an impressive up-regulator of Klotho and it markedly reversed Klotho down-regulation in unilateral ureteral occlusion-induced fibrotic kidney. Further examinations revealed that Klotho loss in fibrotic kidney is associated with Klotho promoter hypermethylation due to aberrant methyltransferase 1 and 3a expressions. However, Rhein significantly corrected all these epigenetic alterations and subsequently alleviated pro-fibrotic protein expression and renal fibrosis, whereas Klotho knockdown via RNA interferences largely abrogated the anti-renal fibrotic effects of Rhein, suggesting that Rhein epigenetic reversal of Klotho loss represents a critical mode of action that confers Rhein’s anti- renal fibrotic functions. Altogether our studies uncover a novel hypomethylating character of Rhein in preventing Klotho loss and renal fibrosis, and demonstrate the efficacy of Klotho-targeted epigenetic intervention in potential treatment of renal fibrosis-associated kidney diseases.
Collapse
Affiliation(s)
- Qin Zhang
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, 210016, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Shasha Yin
- The Key lab of Jiangsu molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| | - Lin Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Zhihong Liu
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, 210016, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China
| | - Wangsen Cao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210016, China.,The Key lab of Jiangsu molecular Medicine, Nanjing University School of Medicine, Nanjing, 210093, China
| |
Collapse
|
24
|
Lv P, Liu M, Liao R, Zhao Y, Liao X, Gao C, Yang B. Host-guest inclusion system of rhein with polyamine-modified β-cyclodextrins: characterization and cytotoxicity. Pharm Dev Technol 2016; 22:669-677. [PMID: 27499262 DOI: 10.1080/10837450.2016.1221429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the preparation of inclusion complexes between rhein and four polyamine-modified β-cyclodextrins, namely amino-β-cyclodextrins (NH2-βCD), ethylenediamine-β-cyclodextrins (EN-βCD), diethylenetriamine-β-cyclodextrins (DETA-βCD) and triethylenetetramine-β-cyclodextrins (TETA-βCD) using suspension method. The solution and solid state forms of the inclusion complexes of rhein with polyamine-β-cyclodextrins were characterized by multiple techniques. Additionally, saturated solution and MTT methods were implemented to assess the water solubilization and in vitro cytotoxicity of the inclusion complexes, respectively. The results suggested that rhein was encapsulated within the CD cavity to form a 1:1 host-guest inclusion complex. Notably, a significant enhancement of the water solubility and in vitro cytotoxicity of rhein was found in the form of inclusion complex with polyamine-β-cyclodextrin.
Collapse
Affiliation(s)
- Pin Lv
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| | - Manshuo Liu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| | - Rongqiang Liao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| | - Yulin Zhao
- b Faculty of Chemical Engineering , Kunming University of Science and Technology , Kunming , P.R. China
| | - Xiali Liao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| | - Chuanzhu Gao
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| | - Bo Yang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , P.R. China
| |
Collapse
|
25
|
Rhein: A Review of Pharmacological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:578107. [PMID: 26185519 PMCID: PMC4491579 DOI: 10.1155/2015/578107] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/13/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022]
Abstract
Rhein (4, 5-dihydroxyanthraquinone-2-carboxylic acid) is a lipophilic anthraquinone extensively found in medicinal herbs, such as Rheum palmatum L., Cassia tora L., Polygonum multiflorum Thunb., and Aloe barbadensis Miller, which have been used medicinally in China for more than 1,000 years. Its biological activities related to human health are being explored actively. Emerging evidence suggests that rhein has many pharmacological effects, including hepatoprotective, nephroprotective, anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. The present review provides a comprehensive summary and analysis of the pharmacological properties of rhein, supporting the potential uses of rhein as a medicinal agent.
