1
|
Mahuron KM, Sullivan KM, Hernandez MC, Chen YJ, Chao J, Melstrom LG, Paz IB, Kim JY, Mannan R, Lin JL, Fong Y, Woo Y. Diffuse-Type Histology Is Prognostic for All Siewert Types of Gastroesophageal Adenocarcinoma. J Gastric Cancer 2024; 24:267-279. [PMID: 38960886 PMCID: PMC11224723 DOI: 10.5230/jgc.2024.24.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE The optimal treatment for gastroesophageal junction adenocarcinoma (GEJA) remains controversial. We evaluated the treatment patterns and outcomes of patients with locally advanced GEJA according to the histological type. MATERIALS AND METHODS We conducted a single-institution retrospective cohort study of patients with locally advanced GEJA who underwent curative-intent surgical resection between 2010 and 2020. Perioperative therapies as well as clinicopathologic, surgical, and survival data were collected. The results of endoscopy and histopathological examinations were assessed for Siewert and Lauren classifications. RESULTS Among the 58 patients included in this study, 44 (76%) were clinical stage III, and all received neoadjuvant therapy (72% chemoradiation, 41% chemotherapy, 14% both chemoradiation and chemotherapy). Tumor locations were evenly distributed by Siewert Classification (33% Siewert-I, 40% Siewert-II, and 28% Siewert-III). Esophagogastrectomy (EG) was performed for 47 (81%) patients and total gastrectomy (TG) for 11 (19%) patients. All TG patients received D2 lymphadenectomy compared to 10 (21%) EG patients. Histopathological examination showed the presence of 64% intestinal-type and 36% diffuse-type histology. The frequencies of diffuse-type histology were similar among Siewert groups (37% Siewert-I, 36% Siewert-II, and 33% Siewert-III). Regardless of Siewert type and compared to intestinal-type, diffuse histology was associated with increased intraabdominal recurrence rates (P=0.03) and decreased overall survival (hazard ratio, 2.33; P=0.02). With a median follow-up of 31.2 months, 29 (50%) patients had a recurrence, and the median overall survival was 50.5 months. CONCLUSIONS Present in equal proportions among Siewert types of esophageal and gastric cancer, a diffuse-type histology was associated with high intraabdominal recurrence rates and poor survival. Histopathological evaluation should be considered in addition to anatomic location in the determination of multimodal GEJA treatment strategies.
Collapse
Affiliation(s)
- Kelly M Mahuron
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Kevin M Sullivan
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Matthew C Hernandez
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yi-Jen Chen
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Joseph Chao
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Laleh G Melstrom
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - I Benjamin Paz
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Jae Yul Kim
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Rifat Mannan
- Division of Thoracic Surgery, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - James L Lin
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
- Division of Gastroenterology, Department of Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuman Fong
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yanghee Woo
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Cancer Immunotherapeutics Program, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
2
|
Hu C, Song J, Kwok T, Nguyen EV, Shen X, Daly RJ. Proteome-based molecular subtyping and therapeutic target prediction in gastric cancer. Mol Oncol 2024; 18:1437-1459. [PMID: 38627210 PMCID: PMC11161736 DOI: 10.1002/1878-0261.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 06/09/2024] Open
Abstract
Different molecular classifications for gastric cancer (GC) have been proposed based on multi-omics platforms with the long-term goal of improved precision treatment. However, the GC (phospho)proteome remains incompletely characterized, particularly at the level of tyrosine phosphorylation. In addition, previous multiomics-based stratification of patient cohorts has lacked identification of corresponding cell line models and comprehensive validation of broad or subgroup-selective therapeutic targets. To address these knowledge gaps, we applied a reverse approach, undertaking the most comprehensive (phospho)proteomic analysis of GC cell lines to date and cross-validating this using publicly available data. Mass spectrometry (MS)-based (phospho)proteomic and tyrosine phosphorylation datasets were subjected to individual or integrated clustering to identify subgroups that were subsequently characterized in terms of enriched molecular processes and pathways. Significant congruence was detected between cell line proteomic and specific patient-derived transcriptomic subclassifications. Many protein kinases exhibiting 'outlier' expression or phosphorylation in the cell line dataset exhibited genomic aberrations in patient samples and association with poor prognosis, with casein kinase I isoform delta/epsilon (CSNK1D/E) being experimentally validated as potential therapeutic targets. Src family kinases were predicted to be commonly hyperactivated in GC cell lines, consistent with broad sensitivity to the next-generation Src inhibitor eCF506. In addition, phosphoproteomic and integrative clustering segregated the cell lines into two subtypes, with epithelial-mesenchyme transition (EMT) and proliferation-associated processes enriched in one, designated the EMT subtype, and metabolic pathways, cell-cell junctions, and the immune response dominating the features of the other, designated the metabolism subtype. Application of kinase activity prediction algorithms and interrogation of gene dependency and drug sensitivity databases predicted that the mechanistic target of rapamycin kinase (mTOR) and dual specificity mitogen-activated protein kinase kinase 2 (MAP2K2) represented potential therapeutic targets for the EMT and metabolism subtypes, respectively, and this was confirmed using selective inhibitors. Overall, our study provides novel, in-depth insights into GC proteomics, kinomics, and molecular taxonomy and reveals potential therapeutic targets that could provide the basis for precision treatments.
Collapse
Affiliation(s)
- Changyuan Hu
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Wenzhou Medical University‐Monash BDI Alliance in Clinical and Experimental BiomedicineWenzhou Medical UniversityChina
| | - Jiangning Song
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Terry Kwok
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Infection and Immunity Program, Monash Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
- Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Elizabeth V. Nguyen
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Xian Shen
- Wenzhou Medical University‐Monash BDI Alliance in Clinical and Experimental BiomedicineWenzhou Medical UniversityChina
- Department of Gastrointestinal Surgery, The First Affiliated HospitalWenzhou Medical UniversityChina
| | - Roger J. Daly
- Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| |
Collapse
|
3
|
Nemtsova MV, Kuznetsova EB, Bure IV. Chromosomal Instability in Gastric Cancer: Role in Tumor Development, Progression, and Therapy. Int J Mol Sci 2023; 24:16961. [PMID: 38069284 PMCID: PMC10707305 DOI: 10.3390/ijms242316961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
According to the Cancer Genome Atlas (TCGA), gastric cancers are classified into four molecular subtypes: Epstein-Barr virus-positive (EBV+), tumors with microsatellite instability (MSI), tumors with chromosomal instability (CIN), and genomically stable (GS) tumors. However, the gastric cancer (GC) with chromosomal instability remains insufficiently described and does not have effective markers for molecular and histological verification and diagnosis. The CIN subtype of GC is characterized by chromosomal instability, which is manifested by an increased frequency of aneuploidies and/or structural chromosomal rearrangements in tumor cells. Structural rearrangements in the CIN subtype of GC are not accidental and are commonly detected in chromosomal loci, being abnormal because of specific structural organization. The causes of CIN are still being discussed; however, according to recent data, aberrations in the TP53 gene may cause CIN development or worsen its phenotype. Clinically, patients with the CIN subtype of GC demonstrate poor survival, but receive the maximum benefit from adjuvant chemotherapy. In the review, we consider the molecular mechanisms and possible causes of chromosomal instability in GC, the common rearrangements of chromosomal loci and their impact on the development and clinical course of the disease, as well as the driver genes, their functions, and perspectives on their targeting in the CIN subtype of GC.
Collapse
Affiliation(s)
- Marina V. Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (E.B.K.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Ekaterina B. Kuznetsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (E.B.K.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Irina V. Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (M.V.N.); (E.B.K.)
