1
|
Nasier-Hussain M, Samanje JN, Mokhtari K, Nabi-Afjadi M, Fathi Z, Hoseini A, Bahreini E. Serum levels of oxidative stress, IL-8, and pepsinogen I/II ratio in Helicobacter pylori and gastric cancer patients: potential diagnostic biomarkers. BMC Gastroenterol 2025; 25:2. [PMID: 39748276 PMCID: PMC11697901 DOI: 10.1186/s12876-024-03564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND AND AIM Helicobacter pylori (H.pylori), a gram-negative bacterial pathogen associated with an increased risk of gastric cancer. This study investigates potential factors in the incidence of gastric cancer in patients with H.pylori, including oxidative stress, inflammatory biomarkers, serum pepsinogens (PG) of I and II, and PG-I/PG-II ratio. METHODS The study comprised individuals with Helicobacter pylori (H.pylori) infection, gastric cancer patients, and healthy individuals. Biochemical parameters such as FBS (fasting blood sugar), lipid profile, and liver and kidney functional factors were evaluated using colorimetric techniques. Oxidative markers such as total oxidant status (TOS) and malondialdehyde (MDA) were quantified through colorimetric methods. IL-8, PG-II, and PG-II levels were also determined using the ELISA technique. RESULTS Individuals with H. pylori infection exhibited elevated levels of IL-8 (940.5 ± 249.7 vs. 603.4 ± 89.1 pg/ml, P < 0.0001) and oxidative species (5.47 ± 0.7 vs. 1.64 ± 0.7 nM, P < 0.05) compared to gastric cancer patients, who, despite having lower levels of IL-8 and oxidative species, showed higher levels of MDA. H.pylori patients exhibited significantly higher levels of PG-I (7.28 ± 2.1 vs. 2.61 ± 1.4 ng/ml, P < 0.001), PG-II (3.21 ± 1 vs. 2.6 ± 0.6 ng/ml, P < 0.001), and the PG-I/PG-II ratio (2.27 ± 1.2 vs. 1 ± 0.4, P < 0.001) compared to gastric cancer patients. The findings were substantiated using various data analysis platforms such as Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN (The University of ALabama at Birmingham CANcer data analysis), cBioPortal, and TIMER (Tumor IMmune Estimation Resource). These parameters could serve as potential diagnostic biomarkers for screening and therapeutic interventions based on the cut-off values derived from ROC (receiver operating characteristic) curves for IL-8, PGI, PGII, and PGI/PGII across the three groups. CONCLUSIONS IL-8, PGI, PGII, and PGI/PGII parameters could serve as potential diagnostic markers for the screening and treatment of gastric conditions.
Collapse
Affiliation(s)
- Marwa Nasier-Hussain
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Jaleel Najah Samanje
- Collage of Health and Medical Technology, Middle Technical University, Baghdad, Iraq
| | - Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Hoseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
| |
Collapse
|
2
|
Alam K, Hossain MS, Zhao Y, Zhang Z, Xu S, Hao J, Yang Q, Li A. Tryptanthrins as multi-bioactive agents: discovery, diversity distribution and synthesis. Bioorg Chem 2025; 154:108071. [PMID: 39721143 DOI: 10.1016/j.bioorg.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Tryptanthrin and its derivatives, representing a type of alkaloids with indoloquinazoline structures, were first obtained from blue plants and indigo, and then extracted from fungi, marine bacteria and a number of many other natural sources. Various strategies for their chemical synthesis have been reported while tryptanthrin biosynthesis has been less investigated. Tryptanthrin and its derivative products have a broad range of pharmacological and biological functions. In this review, we cover the sources, chemical synthesis and biosynthesis, modes of action and biological activities of tryptanthrin and its derivatives.