Collapse
|
26
|
Zhang K, Jiao XF, Li JX, Wang XW. Rhein inhibits lipopolysaccharide-induced intestinal injury during sepsis by blocking the toll-like receptor 4 nuclear factor-κB pathway. Mol Med Rep 2015; 12:4415-4421. [PMID: 26081522 DOI: 10.3892/mmr.2015.3925] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/30/2015] [Indexed: 11/05/2022] Open
Abstract
Sepsis is one of the leading causes of mortality in severe systemic inflammatory syndrome. The endotoxin-induced inflammatory response has been linked to the development of sepsis. Rhein is a lipophilic anthraquinone isolated from Rheum rhabarbarum (rhubarb), which has a protective effect on intestinal damage in vivo. However, the underlying mechanism responsible for the protective effects of rhein remains to be elucidated. In the present study, mice were exposed to 20 mg/kg lipopolysaccharide (LPS), prior to being treated with either 100 mg/kg rhein or 0.3 mg/kg toll‑like receptor 4 (TLR4) signaling inhibitor TAK‑242. In the rhein‑treated mice, the colon length (cm) was extended and colon injury was attenuated. In addition, treatment with rhein significantly decreased the expression levels of the LPS‑induced inflammatory cytokines interleukin (IL)‑1β, IL‑6, IL‑8, and tumor necrosis factor‑α, in both the plasma and colon tissue. However, mice treated with TAK‑242 exhibited increased expression levels of IL‑10, as determined by ELISA and western blot analysis. In addition, immunohistochemistry and western blot analyses demonstrated that treatment with rhein was able to reduce TLR4 expression and inhibit nuclear factor‑κB (NF‑κB) phosphorylation in colon tissue. Furthermore, LPS induction was blocked by TAK‑242. These results demonstrate that the observed rhein‑attenuated inflammatory response during sepsis may be achieved via the TLR4 NF‑κB signaling pathway. In conclusion, the results of the present study provide a novel insight into the protective effects of rhein on LPS‑induced intestinal inflammation, and demonstrate that rhein may act as a beneficial therapeutic agent in the treatment of sepsis-induced intestinal damage.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Critical Care Medicine, Zhengzhou People's Hospital, Zhengzhou, Henan 450053, P.R. China
| | - Xian Fa Jiao
- Department of Critical Care Medicine, Zhengzhou People's Hospital, Zhengzhou, Henan 450053, P.R. China
| | - Jin Xiu Li
- Department of Critical Care Medicine, Zhengzhou People's Hospital, Zhengzhou, Henan 450053, P.R. China
| | - Xiao Wen Wang
- Department of Critical Care Medicine, Zhengzhou People's Hospital, Zhengzhou, Henan 450053, P.R. China
| |
Collapse
|
27
|
Ren W, Wang X, Zhang A, Li C, Chen G, Ge X, Pan K, Dong JH. Selective bowel decontamination improves the survival of 90% hepatectomy in rats. J Surg Res 2015; 195:454-64. [DOI: 10.1016/j.jss.2015.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 12/23/2022]
|
28
|
Zuo T, Cao L, Li X, Zhang Q, Xue C, Tang Q. The squid ink polysaccharides protect tight junctions and adherens junctions from chemotherapeutic injury in the small intestinal epithelium of mice. Nutr Cancer 2015; 67:364-71. [PMID: 25587665 DOI: 10.1080/01635581.2015.989369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gastrointestinal mucositis and infection by chemotherapy treatment are associated with alterations in the functioning of the intestinal barrier, due to the potential damage induced by anticancer drugs on the epithelial tight junctions and adheren junction. We aimed to study the protective effect of dietary polysaccharides on chemotherapy-induced injury in the epithelial cells. In the current study, using mice that were intraperitoneally injected with 50 mg/kg cyclophosphamide for 2 days, we reveal that polysaccharides from the ink of Ommastrephes bartrami (OBP) enhanced the mRNA and protein expression levels of Occludin, zonulae occluden (ZO)-1, and E-cadherin. Immunohistochemistry staining of ZO-1 and E-cadherin confirmed the increase in the mRNA and protein levels. OBP also remarkably enhanced the mRNA expression of other tight junction proteins, ZO-2, ZO-3, claudin-2, and cingulin. Our results may have important implications in host defense, especially the immunopotentiation function of OBP on the cyclophosphamide-induced epithelial cell injury, as well as intestinal disorders involving inflammation and infection.
Collapse
Affiliation(s)
- Tao Zuo
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | | | | | | | | | | |
Collapse
|
29
|
Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability. J Neurogastroenterol Motil 2015; 21:33-50. [PMID: 25537677 PMCID: PMC4288093 DOI: 10.5056/jnm14084] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022] Open
Abstract
The interface between the intestinal lumen and the mucosa is the location where the majority of ingested immunogenic particles face the scrutiny of the vast gastrointestinal immune system. Upon regular physiological conditions, the intestinal micro-flora and the epithelial barrier are well prepared to process daily a huge amount of food-derived antigens and non-immunogenic particles. Similarly, they are ready to prevent environmental toxins and microbial antigens to penetrate further and interact with the mucosal-associated immune system. These functions promote the development of proper immune responses and oral tolerance and prevent disease and inflammation. Brain-gut axis structures participate in the processing and execution of response signals to external and internal stimuli. The brain-gut axis integrates local and distant regulatory networks and super-systems that serve key housekeeping physiological functions including the balanced functioning of the intestinal barrier. Disturbance of the brain-gut axis may induce intestinal barrier dysfunction, increasing the risk of uncontrolled immunological reactions, which may indeed trigger transient mucosal inflammation and gut disease. There is a large body of evidence indicating that stress, through the brain-gut axis, may cause intestinal barrier dysfunction, mainly via the systemic and peripheral release of corticotropin-releasing factor. In this review, we describe the role of stress and corticotropin-releasing factor in the regulation of gastrointestinal permeability, and discuss the link to both health and pathological conditions.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Marc Pigrau
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Beatriz Lobo
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - María Vicario
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Javier Santos
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| |
Collapse
|
30
|
Intestinal barrier function and the brain-gut axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:73-113. [PMID: 24997030 DOI: 10.1007/978-1-4939-0897-4_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.
Collapse
|