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| |
Collapse
|
4
|
Kalmuk J, Rinder D, Heltzel C, Lockhart AC. An overview of the preclinical discovery and development of trastuzumab deruxtecan: a novel gastric cancer therapeutic. Expert Opin Drug Discov 2022; 17:427-436. [DOI: 10.1080/17460441.2022.2050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- James Kalmuk
- Department of Hematology/Oncology, Medical University of South Carolina, Walton Research Building, Charleston, SC, USA
| | | | | | - Albert Craig Lockhart
- Department of Hematology/Oncology, Medical University of South Carolina, Walton Research Building, Charleston, SC, USA
| |
Collapse
|
5
|
Lin JX, Xu YC, Lin W, Xue FQ, Ye JX, Zang WD, Cai LS, You J, Xu JH, Cai JC, Tang YH, Xie JW, Li P, Zheng CH, Huang CM. Effectiveness and Safety of Apatinib Plus Chemotherapy as Neoadjuvant Treatment for Locally Advanced Gastric Cancer: A Nonrandomized Controlled Trial. JAMA Netw Open 2021; 4:e2116240. [PMID: 34241629 PMCID: PMC8271357 DOI: 10.1001/jamanetworkopen.2021.16240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/03/2021] [Indexed: 02/03/2023] Open
Abstract
Importance Apatinib is a novel treatment option for chemotherapy-refractory advanced gastric cancer (GC), but it has not been evaluated in patients with locally advanced GC. Objective To investigate the effectiveness and safety of apatinib combined with S-1 plus oxaliplatin (SOX) as a neoadjuvant treatment for locally advanced GC. Design, Setting, and Participants This multicenter, prospective, single-group, open-label, phase 2 nonrandomized controlled trial was conducted in 10 centers in southern China. Patients with M0 and either clinical T2 to T4 or N+ disease were enrolled between July 1, 2017, and June 30, 2019. Statistical analysis was performed from December 1, 2019, to January 31, 2020. Interventions Eligible patients received apatinib (500 mg orally once daily on days 1 to 21 and discontinued in the last cycle) plus SOX (S-1: 40-60 mg orally twice daily on days 1 to 14; oxaliplatin: 130 mg/m2 intravenously on day 1) every 3 weeks for 2 to 5 cycles. A D2 gastrectomy was performed 2 to 4 weeks after the last cycle. Main Outcomes and Measures The primary end point was R0 resection rate. Secondary end points were the response rate, toxic effects, and surgical outcome. Results A total of 48 patients (mean [SD] age, 63.2 [8.2] years; 37 men [77.1%]) were enrolled in this study. Forty patients underwent surgery (38 had gastrectomy, and 2 had exploratory laparotomy), with an R0 resection rate of 75.0% (95% CI, 60.4%-86.4%). The radiologic response rate was 75.0%, and T downstaging was observed in 16 of 44 patients (36.4%). The pathological response rate was 54.2% (95% CI, 39.2%-68.6%); moreover, this rate was significantly higher in patients who achieved a radiologic response compared with those who did not (12 [80.0%] vs 1 [20.0%]; P = .03) and in those who had an Eastern Cooperative Oncology Group Performance Status score of 0 (20 [76.9%] vs 10 [45.5%]; P = .03) or had tumors located in the upper one-third of the stomach (16 [61.5%] vs 7 [31.8%]; P = .04). Patients who achieved a pathological response (vs those who did not) had significantly less blood loss (median [range]: 60 [10-200] mL vs 80 [20-300] mL; P = .04) and significantly more lymph nodes harvested (median [range]: 40 [24-67] vs 32 [19-51]; P = .04) during surgery. Postoperative complications were observed in 7 of 38 patients (18.4%). Grade 3 toxic effects occurred in 16 of 48 patients (33.3%), and no grade 4 toxic effects or preoperative deaths were observed. Conclusions and Relevance This nonrandomized controlled trial found that apatinib combined with SOX was effective and had an acceptable safety profile as a neoadjuvant treatment for locally advanced GC. A large-scale randomized clinical trial may be needed to confirm the findings. Trial Registration ClinicalTrials.gov Identifier: NCT03192735.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yan-Chang Xu
- Department of Gastrointestinal Surgery, The First Hospital of Putian, Putian, Fujian Province, China
| | - Wei Lin
- Department of Gastrointestinal Surgery and Gastrointestinal Surgery Research Institute, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Fang-Qin Xue
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Jian-Xin Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wei-Dong Zang
- Department of Gastrointestinal Surgery, Fujian Provincial Cancer Hospital, Fuzhou, Fujian Province, China
| | - Li-Sheng Cai
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, China
| | - Jun You
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Jian-Hua Xu
- Department of Oncology Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jian-Chun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian Province, China
| | - Yi-Hui Tang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
6
|
Namikawa T, Maeda M, Yokota K, Tanioka N, Fukudome I, Iwabu J, Munekage M, Uemura S, Maeda H, Kitagawa H, Kobayashi M, Hanazaki K. Assessment of Systemic Inflammatory Response and Nutritional Markers in Patients With Trastuzumab-treated Unresectable Advanced Gastric Cancer. In Vivo 2021; 34:2851-2857. [PMID: 32871824 DOI: 10.21873/invivo.12112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
AIM To determine whether markers of systemic inflammatory response and nutrition are a predictor of treatment response in patients with trastuzumab-treated unresectable advanced gastric cancer. PATIENTS AND METHODS Twenty-one patients who received chemotherapy for unresectable advanced gastric cancer at Kochi Medical School from 2013 to 2020 were enrolled. Clinicopathological information and systemic inflammatory response data were obtained retrospectively to investigate associations between baseline cancer-related prognostic variables and survival outcomes. RESULTS The median overall survival (OS) and progression-free survival (PFS) for the whole cohort were 24.5 (range=1.9-88.4) months and 7.0 (range=2.0-23.4) months, respectively. The objective response rate and disease control rate were 52.4% and 81.0%, respectively. The median PFS for patients with a neutrophil to lymphocyte ratio (NLR) <2.8 was significantly longer than that for those with NLR ≥2.8 (8.9 vs. 6.0 months; p=0.048). Although the median OS also tended to be longer for patients with NLR <2.8, the difference was not statistically significant. No significant differences in median OS and PFS were observed between patients with a prognostic nutrition index (PNI) <41.6 and those with PNI ≥41.6. CONCLUSION An NLR ≥2.8 is a predictor of poorer prognosis in patients receiving systemic treatment with trastuzumab and chemotherapy for unresectable advanced or recurrent gastric cancer.
Collapse
Affiliation(s)
| | - Masahiro Maeda
- Department of Surgery, Kochi Medical School, Kochi, Japan
| | | | | | - Ian Fukudome
- Department of Surgery, Kochi Medical School, Kochi, Japan
| | - Jun Iwabu
- Department of Surgery, Kochi Medical School, Kochi, Japan
| | | | - Sunao Uemura
- Department of Surgery, Kochi Medical School, Kochi, Japan
| | | | | | - Michiya Kobayashi
- Department of Human Health and Medical Sciences, Kochi Medical School, Kochi, Japan
| | | |
Collapse
|
7
|
Nie S, Yang G, Lu H. Current Molecular Targeted Agents for Advanced Gastric Cancer. Onco Targets Ther 2020; 13:4075-4088. [PMID: 32494161 PMCID: PMC7229784 DOI: 10.2147/ott.s246412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is the third leading cause of malignant tumor-related mortality worldwide. Traditional cytotoxic agents prolong the overall survival and progression-free survival of patients with advanced gastric cancer (AGC) compared to that with best supportive care. Due to the occurrence of serious adverse drug reactions that result in discontinued treatment, the survival benefit in AGC remains unsatisfactory. Systemic chemotherapy regimens have changed greatly, especially since the introduction of trastuzumab. Nevertheless, HER2 positivity is present in only approximately 20% of tumors. Due to the genetic heterogeneity and complexity of patients, there are many studies in progress that are exploring novel targeted drugs as an alternative to chemotherapy or adjuvant treatment in early-stage, progressive, and advanced gastric cancer. On the basis of the differences in gene expression profiles among patients, searching for specific and sensitive predictive biomarkers is important for identifying patients who will benefit from a specific targeted drug. With the development of targeted therapies and available chemotherapeutic drugs, there is no doubt that, over time, more patients will achieve better survival outcomes. Recently, immune checkpoint blockade has been well developed as a promising anticancer strategy. This review outlines the currently available information on clinically tested molecular targeted drugs and immune checkpoint inhibitors for AGC to provide support for decision-making in clinical practice.