Collapse
Affiliation(s)
- Khorshed Alam
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Bangladesh Standards and Testing Institution (BSTI), Dhaka 1208, Bangladesh.
| | - Md Sawkat Hossain
- Chittagong Medical College Hospital, K B Fazlul Kader Road, Panchlaish, Chattogram 4203, Bangladesh.
| | - Yiming Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Zhiheng Zhang
- Haide College, Ocean University of China, Qingdao 266100, China.
| | - Shouying Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jinfang Hao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Properzi S, Stracci F, Rosi M, Lupi C, Villarini A, Gili A. Can a diet rich in Brassicaceae help control Helicobacter pylori infection? A systematic review. Front Med (Lausanne) 2024; 11:1454902. [PMID: 39741515 PMCID: PMC11685009 DOI: 10.3389/fmed.2024.1454902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/11/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Helicobacter pylori (Hp) infection is highly prevalent globally and poses a significant public health challenge due to its link with chronic gastritis, peptic ulcers, and gastric malignancies. Hp's persistence within the gastric environment, particularly in case of infection with virulent strains, triggers chronic inflammatory responses and mucosal damage. Antibiotic therapy is the primary approach for Hp eradication, but antibiotic resistance and adverse effects hinder treatment efficacy. Emerging evidence suggests that Brassicaceae-derived metabolites could serve as adjunctive therapy for Hp infection, offering potential antimicrobial and anti-inflammatory benefits. Methods A systematic literature review was conducted following PRISMA guidelines to assess the impact of Brassicaceae-rich diets on Hp infection control. Searches were performed in MEDLINE PubMed, Web of Science, and the Cochrane Library until 18 October 2023, without language or date restrictions. Eligible studies meeting PICOS criteria were included, encompassing populations infected with Hp or Hp-infected human cell cultures, interventions involving Brassicaceae consumption or its bioactive molecules, and outcomes related to Hp infection control, antibiotic therapy interactions, reduction of antibiotic side effects, and inflammation mitigation. Animal studies, cell line experiments, reviews unrelated to the research objectives, and studies on Hp-related gastric cancer were excluded. Results Available evidence indicates that Brassicaceae consumption exhibits the potential to reduce Hp colonization but achieving complete eradication of the pathogen remains challenging. Conflicting results regarding the efficacy of broccoli in Hp treatment emerge, with certain investigations suggesting limited effectiveness. Other studies point to a potential for heightened eradication rates when combined with standard triple therapy. Furthermore, promising outcomes are observed with broccoli extract supplements, indicating their role in mitigating Hp-induced gastric mucosal damage. In fact, it is noteworthy that sulforaphane and its derivatives manifest notable reductions in pro-inflammatory markers, indicative of their anti-inflammatory properties. Adverse events associated with antibiotic therapy seem unaffected by sulforaphane derivatives or probiotics. However, individual responses to these treatments vary, underscoring the unpredictability of their efficacy in ameliorating antibiotic therapy-related side effects. Conclusion Our systematic review highlights the potential of Brassicaceae-rich diets as adjunctive therapy for Hp infection, offering synergistic interactions with antibiotics and possibly mitigating antibiotic side effects and inflammation. Further research, particularly well-designed randomized trials, is warranted to elucidate the therapeutic efficacy and optimal utilization of Brassicaceae-derived metabolites in managing human Hp-related diseases.
Collapse
Affiliation(s)
- Sara Properzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Umbria, Italy
| | - Fabrizio Stracci
- Department of Medicine and Surgery, University of Perugia, Perugia, Umbria, Italy
| | - Margherita Rosi
- Department of Medicine and Surgery, University of Perugia, Perugia, Umbria, Italy
| | - Chiara Lupi
- Department of Medicine and Surgery, University of Perugia, Perugia, Umbria, Italy
| | - Anna Villarini
- Department of Medicine and Surgery, University of Perugia, Perugia, Umbria, Italy
| | - Alessio Gili
- Department of Life Sciences, Health and Health Professions, Link Campus University, Rome, Italy
| |
Collapse
|
4
|
Kim HR, Kim MC, Kang EJ, Choi JH, Choi YK, Lee IB, Choi DH, Seo YJ, Noh JR, Kim YH, Lee CH. The Gastroprotective Effect of Sicyos angulatus Against Hydrochloric Acid/Ethanol-Induced Acute Gastritis and Gastric Ulcer in Mice. J Med Food 2024; 27:1219-1230. [PMID: 39321339 DOI: 10.1089/jmf.2024.k.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Gastritis and gastric ulcers are common gastric diseases that are caused by infection, drugs, alcohol consumption, or stress. These conditions lead to increased inflammatory cytokines and recruitment of leukocytes, which damage the stomach mucosa and exacerbate disease severity. Sicyos angulatus (SA), an annual vine in the Cucurbitaceae family, is known to have an anti-inflammatory effect, but its efficacy for preventing gastritis and gastric ulcers has not yet been evaluated. In the present study, we investigated the gastroprotective effect of SA using a hydrochloric acid/ethanol-induced gastric mucosal injury mouse model and lipopolysaccharide (LPS)-stimulated KATO III cells. Macroscopic analysis revealed a reduction in gastric ulcer area. Similarly, histopathological analysis showed a dose-dependent decrease in gastric mucosal injury, with significant improvement at 750 mg/kg of SA treatment. Gene expressions of inflammatory cytokines, chemokines, and adhesion molecule were reduced in the SA-administered group. Immunohistochemical staining indicated that SA significantly decreased neutrophil infiltration in the lamina propria and epithelium of the stomach. Kaempferol, a major bioactive flavonoid of SA, also improved gastric injury by reducing macroscopic and microscopic lesions, inflammatory mediator gene expression, and neutrophil infiltration. Furthermore, both SA and kaempferol downregulated LPS-mediated increases in inflammatory cytokines and chemokines following inhibition of p38 and c-Jun N-terminal kinase (JNK) phosphorylation in KATO III cells. These results suggest that SA can ameliorate gastric mucosal injury by inhibiting the recruitment of inflammatory cells, particularly neutrophils, and by suppressing p38 and JNK phosphorylation.