Collapse
Affiliation(s)
- Shanshan Nie
- Center for Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Guoping Yang
- Center for Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Hongwei Lu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
8
|
Andreuzzi E, Fejza A, Capuano A, Poletto E, Pivetta E, Doliana R, Pellicani R, Favero A, Maiero S, Fornasarig M, Cannizzaro R, Iozzo RV, Spessotto P, Mongiat M. Deregulated expression of Elastin Microfibril Interfacer 2 (EMILIN2) in gastric cancer affects tumor growth and angiogenesis. Matrix Biol Plus 2020; 6-7:100029. [PMID: 33543026 PMCID: PMC7852313 DOI: 10.1016/j.mbplus.2020.100029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a frequent human tumor and often a lethal disease. Targeted therapy for gastric carcinomas is far behind vis-à-vis other solid tumors, primarily because of the paucity of cancer-driving mutations that could be efficiently and specifically targeted by current therapy. Thus, there is a need to discover actionable pathways/proteins and new diagnostic and prognostic biomarkers. In this study, we explored the role of the extracellular matrix glycoprotein EMILIN2, Elastin Microfibril Interfacer 2, in a cohort of gastric cancer patients. We discovered that EMILIN2 expression was consistently suppressed in gastric cancer and high expression levels of this glycoprotein were linked to abnormal vascular density. Furthermore, we found that EMILIN2 had a dual effect on gastric carcinoma cells: on one hand, it decreased tumor cell proliferation by triggering apoptosis, and on the other hand, it evoked the production of a number of cytokines involved in angiogenesis and inflammation, such as IL-8. Collectively, our findings posit EMILIN2 as an important onco-regulator exerting pleiotropic effects on the gastric cancer microenvironment. EMILIN2 is localized in the gastric lamina propria and its expression is down-regulated in gastric cancer. High levels of EMILIN2 associate with elevated vascular density. EMILIN2 impairs the proliferation of gastric cancer cells by evoking apoptosis. Surprisingly, EMILIN2 triggers the expression of pro-angiogenic and pro-inflammatory cytokines.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Angiogenesis
- CAFCA, Centrifugal Assay for Fluorescence-based Cell Adhesion
- CD31, cluster of differentiation 31 also known as PECAM-1
- ECM, extracellular matrix
- EGFR, epidermalgrowth factor receptor
- EMILIN 2, Elastin Microfibril Interfacer 2
- Extracellular matrix
- GC, gastric cancer
- Gastric cancer
- HER2, human epidermal growth factor receptor 2
- IGFBP2, insulin growth factor-binding protein 2
- Inflammation
- PFS, progression free survival
- Serpin 1, serine protease inhibitor 1
- Tumor microenvironment
- VEGFA, vascular endothelial growth factor A
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Rosanna Pellicani
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Stefania Maiero
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Mara Fornasarig
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| |
Collapse
|
9
|
De Mello RA, Lordick F, Muro K, Janjigian YY. Current and Future Aspects of Immunotherapy for Esophageal and Gastric Malignancies. Am Soc Clin Oncol Educ Book 2019; 39:237-247. [PMID: 31099644 DOI: 10.1200/edbk_236699] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Esophagogastric (EG) cancer has a poor prognosis despite the use of standard therapies, such as chemotherapy and biologic agents. Recently, immune checkpoint inhibitors (ICIs) have been introduced as treatments for EG cancer; nivolumab and pembrolizumab have been approved in the United States and Europe to treat advanced EG cancer. Other ICIs, such as avelumab, durvalumab, ipilimumab, and tremelimumab, have been evaluated in several trials, although their roles are still not established in clinical practice. In addition, preclinical evidence suggests that combining an ICI with a tumor-targeting antibody can result in greater antitumor effects in metastatic EG cancer. There are not yet validated predictive biomarkers to identify which patients will respond best to ICI treatment. PD-L1 expression may predict intensity of response, although PD-L1-negative patients can still respond to ICIs. Despite differences in PD-L1 expression between Asian and non-Asian populations, no geographic differences in rates of treatment-related or immune-mediated/infusion-related adverse events have been reported. Also, several trials are currently evaluating combinations of ICIs, standard chemotherapy, and biologic agents as well as novel biomarkers to improve treatments and outcomes. Our review will address the current use of and evidence for ICIs for advanced EG cancer treatment and future trends in this area for clinical practice.
Collapse
Affiliation(s)
- Ramon Andrade De Mello
- 1 Algarve Biomedical Centre/Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal.,2 Division of Medical Oncology, School of Medicine, Nove de Julho University, Bauru Campus, São Paulo, Brazil.,3 Division of Medical Oncology, UNIMED Diagnosis Centre, Bauru, São Paulo, Brazil
| | | | - Kei Muro
- 5 Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yelena Y Janjigian
- 6 Memorial Sloan Kettering Cancer Center, New York, NY.,7 Weill Cornell Medical College, New York, NY
| |
Collapse
|
10
|
Loss of Multimerin-2 and EMILIN-2 Expression in Gastric Cancer Associate with Altered Angiogenesis. Int J Mol Sci 2018; 19:ijms19123983. [PMID: 30544909 PMCID: PMC6321373 DOI: 10.3390/ijms19123983] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023] Open
Abstract
Gastric cancer is a deadly tumor and a relatively common disease worldwide. Surgical resection and chemotherapy are the main clinical options to treat this type of disease, however the median overall survival rate is limited to one year. Thus, the development of new therapies is a highly necessary clinical need. Angiogenesis is a promising target for this tumor type, however clinical trials with the use of anti-angiogenic drugs have so far not met expectations. Therefore, it is important to better characterize the expression of molecules whose expression levels may impact on the efficacy of the treatments. In this study the characteristics of the gastric tumor associated blood vessels were first assessed by endomicroscopy. Next, we analyzed the expression of Multimerin-2, EMILIN-2 and EMILIN-1, three molecules of the EMI Domain ENdowed (EDEN) protein family. These molecules play important functions in the tumor microenvironment, affecting cancer progression both directly and indirectly impinging on angiogenesis and lymphangiogenesis. All the molecules were highly expressed in the normal mucosa whereas in a number of patients their expression was altered. We consider that better characterizing the gastric tumor microenvironment and the quality of the vasculature may achieve effective patient tailored therapies.
Collapse
|
11
|
Zeng Z, Fu Y, Guo D, Wu Y, Ajayi OE, Wu Q. Bacterial endosymbiont Cardinium cSfur genome sequence provides insights for understanding the symbiotic relationship in Sogatella furcifera host. BMC Genomics 2018; 19:688. [PMID: 30231855 PMCID: PMC6147030 DOI: 10.1186/s12864-018-5078-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sogatella furcifera is a migratory pest that damages rice plants and causes severe economic losses. Due to its ability to annually migrate long distances, S. furcifera has emerged as a major pest of rice in several Asian countries. Symbiotic relationships of inherited bacteria with terrestrial arthropods have significant implications. The genus Cardinium is present in many types of arthropods, where it influences some host characteristics. We present a report of a newly identified strain of the bacterial endosymbiont Cardinium cSfur in S. furcifera. RESULT From the whole genome of S. furcifera previously sequenced by our laboratory, we assembled the whole genome sequence of Cardinium cSfur. The sequence comprised 1,103,593 bp with a GC content of 39.2%. The phylogenetic tree of the Bacteroides phylum to which Cardinium cSfur belongs suggests that Cardinium cSfur is closely related to the other strains (Cardinium cBtQ1 and cEper1) that are members of the Amoebophilaceae family. Genome comparison between the host-dependent endosymbiont including Cardinium cSfur and free-living bacteria revealed that the endosymbiont has a smaller genome size and lower GC content, and has lost some genes related to metabolism because of its special environment, which is similar to the genome pattern observed in other insect symbionts. Cardinium cSfur has limited metabolic capability, which makes it less contributive to metabolic and biosynthetic processes in its host. From our findings, we inferred that, to compensate for its limited metabolic capability, Cardinium cSfur harbors a relatively high proportion of transport proteins, which might act as the hub between it and its host. With its acquisition of the whole operon related to biotin synthesis and glycolysis related genes through HGT event, Cardinium cSfur seems to be undergoing changes while establishing a symbiotic relationship with its host. CONCLUSION A novel bacterial endosymbiont strain (Cardinium cSfur) has been discovered. A genomic analysis of the endosymbiont in S. furcifera suggests that its genome has undergone certain changes to facilitate its settlement in the host. The envisaged potential reproduction manipulative ability of the new endosymbiont strain in its S. furcifera host has vital implications in designing eco-friendly approaches to combat the insect pest.
Collapse
Affiliation(s)
- Zhen Zeng
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027 China
| | - Yating Fu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027 China
| | - Dongyang Guo
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027 China
| | - Yuxuan Wu
- Department of Computer Science, University of Nottingham Ningbo China, Zhejiang, 315100 China
| | - Olugbenga Emmanuel Ajayi
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027 China
| | - Qingfa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027 China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|
12
|
Teng F, Xu Z, Chen J, Zheng G, Zheng G, Lv H, Wang Y, Wang L, Cheng X. DUSP1 induces apatinib resistance by activating the MAPK pathway in gastric cancer. Oncol Rep 2018; 40:1203-1222. [PMID: 29956792 PMCID: PMC6072387 DOI: 10.3892/or.2018.6520] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Dual-specificity phosphatase-1 (DUSP1) is an oncogene that is associated with cancer progression following drug resistance. In order to investigate the potential relationship between DUSP1 and apatinib resistance in gastric cancer cells, we preformed many assays to study this problem. DUSP1 gene was detected by RT-qPCR assay, proteins in MAPK pathway were quantified by western blot assay, and CCK-8 assay, flow cytometry and Hoechest 33342 stain were performed to detect the resistance of cells, cell cycles and apoptosis, respectively. Immunohistochemical staining was used to discover the expression of DUSP1 protein in patients' tumor or paratumor tissues. It was found that apatinib (Apa)-resistant gastric cancer (GC) cells showed increased expression of DUSP1, whereas the knockdown of DUSP1 in resistant cells resensitized these cells to Apa. The restored sensitivity to Apa was the result of inactivation of mitogen-activated protein kinase (MAPK) signaling and the induction of apoptosis. The in vitro use of Apa in combination with a DUSP1 inhibitor, triptolide, exerted significant effects on inhibiting the expression of DUSP1, growth inhibition, and apoptosis via the inactivation of MAPK signaling. In patients who did not undergo chemotherapy or targeted therapy, the expression of DUSP1 in adjacent tissues was higher when compared with that observed in tumor tissues. In addition, the expression of DUSP1 was higher in the early stages of GC than in the advanced stages. The expression of DUSP1 in tumor tissues was not associated with the survival rate of the patients. Therefore, increased expression of DUSP1 may be responsible for Apa resistance, and DUSP1 may serve as a biomarker for Apa efficacy. In conclusion, inducing the downregulation of DUSP1 may be a promising strategy to overcome Apa resistance.
Collapse
Affiliation(s)
- Fei Teng
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhiyuan Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiahui Chen
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Guowei Zheng
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Guodian Zheng
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Hang Lv
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Yiping Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Lijing Wang
- Department of Medical Imaging, Zhejiang Provincial Tumor Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiangdong Cheng
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
13
|
De Mello RA, Castelo-Branco L, Castelo-Branco P, Pozza DH, Vermeulen L, Palacio S, Salzberg M, Lockhart AC. What Will We Expect From Novel Therapies to Esophageal and Gastric Malignancies? Am Soc Clin Oncol Educ Book 2018; 38:249-261. [PMID: 30231398 DOI: 10.1200/edbk_198805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Esophageal cancer and gastric cancer are aggressive diseases for which treatment approaches are facing a new era. Some molecular pathways, such as VEGF, EGFR, fibroblast growth factor receptor, PIK3CA, and PARP-1, have been studied, and novel targeted drugs are presumed to be developed in the near future. From The Cancer Genome Atlas report, 80% of Epstein-Barr virus tumors and 42% of tumors with microsatellite instability have PIK3CA mutations, suggesting that this pathway could be reevaluated as a possible target for new systemic treatment of gastric cancer. Notably, higher PARP-1 expression can be found in gastric cancer, which might be related to more advanced disease and worse prognosis. In addition, PD-L1 expression, high microsatellite instability, and mismatch repair deficiency can be found in gastric cancer, thus suggesting that immunotherapy may also play a role in those patients. We discuss trends related to the potential of novel therapies for patients with esophageal and gastric cancers in the near future.
Collapse
Affiliation(s)
- Ramon Andrade De Mello
- From the Department of Biomedical Sciences and Medicine, Division of Oncology, University of Algarve, Faro, Portugal; Algarve Biomedical Center, Campus Gambelas, Faro, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; Research Centre, Division of Medical Oncology, Hospital São Mateus, NOHC Clinic, Fortaleza, CE, Brazil; Algarve Hospital and University Center, Department of Oncology, Faro, Portugal; Portuguese Public Health School, Nova University, Lisbon, Portugal; Centre for Biomedical Research, University of Algarve, Faro, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal; Academic Medical Center Amsterdam, Center for Experimental Molecular Medicine, Amsterdam, The Netherlands; and the Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Luis Castelo-Branco
- From the Department of Biomedical Sciences and Medicine, Division of Oncology, University of Algarve, Faro, Portugal; Algarve Biomedical Center, Campus Gambelas, Faro, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; Research Centre, Division of Medical Oncology, Hospital São Mateus, NOHC Clinic, Fortaleza, CE, Brazil; Algarve Hospital and University Center, Department of Oncology, Faro, Portugal; Portuguese Public Health School, Nova University, Lisbon, Portugal; Centre for Biomedical Research, University of Algarve, Faro, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal; Academic Medical Center Amsterdam, Center for Experimental Molecular Medicine, Amsterdam, The Netherlands; and the Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Pedro Castelo-Branco
- From the Department of Biomedical Sciences and Medicine, Division of Oncology, University of Algarve, Faro, Portugal; Algarve Biomedical Center, Campus Gambelas, Faro, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; Research Centre, Division of Medical Oncology, Hospital São Mateus, NOHC Clinic, Fortaleza, CE, Brazil; Algarve Hospital and University Center, Department of Oncology, Faro, Portugal; Portuguese Public Health School, Nova University, Lisbon, Portugal; Centre for Biomedical Research, University of Algarve, Faro, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal; Academic Medical Center Amsterdam, Center for Experimental Molecular Medicine, Amsterdam, The Netherlands; and the Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Daniel Humberto Pozza
- From the Department of Biomedical Sciences and Medicine, Division of Oncology, University of Algarve, Faro, Portugal; Algarve Biomedical Center, Campus Gambelas, Faro, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; Research Centre, Division of Medical Oncology, Hospital São Mateus, NOHC Clinic, Fortaleza, CE, Brazil; Algarve Hospital and University Center, Department of Oncology, Faro, Portugal; Portuguese Public Health School, Nova University, Lisbon, Portugal; Centre for Biomedical Research, University of Algarve, Faro, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal; Academic Medical Center Amsterdam, Center for Experimental Molecular Medicine, Amsterdam, The Netherlands; and the Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Louis Vermeulen
- From the Department of Biomedical Sciences and Medicine, Division of Oncology, University of Algarve, Faro, Portugal; Algarve Biomedical Center, Campus Gambelas, Faro, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; Research Centre, Division of Medical Oncology, Hospital São Mateus, NOHC Clinic, Fortaleza, CE, Brazil; Algarve Hospital and University Center, Department of Oncology, Faro, Portugal; Portuguese Public Health School, Nova University, Lisbon, Portugal; Centre for Biomedical Research, University of Algarve, Faro, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal; Academic Medical Center Amsterdam, Center for Experimental Molecular Medicine, Amsterdam, The Netherlands; and the Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Sofia Palacio
- From the Department of Biomedical Sciences and Medicine, Division of Oncology, University of Algarve, Faro, Portugal; Algarve Biomedical Center, Campus Gambelas, Faro, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; Research Centre, Division of Medical Oncology, Hospital São Mateus, NOHC Clinic, Fortaleza, CE, Brazil; Algarve Hospital and University Center, Department of Oncology, Faro, Portugal; Portuguese Public Health School, Nova University, Lisbon, Portugal; Centre for Biomedical Research, University of Algarve, Faro, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal; Academic Medical Center Amsterdam, Center for Experimental Molecular Medicine, Amsterdam, The Netherlands; and the Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Matthew Salzberg
- From the Department of Biomedical Sciences and Medicine, Division of Oncology, University of Algarve, Faro, Portugal; Algarve Biomedical Center, Campus Gambelas, Faro, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; Research Centre, Division of Medical Oncology, Hospital São Mateus, NOHC Clinic, Fortaleza, CE, Brazil; Algarve Hospital and University Center, Department of Oncology, Faro, Portugal; Portuguese Public Health School, Nova University, Lisbon, Portugal; Centre for Biomedical Research, University of Algarve, Faro, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal; Academic Medical Center Amsterdam, Center for Experimental Molecular Medicine, Amsterdam, The Netherlands; and the Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - A Craig Lockhart
- From the Department of Biomedical Sciences and Medicine, Division of Oncology, University of Algarve, Faro, Portugal; Algarve Biomedical Center, Campus Gambelas, Faro, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; Research Centre, Division of Medical Oncology, Hospital São Mateus, NOHC Clinic, Fortaleza, CE, Brazil; Algarve Hospital and University Center, Department of Oncology, Faro, Portugal; Portuguese Public Health School, Nova University, Lisbon, Portugal; Centre for Biomedical Research, University of Algarve, Faro, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal; Academic Medical Center Amsterdam, Center for Experimental Molecular Medicine, Amsterdam, The Netherlands; and the Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| |
Collapse
|
14
|
Oberg HH, Kellner C, Gonnermann D, Sebens S, Bauerschlag D, Gramatzki M, Kabelitz D, Peipp M, Wesch D. Tribody [(HER2) 2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells. Front Immunol 2018; 9:814. [PMID: 29725336 PMCID: PMC5916959 DOI: 10.3389/fimmu.2018.00814] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2)2xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2)2xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2)2xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2)2xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2)2xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2)2xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of refractory hematological malignancies is given by their HLA-independent killing and a reduced graft-versus-host disease.