Collapse
Affiliation(s)
- Hye-Rin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeo, Republic of Korea
| | - Min-Chan Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeo, Republic of Korea
| | - Eun-Jung Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jung Hyeon Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yun Jeong Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeo, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeo, Republic of Korea
| |
Collapse
|
5
|
Zhu Z, Zou Y, Ou L, Chen M, Pang Y, Li H, Hao Y, Su B, Lai Y, Zhang L, Jia J, Wei R, Zhang G, Yao M, Feng Z. Preliminary investigation of the in vitro anti- Helicobacter pylori activity of Triphala. Front Pharmacol 2024; 15:1438193. [PMID: 39629075 PMCID: PMC11611552 DOI: 10.3389/fphar.2024.1438193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
Background Triphala, is a composite of three individual botanical drugs: Terminalia chebula, Terminalia bellirica, and Emblica officinalis. It exhibits properties such as heatclearing, anti-inflammatory, anti-fatigue, antioxidant, and antibacterial effects,making it extensively utilized in India and Tibet. It has been found to exhibitinhibitory effects on Helicobacter pylori (H. pylori); however, further comprehensive research is still needed to elucidate its specific antibacterial mechanism. The present study investigates the in vitro antibacterial activity and antibacterial mechanism of Triphala against H. pylori. Methods Ours research investigates the in vitro inhibitory activity of Triphala on multiple standard and clinical strains using microdilution broth method, time-kill curve, time-bactericidal curve and scanning electron microscopy (SEM). Furthermore, the antibacterial mechanism of Triphala is further explored through experiments on urease activity, biofilm formation, anti-adhesion properties, virulence actor assays using RT-qPCR and Western Blotting techniques. Results The research findings indicate that Triphala exhibits a minimum inhibitory concentration of 80-320 μg/mL against both standard and clinical strains of H. pylori. Triphala exerts its anti-H. pylori effect by perturbing the microstructure of H. pylori, downregulating adhesion-associated genes (alpA, alpB, babA), urease-related genes (ureA, ureB, ureE, ureF), and flagellar genes (flaA, flaB); inhibiting bacterial adhesion, biofilm formation, urease activity as well as CagA protein expression. Discussion These findings suggest that Triphala exerts inhibitory effects on H. pylori activity through multiple mechanisms, underscoring its potential as a new drug for the prevention and treatment of H. pylori infection.