Collapse
Affiliation(s)
- Hans H Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Daniel Gonnermann
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Dirk Bauerschlag
- Clinic of Gynecology and Obstetrics, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH), Christian-Albrechts University (CAU) of Kiel, Kiel, Germany
| |
Collapse
|
15
|
De Mello RA. Gastric Cancer in Southern Europe: High-Risk Disease. Am Soc Clin Oncol Educ Book 2017; 37:261-266. [PMID: 28561674 DOI: 10.1200/edbk_175227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gastric cancer is an aggressive disease. Several risk factors are involved in gastric cancer pathogenesis, likely Helicobacter pylori (H. pylori) infection, genetic factors in hereditary syndromes, lifestyle, and diet. However, well-implemented screening strategies are lacking in most countries, including those in Southern Europe. Nevertheless, gastric cancer outcomes are better in some Southern European countries than in others, likely because of the incidence and distribution of different histologic types. Robotic surgery has been gaining favor as a treatment of early-stage disease, and the need for perioperative chemotherapy or adjuvant chemoradiotherapy (CRT) for locally advanced disease has been debated. In the metastatic setting, trastuzumab in combination with chemotherapy has helped to extend survival compared with chemotherapy alone for HER2-positive disease. This article will describe how gastric cancer is assessed and treated in Southern Europe in an attempt to correlate these approaches from a global perspective.
Collapse
Affiliation(s)
- Ramon Andrade De Mello
- From the Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal, and the Department of Medical Oncology, Clatterbridge Cancer Centre, Merseyside, United Kingdom
| |
Collapse
|
16
|
Establishment and Characterization of a Nude Mouse Model of Subcutaneously Implanted Tumors and Abdominal Metastasis in Gastric Cancer. Gastroenterol Res Pract 2017; 2017:6856107. [PMID: 28487732 PMCID: PMC5405592 DOI: 10.1155/2017/6856107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022] Open
Abstract
A mouse gastric cancer model is an important tool for studying the mechanisms of gastric cancer. To establish subcutaneously implanted tumors, MKN-45 cell suspensions and tumor tissues were implanted into the middle of the right armpit of nude mice. To generate an abdominal metastasis model, MKN-45 cell suspensions and tumor tissue homogenates were implanted into the middle of the lower abdomen. We measured the weights of the nude mice and the longest dimension, shortest dimension, thickness, and volume of the tumor. We also analyzed the rate of tumor formation, the time required for tumor formation, and the number and size of abdominal tumors in the mice. The rates of formation of the subcutaneously implanted tumors were 100%, 0%, and 100% in the nude mice inoculated with 2 × 107 cells/mL or 1 × 107 cells/mL of the MKN-45 cell suspension or the tumor tissue homogenate (2 × 107 cells/mL), respectively. The rates of metastatic abdominal tumor formation were 100%, 50%, and 75% in mice inoculated with 5 × 107 cells/mL or 1 × 107 cells/mL of the tumor tissue homogenate or the MKN-45 cell suspension (5 × 107 cells/mL), respectively. We derived tumor tissues and tumor tissue homogenates from nude mice prior to establishing the subcutaneous model of implanted tumors and the abdominal metastasis model of gastric cancer, respectively.
Collapse
|
17
|
de Mello RA, de Oliveira J, Antoniou G. Angiogenesis and apatinib: a new hope for patients with advanced gastric cancer? Future Oncol 2016; 13:295-298. [PMID: 27928929 DOI: 10.2217/fon-2016-0318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ramon Andrade de Mello
- Department of Biomedical Sciences & Medicine, University of Algarve, Faro, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Research Center & Department of Medical Oncology, Cearense School of Oncology, Instituto do Câncer do Ceará, Fortaleza, Ceará, Brazil
| | - Jailson de Oliveira
- Research Center & Department of Medical Oncology, Cearense School of Oncology, Instituto do Câncer do Ceará, Fortaleza, Ceará, Brazil
| | | |
Collapse
|
18
|
Roviello G, Ravelli A, Fiaschi AI, Cappelletti MR, Gobbi A, Senti C, Zanotti L, Polom K, Reynolds AR, Fox SB, Generali D. Apatinib for the treatment of gastric cancer. Expert Rev Gastroenterol Hepatol 2016; 10:887-92. [PMID: 27376400 DOI: 10.1080/17474124.2016.1209407] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Apatinib, a small-molecule inhibitor of vascular endothelial growth factor receptor 2, has demonstrated encouraging anti-cancer activity in gastric cancer within both in vitro and in vivo models. AREAS COVERED Apatinib's efficacy, tolerability and safety have been evaluated in one Phase II and one Phase III study in metastatic/advanced gastric cancer. In this review, we focus on the mechanism of action of apatinib, its pharmacokinetic profile and its clinical activity in the treatment of advanced/metastatic gastric cancer. Expert commentary: Unfortunately, as yet, there is no definitive biomarker data for apatinib in gastric cancer.
Collapse
Affiliation(s)
- Giandomenico Roviello
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy.,b Unit of Molecular Therapy and Pharmacogenomic , ASST Cremona , Cremona , Italy
| | - Andrea Ravelli
- c Section of Experimental Oncology, Department of Clinical and Experimental Medicine , University of Parma , Parma , Italy
| | | | | | - Angela Gobbi
- b Unit of Molecular Therapy and Pharmacogenomic , ASST Cremona , Cremona , Italy
| | - Chiara Senti
- b Unit of Molecular Therapy and Pharmacogenomic , ASST Cremona , Cremona , Italy
| | - Laura Zanotti
- b Unit of Molecular Therapy and Pharmacogenomic , ASST Cremona , Cremona , Italy
| | - Karol Polom
- e Department of Medical, Surgical and Neuroscience; Unit of General and Minimally Invasive Surgery , University of Siena , Siena , Italy
| | - Andrew R Reynolds
- f Tumour Biology Team, Breast Cancer Now Research Centre , The Institute of Cancer Research , London , UK
| | - Stephen B Fox
- g Department of Pathology, Peter Mac Callum Cancer Centre, Department of Pathology , University of Melbourne , Melbourne , Australia
| | - Daniele Generali
- b Unit of Molecular Therapy and Pharmacogenomic , ASST Cremona , Cremona , Italy.,h Department of Medical, Surgery and Health Sciences , University of Trieste , Trieste , Italy
| |
Collapse
|
19
|
Kim TL, Cho MH, Sangsawang K, Bhoo SH. Fine Mutational Analysis of 2B8 and 3H7 Tag Epitopes with Corresponding Specific Monoclonal Antibodies. Mol Cells 2016; 39:460-7. [PMID: 27137090 PMCID: PMC4916397 DOI: 10.14348/molcells.2016.2265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 11/27/2022] Open
Abstract
Bacteriophytochromes are phytochrome-like light-sensing photoreceptors that use biliverdin as a chromophore. To study the biochemical properties of the Deinococcus radiodurans bacteriophytochrome (DrBphP) protein, two anti-DrBphP mouse monoclonal antibodies (2B8 and 3H7) were generated. Their specific epitopes were identified in our previous report. We present here fine epitope mapping of these two antibodies by using truncation and substitution of original epitope sequences in order to identify minimized epitope peptides. The previously reported original epitope sequences for 2B8 and 3H7 were truncated from both sides. Our analysis showed that the minimal peptide sequence lengths for 2B8 and 3H7 antibodies were nine amino acids (RDPLPFFPP) and six amino acids (PGEIEE), respectively. We further characterized these peptides in order to investigate their reactivity after single deletion and single substitution of the original peptides. We found that single-substituted 2B8 epitope (RDPLPAFPP) and dual-substituted 3H7 epitope (PGEIAD) showed significantly increased reactivity. These two antibodies with high reactivity for the short modified peptide sequences are valueble for developing new peptide tags for protein research.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
| | - Man-Ho Cho
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
| | - Kanidta Sangsawang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
| | - Seong Hee Bhoo
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104,
Korea
| |
Collapse
|
20
|
Jia ZF, Zhang SL, Cao XY, Zhou BS, Jiang J. Interaction between Helicobacter pylori and host genetic variants in gastric carcinogenesis. Future Oncol 2016; 12:2127-34. [PMID: 27324311 DOI: 10.2217/fon-2016-0233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) is the definite carcinogen of gastric cancer. H. pylori infection induces chronic inflammation, causes DNA damage and aberrant methylation of genes and these pathways are involved in H. pylori-related gastric carcinogenesis. Polymorphisms of the genes involved in these pathways could alter susceptibility to gastric cancer. In this mini review, we focused on the role of polymorphisms in these genes on the susceptibility to gastric cancer, with a particular emphasis on their possible interactions with H. pylori infection. We found that many studies on this theme did not simultaneously report H. pylori infection and the interactions remained inconclusive.
Collapse
Affiliation(s)
- Zhi-Fang Jia
- Division of Clinical Research, First Hospital of Jilin University, Changchun 130021, China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110112, China
| | - Song-Ling Zhang
- Department of Gynecological Oncology, First Hospital of Jilin University, Changchun 130021, China
| | - Xue-Yuan Cao
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Bao-Sen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110112, China
| | - Jing Jiang
- Division of Clinical Research, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
21
|
Lim B, Kim JH, Kim M, Kim SY. Genomic and epigenomic heterogeneity in molecular subtypes of gastric cancer. World J Gastroenterol 2016; 22:1190-1201. [PMID: 26811657 PMCID: PMC4716030 DOI: 10.3748/wjg.v22.i3.1190] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/08/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a complex disease that is affected by multiple genetic and environmental factors. For the precise diagnosis and effective treatment of gastric cancer, the heterogeneity of the disease must be simplified; one way to achieve this is by dividing the disease into subgroups. Toward this effort, recent advances in high-throughput sequencing technology have revealed four molecular subtypes of gastric cancer, which are classified as Epstein-Barr virus-positive, microsatellite instability, genomically stable, and chromosomal instability subtypes. We anticipate that this molecular subtyping will help to extend our knowledge for basic research purposes and will be valuable for clinical use. Here, we review the genomic and epigenomic heterogeneity of the four molecular subtypes of gastric cancer. We also describe a mutational meta-analysis and a reanalysis of DNA methylation that were performed using previously reported gastric cancer datasets.
Collapse
|
22
|
Apatinib: A novel receptor tyrosine kinase inhibitor for the treatment of gastric cancer. Cancer Lett 2016; 372:187-91. [PMID: 26797419 DOI: 10.1016/j.canlet.2016.01.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
Abstract
Metastatic gastric cancer is a lethal disease characterized by a very short overall survival, underlining a critical need of new therapeutic options. Unfortunately, although several molecular targets have been investigated, only very few recently approved agents, such as trastuzumab in the HER2-positive setting and ramucirumab, led to a clinical improvement in the outcome of metastatic gastric cancer patients. VEGF (vascular endothelial growth factor) is one of the most potent angiogenic factors and is a signalling molecule secreted by many solid tumours. Since high VEGF expression is one of the characteristic features of gastric carcinomas, targeting VEGF is therefore considered as a promising therapeutic strategy for gastric cancer. In the scenario of possible new target therapies with particular regard to angiogenesis, apatinib is a novel receptor tyrosine kinase inhibitor selectively targeting VEGFR-2. It is an orally-bioavailable agent currently being studied in several solid tumour types showing a promising activity in gastric cancer. Due to the recent positive results as a third line of treatment for metastatic gastric cancer patients, apatinib may be an interesting and novel type of targeted treatment for metastatic gastric cancer in several lines of therapy. In this review, we summarize the available data of apatinib, mainly focused on the clinical aspect, in advanced/metastatic gastric cancer.
Collapse
|
23
|
Roviello G, Petrioli R, Marano L, Polom K, Marrelli D, Perrella A, Roviello F. Angiogenesis inhibitors in gastric and gastroesophageal junction cancer. Gastric Cancer 2016; 19:31-41. [PMID: 26329368 DOI: 10.1007/s10120-015-0537-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023]
Abstract
Despite significant improvements in systemic chemotherapy during the past two decades, the prognosis of patients with advanced gastric and gastroesophageal junction adenocarcinoma remains poor. Because of molecular heterogeneity, it is essential to classify tumors based on the underlying oncogenic pathways and to develop targeted therapies acting on individual tumors. Unfortunately, although a number of molecular targets have been studied, very few of these agents can be used in a clinical setting. In this review, we summarize the available data on anti-angiogenic agents in advanced/metastatic gastric cancer.
Collapse
Affiliation(s)
| | - Roberto Petrioli
- Medical Oncology Unit, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Luigi Marano
- Unit of General and Minimally Invasive Surgery, Department of Medical, Surgical and Neuroscience, University of Siena, Viale Bracci 11, Siena, 53100, Italy
| | - Karol Polom
- Unit of General and Minimally Invasive Surgery, Department of Medical, Surgical and Neuroscience, University of Siena, Viale Bracci 11, Siena, 53100, Italy
| | - Daniele Marrelli
- Section of Advanced Surgical Oncology, Department of Medical, Surgical and Neurosciences, University of Siena, Viale Bracci 11, Siena, 53100, Italy
| | - Armando Perrella
- Medical Oncology Unit, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Franco Roviello
- Unit of General and Minimally Invasive Surgery, Department of Medical, Surgical and Neuroscience, University of Siena, Viale Bracci 11, Siena, 53100, Italy
| |
Collapse
|
24
|
Roviello G, Polom K, Petrioli R, Marano L, Marrelli D, Paganini G, Savelli V, Generali D, De Franco L, Ravelli A, Roviello F. Monoclonal antibodies-based treatment in gastric cancer: current status and future perspectives. Tumour Biol 2016; 37:127-40. [PMID: 26566626 DOI: 10.1007/s13277-015-4408-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is the second leading cause of cancer-related death, and despite having improved treatment modalities over the last decade, for most patients, only modest improvements have been seen in overall survival. Recent progress in understanding the molecular biology of GC and the related signaling pathways offers, from the clinical point of view, promising advances for selected groups of patients. In the past, targeted therapies have significantly impacted the treatment strategy of several common solid tumors such as breast, colorectal, and lung cancers. Unfortunately, translational and clinical research shows fewer encouraging targeted treatments with regards to the GC. To date, only two monoclonal antibodies (mAb), named trastuzumab and ramucirumab, are approved for the treatment of advanced GC, suggesting that in GC, maybe more than in other cancers, effective targeted therapy requires patient selection based on precise predictive molecular biomarkers. The aim of this review is to summarize the available data on the clinical advantages offered by the use of mAbs in the treatment of advanced/metastatic GC. Future perspective is also discussed.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Section of pharmacology and University Center DIFF-Drug Innovation Forward Future, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25124, Brescia, Italy.
| | - Karol Polom
- Department of Medical, Surgical and Neuroscience; Unit of General and Minimally Invasive Surgery, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Roberto Petrioli
- Medical Oncology Unit, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Luigi Marano
- General, Minimally Invasive and Robotic Surgery, Department of Surgery, "San Matteo degli Infermi" Hospital, ASL Umbria 2, 06049, Spoleto, Italy
| | - Daniele Marrelli
- Department of Medical, Surgical and Neurosciences, Section of Advanced Surgical Oncology, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Giovanni Paganini
- Unit of General Medicine, Azienda Ospedaliera "C. Poma " Presidio ospedaliero di Pieve di Coriano, Mantova, Italy
| | - Vinno Savelli
- Department of Surgery and Bioengineering, Section of Surgery, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - Lorenzo De Franco
- Department of Medical, Surgical and Neurosciences, Section of Advanced Surgical Oncology, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| | - Andrea Ravelli
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Franco Roviello
- Department of Medical, Surgical and Neuroscience; Unit of General and Minimally Invasive Surgery, University of Siena, Viale Bracci 11, 53100, Siena, Italy
| |
Collapse
|
25
|
Polom K, Marano L, Roviello G, Petrioli R, Piagnerelli R, de Franco L, Marrelli D, Roviello F. Evolution and emerging future of cytoreducxtive surgery and hyperthermic intraperitoneal chemoperfusion in gastric cancer: From treating the incurable to preventing recurrence. Int J Hyperthermia 2015; 32:173-9. [DOI: 10.3109/02656736.2015.1111432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
26
|
Zhang T, Zhang L, Fan S, Zhang M, Fu H, Liu Y, Yin X, Chen H, Xie L, Zhang J, Gavine PR, Gu Y, Ni X, Su X. Patient-Derived Gastric Carcinoma Xenograft Mouse Models Faithfully Represent Human Tumor Molecular Diversity. PLoS One 2015. [PMID: 26217940 PMCID: PMC4517891 DOI: 10.1371/journal.pone.0134493] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Patient-derived cancer xenografts (PDCX) generally represent more reliable models of human disease in which to evaluate a potential drugs preclinical efficacy. However to date, only a few patient-derived gastric cancer xenograft (PDGCX) models have been reported. In this study, we aimed to establish additional PDGCX models and to evaluate whether these models accurately reflected the histological and genetic diversities of the corresponding patient tumors. By engrafting fresh patient gastric cancer (GC) tissues into immune-compromised mice (SCID and/or nude mice), thirty two PDGCX models were established. Histological features were assessed by a qualified pathologist based on H&E staining. Genomic comparison was performed for several biomarkers including ERBB1, ERBB2, ERBB3, FGFR2, MET and PTEN. These biomarkers were profiled to assess gene copy number by fluorescent in situ hybridization (FISH) and/or protein expression by immunohistochemistry (IHC). All 32 PDGCX models retained the histological features of the corresponding human tumors. Furthermore, among the 32 models, 78% (25/32) highly expressed ERBB1 (EGFR), 22% (7/32) were ERBB2 (HER2) positive, 78% (25/32) showed ERBB3 (HER3) high expression, 66% (21/32) lost PTEN expression, 3% (1/32) harbored FGFR2 amplification, 41% (13/32) were positive for MET expression and 16% (5/32) were MET gene amplified. Between the PDGCX models and their parental tumors, a high degree of similarity was observed for FGFR2 and MET gene amplification, and also for ERBB2 status (agreement rate = 94~100%; kappa value = 0.81~1). Protein expression of PTEN and MET also showed moderate agreement (agreement rate = 78%; kappa value = 0.46~0.56), while ERBB1 and ERBB3 expression showed slight agreement (agreement rate = 59~75%; kappa value = 0.18~0.19). ERBB2 positivity, FGFR2 or MET gene amplification was all maintained until passage 12 in mice. The stability of the molecular profiles observed across subsequent passages within the individual models provides confidence in the utility and translational significance of these models for in vivo testing of personalized therapies.
Collapse
Affiliation(s)
- Tianwei Zhang
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, P.R. China
| | - Lin Zhang
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, P.R. China
| | - Shuqiong Fan
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, P.R. China
| | - Meizhuo Zhang
- Research and Development Information, AstraZeneca R&D, Shanghai, P.R. China
| | - Haihua Fu
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, P.R. China
| | - Yuanjie Liu
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, P.R. China
| | - Xiaolu Yin
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, P.R. China
| | - Hao Chen
- Department of General Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Liang Xie
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, P.R. China
| | - Jingchuan Zhang
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, P.R. China
| | - Paul R. Gavine
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, P.R. China
| | - Yi Gu
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, P.R. China
| | - Xingzhi Ni
- Department of General Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- * E-mail: (XS); (XN)
| | - Xinying Su
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, P.R. China
- * E-mail: (XS); (XN)
| |
Collapse
|
27
|
c-Met targeting in advanced gastric cancer: An open challenge. Cancer Lett 2015; 365:30-6. [PMID: 26049023 DOI: 10.1016/j.canlet.2015.05.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022]
Abstract
Despite significant improvements in systemic chemotherapy over the last two decades, the prognosis of patients with advanced gastric and gastroesophageal junction adenocarcinoma (GC) remains poor. Because of molecular heterogeneity, it is essential to classify tumors based on the underlying oncogenic pathways and to develop targeted therapies acting on individual tumors. High-quality research and advances in technology have contributed to the elucidation of molecular pathways underlying disease progression and have stimulated many clinical studies testing target therapies in an advanced disease setting. In particular, strong preclinical evidence for the aberrant activation of the HGF/c-Met signaling pathways in GC cancers exists. This review will cover the c-Met pathway, the mechanisms of c-Met activation and the different strategies of its inhibition. Next, we will focus on the current state of the art in the clinical evaluation of c-Met-targeted therapies and the description of ongoing randomized trials with the idea that in this disease, high quality translational research to identify and validate biomarkers is a priority task.
Collapse
|
28
|
Murayama Y, Oritani K, Tsutsui S. Novel CD9-targeted therapies in gastric cancer. World J Gastroenterol 2015; 21:3206-3213. [PMID: 25805926 PMCID: PMC4363749 DOI: 10.3748/wjg.v21.i11.3206] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/13/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023] Open
Abstract
There are 33 human tetraspanin proteins, emerging as key players in malignancy, the immune system, fertilization, cellular signaling, adhesion, morphology, motility, proliferation, and tumor invasion. CD9, a member of the tetraspanin family, associates with and influences a variety of cell-surface molecules. Through these interactions, CD9 modifies multiple cellular events, including adhesion, migration, proliferation, and survival. CD9 is therefore considered to play a role in several stages during cancer development. Reduced CD9 expression is generally related to venous vessel invasion and metastasis as well as poor prognosis. We found that treatment of mice bearing human gastric cancer cells with anti-CD9 antibody successfully inhibited tumor progression via antiproliferative, proapoptotic, and antiangiogenic effects, strongly indicating that CD9 is a possible therapeutic target in patients with gastric cancer. Here, we describe the possibility of CD9 manipulation as a novel therapeutic strategy in gastric cancer, which still shows poor prognosis.
Collapse
|
29
|
Sanguedolce F, Bufo P. HER2 assessment by silver in situ hybridization: where are we now? Expert Rev Mol Diagn 2015; 15:385-98. [PMID: 25578771 DOI: 10.1586/14737159.2015.992416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HER2 testing in breast and gastric cancer is critical not only as a prognostic tool but also as a predictive marker for response to the humanized monoclonal antibody trastuzumab. Currently, HER2 status is assessed on histological and cytological specimens by conventional validated methods such as immunohistochemistry and FISH, while bright-field in situ hybridization techniques, such as silver in situ hybridization and chromogenic in situ hybridization, may offer performance benefits over FISH. The major points are first, technical issues, advantages and disadvantages relevant to each methods, and their clinical implications and second, the well-known genetic heterogeneity of HER2, and the occurrence of polysomy of chromosome 17. This review aims to summarize the growing body of literature on the accuracy of bright-field in situ techniques, notably silver in situ hybridization, in assessing HER2 status, and to discuss the role of such methods in pathology practice.
Collapse
|
30
|
Yun C, Gang L, Rongmin G, Xu W, Xuezhi M, Huanqiu C. Essential role of Her3 in two signaling transduction patterns: Her2/Her3 and MET/Her3 in proliferation of human gastric cancer. Mol Carcinog 2014; 54:1700-9. [PMID: 25400108 DOI: 10.1002/mc.22241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 12/29/2022]
Abstract
Various receptor tyrosine kinase (RTK) pathways were verified in many cancers including gastric cancer (GC), We sought to investigate the expression of RTKs including Her2, Her3, and Met and their transduction patterns in human GC. Over-expression of Her2, Her3, and c-Met in human GC was verified by immunohistochemistry leading to constitutive activation of RTK signaling pathways. Combined RTKs expression was valuable indicators for poor prognosis of GC patients. Using ErbB2 specific inhibitor Lapatinib and c-Met specific inhibitor PHA-665752, we further demonstrated that this constitutive activation of RTK signaling is necessary for the survival of GC cells. However, various RTK pattern: Her3/Her2 and Met/Her3 were verified in the transduction growth stimulus from outside via both AKT and MAPK signaling. Moreover, the essential roles of Her3 in both two heterodimers were obtained which showed significantly attenuated growth effect due to Her3 knockdown both in vitro and in vivo. In conclusion, various molecular transduction patterns: Her2/Her3 and Met/Her3 were verified in human GC, and Her3 could serve as a potential target in GC treatment.
Collapse
Affiliation(s)
- Chen Yun
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Li Gang
- Gastric Tumor Center, General Surgery Department, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital With Nanjing Medical University, Nanjing, China
| | - Gu Rongmin
- Gastric Tumor Center, General Surgery Department, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital With Nanjing Medical University, Nanjing, China
| | - Wen Xu
- Gastric Tumor Center, General Surgery Department, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital With Nanjing Medical University, Nanjing, China
| | - Ming Xuezhi
- Gastric Tumor Center, General Surgery Department, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital With Nanjing Medical University, Nanjing, China
| | - Chen Huanqiu
- Gastric Tumor Center, General Surgery Department, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Aichler M, Luber B, Lordick F, Walch A. Proteomic and metabolic prediction of response to therapy in gastric cancer. World J Gastroenterol 2014; 20:13648-13657. [PMID: 25320503 PMCID: PMC4194549 DOI: 10.3748/wjg.v20.i38.13648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Several new treatment options for gastric cancer have been introduced but the prognosis of patients diagnosed with gastric cancer is still poor. Disease prognosis could be improved for high-risk individuals by implementing earlier screenings. Because many patients are asymptomatic during the early stages of gastric cancer, the diagnosis is often delayed and patients present with unresectable locally advanced or metastatic disease. Cytotoxic treatment has been shown to prolong survival in general, but not all patients are responders. The application of targeted therapies and multimodal treatment has improved prognosis for those with advanced disease. However, these new therapeutic strategies do not uniformly benefit all patients. Predicting whether patients will respond to specific therapies would be of particular value and would allow for stratifying patients for personalized treatment strategies. Metabolic imaging by positron emission tomography was the first technique with the potential to predict the response of esophago-gastric cancer to neoadjuvant therapy. Exploring and validating tissue-based biomarkers are ongoing processes. In this review, we discuss the status of several targeted therapies for gastric cancer, as well as proteomic and metabolic methods for investigating biomarkers for therapy response prediction in gastric cancer.
Collapse
|
32
|
Shi J, Qu YP, Hou P. Pathogenetic mechanisms in gastric cancer. World J Gastroenterol 2014; 20:13804-13819. [PMID: 25320518 PMCID: PMC4194564 DOI: 10.3748/wjg.v20.i38.13804] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/15/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a major public health issue as the fourth most common cancer and the second leading cause of cancer-related death. Recent advances have improved our understanding of its molecular pathogenesis, as best exemplified by elucidating the fundamental role of several major signaling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these signaling pathways, such as gene mutations, copy number variants, aberrant gene methylation and histone modification, nucleosome positioning, and microRNAs. Some of these genetic/epigenetic alterations represent effective diagnostic and prognostic biomarkers and therapeutic targets for GC. This information has now opened unprecedented opportunities for better understanding of the molecular mechanisms of gastric carcinogenesis and the development of novel therapeutic strategies for this cancer. The pathogenetic mechanisms of GC are the focus of this review.
Collapse
|
33
|
Jürgensmeier JM, Eder JP, Herbst RS. New strategies in personalized medicine for solid tumors: molecular markers and clinical trial designs. Clin Cancer Res 2014; 20:4425-35. [PMID: 25183480 PMCID: PMC5369358 DOI: 10.1158/1078-0432.ccr-13-0753] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The delineation of signaling pathways to understand tumor biology combined with the rapid development of technologies that allow broad molecular profiling and data analysis has led to a new era of personalized medicine in oncology. Many academic institutions now routinely profile patients and discuss their cases in meetings of personalized medicine tumor boards before making treatment recommendations. Clinical trials initiated by pharmaceutical companies often require specific markers for enrollment or at least explore multiple options for future markers. In addition to the still small number of targeted agents that are approved for the therapy of patients with histological and molecularly defined tumors, a broad range of novel targeted agents in development are undergoing clinical studies with companion profiling to determine the best-responding patient population. Although the present focus of profiling lies in genetic analyses, additional tests of RNA, protein, and immune parameters are being developed and incorporated in clinical research, and these methods are likely to contribute significantly to future patient selection and treatment approaches. As the advances in tumor biology and human genetics have identified promising tumor targets, the ongoing clinical evaluation of novel agents will now need to show if the promise can be translated into benefit for patients.
Collapse
Affiliation(s)
| | - Joseph P Eder
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Roy S Herbst
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
34
|
Her-2 positive gastric cancer presented with thrombocytopenia and skin involvement: a case report. Case Rep Oncol Med 2014; 2014:194636. [PMID: 25045559 PMCID: PMC4090488 DOI: 10.1155/2014/194636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/10/2014] [Indexed: 01/13/2023] Open
Abstract
Gastric cancer is the 5th most frequent cancer around the world and the 3rd most frequent reason of deaths due to cancer. Every year, about 1 million new cases are taking place, with varying geographical distribution. Gastric cancer is often metastatic to liver, lungs, and bones in hematogenous way, to peripheral lymph nodes in lymphogenous way, and to peripheral tissues in adjacency way, yet bone marrow (BM) and cutaneous metastasis are quite seldom. Pancytopenia is a more frequent finding identified in BM metastasis of solid organ cancers, and isolated thrombocytopenia is less often. The human epidermal growth factor 2 (HER-2) is positive in gastric cancer at a rate of 7–34%. Here, we have presented our HER-2 positive gastric cancer incident which presented with BM and cutaneous metastasis, and has no 18F-fluoro-2-deoxi-D-glucose (FDG) involvement except bone metastases.
Collapse
|
35
|
Petris G, Bestagno M, Arnoldi F, Burrone OR. New tags for recombinant protein detection and O-glycosylation reporters. PLoS One 2014; 9:e96700. [PMID: 24802141 PMCID: PMC4011882 DOI: 10.1371/journal.pone.0096700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/10/2014] [Indexed: 01/24/2023] Open
Abstract
Monoclonal antibodies (mAbs), because of their unique specificity, are irreplaceable tools for scientific research. Precise mapping of the antigenic determinants allows the development of epitope tagging approaches to be used with recombinant proteins for several purposes. Here we describe a new family of tags derived from the epitope recognized by a single highly specific mAb (anti-roTag mAb), which was obtained from a pool of mAbs reacting with the rotavirus nonstructural protein 5 (NSP5). The variable regions of the anti-roTag mAb were identified and their binding capacity verified upon expression as a single-chain/miniAb. The minimal epitope, termed roTag, was identified as a 10 amino acid sequence (SISSSIFKNE). The affinity of the anti-roTag/roTag interaction was found to be comparable to that of the anti-SV5/SV5 tag interaction. roTag was successfully used for detection of several recombinant cytosolic, secretory and membrane proteins. Two additional variants of roTag of 10 and 13 amino acids containing O-glycosylation susceptible sites (termed OG-tag and roTagO) were constructed and characterised. These tags were useful to detect proteins passing through the Golgi apparatus, the site of O-glycosylation.
Collapse
Affiliation(s)
- Gianluca Petris
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Francesca Arnoldi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Oscar R. Burrone
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- * E-mail:
| |
Collapse
|
36
|
Fleuren EDG, Versleijen-Jonkers YMH, Heskamp S, van Herpen CML, Oyen WJG, van der Graaf WTA, Boerman OC. Theranostic applications of antibodies in oncology. Mol Oncol 2014; 8:799-812. [PMID: 24725480 DOI: 10.1016/j.molonc.2014.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/10/2014] [Indexed: 02/07/2023] Open
Abstract
Targeted therapies, including antibodies, are becoming increasingly important in cancer therapy. Important limitations, however, are that not every patient benefits from a specific antibody therapy and that responses could be short-lived due to acquired resistance. In addition, targeted therapies are quite expensive and are not completely devoid of side-effects. This urges the need for accurate patient selection and response monitoring. An important step towards personalizing antibody treatment could be the implementation of theranostics. Antibody theranostics combine the diagnostic and therapeutic potential of an antibody, thereby selecting those patients who are most likely to benefit from antibody treatment. This review focuses on the clinical application of theranostic antibodies in oncology. It provides detailed information concerning the suitability of antibodies for theranostics, the different types of theranostic tests available and summarizes the efficacy of theranostic antibodies used in current clinical practice. Advanced theranostic applications, including radiolabeled antibodies for non-invasive functional imagining, are also addressed. Finally, we discuss the importance of theranostics in the emerging field of personalized medicine and critically evaluate recent data to determine the best way to apply antibody theranostics in the future.
Collapse
Affiliation(s)
- Emmy D G Fleuren
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | - Sandra Heskamp
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Wim J G Oyen
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Otto C Boerman
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Abstract
The HER family of receptor tyrosine kinases, including EGF receptor (EGFR), HER2, HER3, and HER4, transduce growth-promoting signals in response to ligand binding to their extracellular domains (ECD). This family is deregulated in numerous cancers, with mutations in EGFR and HER2 often serving as "driver" events to activate key growth factor signaling pathways such as the RAS-ERK and PI3K-AKT pathways. Less attention has been paid to the oncogenic functions of HER3 due to its lack of intrinsic kinase activity. Recent work, however, has placed HER3 in the spotlight as a key signaling hub in several clinical contexts. First, HER3 has been shown to play a major role in mediating resistance to HER2 and phosphoinositide 3-kinase (PI3K) pathway-directed therapies due to its feedback regulation via AKT signaling. Second, activating mutations in HER3 have been identified in multiple cancer types, including gastric, colon, bladder, and non-small cell lung cancers. As a result, HER3 is now being examined as a direct therapeutic target. In the absence of a strong enzymatic activity to target, the focus has been on strategies to prevent HER3 activation including blocking its most relevant dimerization partner's kinase activity (erlotinib, gefitinib, and lapatinib), blocking its most relevant dimerization partner's ability to dimerize with HER3 (trastuzumab and pertuzumab), and directly targeting the HER3 ECD (MM-121, U3-1287, and LJM716). Although drugs targeting EGFR and HER2 have proven effective even as single agents, the preclinical and clinical data on the antibodies directly targeting HER3 suggest more limited potential for single-agent activity. Possible reasons for this include the lack of a suitable biomarker for activated HER3, the lack of potency of the antibodies, and the lack of relevance of HER3 for growth of some of the cancer types analyzed. Nevertheless, clear improvements in activity are being observed for many of these compounds when they are given in combination. In this snapshot, we will highlight the basis for HER3 activation in cancer, the different pharmacologic strategies being used, and opportunities for further development.
Collapse
Affiliation(s)
- Kinisha Gala
- Authors' Affiliations: Gerstner Sloan Kettering Graduate School of Biomedical Sciences; and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|