Collapse
Affiliation(s)
- Zhixiang Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yujiang Pang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Hui Li
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Yajie Hao
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Bingmei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuqian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liping Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Junwei Jia
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Ruixia Wei
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhong Feng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
- Lunan Pharmaceutical Group Co., Ltd., Linyi, Shandong, China
- Shandong Engineering Research Center for New Drug Pharmaceuticals R&D in Shandong Province, Lunan Better Pharmaceutical Co., Ltd., Linyi, Shandong, China
| |
Collapse
|
6
|
Chen M, Wu Z, Zou Y, Peng C, Hao Y, Zhu Z, Shi X, Su B, Ou L, Lai Y, Jia J, Xun M, Li H, Zhu W, Feng Z, Yao M. Phellodendron chinense C.K.Schneid: An in vitro study on its anti-Helicobacter pylori effect. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118396. [PMID: 38823658 DOI: 10.1016/j.jep.2024.118396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellodendron chinense C.K.Schneid(P. chinense Schneid) is known in TCM as Huang Bo, is traditionally used to support gastrointestinal function and alleviate stomach-related ailments, including gastric ulcer bleeding and symptoms of gastroesophageal reflux disease. Helicobacter pylori (H. pylori) is classified by the WHO as a Group 1 carcinogen. However, the specific activity and mechanism of action of P. chinense Schneid against H. pylori infection remain unclear. It has been noted that Huangjiu processing may alter the bitter and cold properties of P. chinense Schneid, but its effect on antimicrobial activity requires further investigation. Additionally, it remains uncertain whether berberine is the sole antimicrobial active component of P. chinense Schneid. AIM OF STUDY This study aims to elucidate the anti-H. pylori infection activity of P. chinense Schneid, along with its mechanism of action and key antimicrobial active components. MATERIALS AND METHODS Phytochemical analysis was carried out by UPLC-MS/MS. HPLC was employed to quantify the berberine content of the extracts. Antimicrobial activity was assessed using the micro broth dilution method. Morphology was observed using SEM. The impact on urease activity was analyzed through in vitro urease enzyme kinetics. RT-qPCR was employed to detect the expression of virulence genes, including adhesin, flagellum, urease, and cytotoxin-related genes. The adhesion effect was evaluated by immunofluorescence staining and agar culture. RESULTS P. chinense Schneid exhibited strong antimicrobial activity against both antibiotic-sensitive and resistant H. pylori strains, with MIC ranging from 40 to 160 μg/mL. Combination with amoxicillin, metronidazole, levofloxacin, and clarithromycin did not result in antagonistic effects. P. chinense Schneid induced alterations in bacterial morphology and structure, downregulated the expression of various virulence genes, and inhibited urease enzyme activity. In co-infection systems, P. chinense Schneid significantly attenuated H. pylori adhesion and urease relative content, thereby mitigating cellular damage caused by infection. Huangjiu processing enhanced the anti-H. pylori activity of P. chinense Schneid. Besides berberine, P. chinense Schneid contained seven other components with anti-H. pylori activity, with palmatine exhibiting the strongest activity, followed by jatrorrhizine. CONCLUSIONS This study sheds light on the potential therapeutic mechanisms of P. chinense Schneid against H. pylori infection, demonstrating its capacity to disrupt bacterial structure, inhibit urease activity, suppress virulence gene transcription, inhibit adhesion, and protect host cells. The anti-H. pylori activity of P. chinense Schneid was potentiated by Huangjiu processing, and additional components beyond berberine were identified as possessing strong anti-H. pylori activity. Notably, jatrorrhizine, a core component of P. chinense Schneid, exhibited significant anti-H. pylori activity, marking a groundbreaking discovery.
Collapse
Affiliation(s)
- Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ziyao Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yajie Hao
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Zhixiang Zhu
- School of Medicine and Pharmacy (Qingdao), Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyan Shi
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Bingmei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yuqian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Junwei Jia
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Mingjin Xun
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Hui Li
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, China; Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Wu W, Mi Y, Meng Q, Li N, Li W, Wang P, Hou Y. Natural polyphenols as novel interventions for aging and age-related diseases: Exploring efficacy, mechanisms of action and implications for future research. CHINESE HERBAL MEDICINES 2024. [DOI: 10.1016/j.chmed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
8
|
Zhao L, Kan Y, Wang L, Pan J, Li Y, Zhu H, Yang Z, Xiao L, Fu X, Peng F, Ren H. Roles of long non‑coding RNA SNHG16 in human digestive system cancer (Review). Oncol Rep 2024; 52:106. [PMID: 38940337 PMCID: PMC11234248 DOI: 10.3892/or.2024.8765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
The incidence of tumors in the human digestive system is relatively high, including esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer. These malignancies arise from a complex interplay of environmental and genetic factors. Among them, long non‑coding RNAs (lncRNAs), which cannot be translated into proteins, serve an important role in the development, progression, migration and prognosis of tumors. Small nucleolar RNA host gene 16 (SNHG16) is a typical lncRNA, and its relationship with digestive system tumors has been widely explored. The prevailing hypothesis suggests that the principal molecular mechanism of SNHG16 in digestive system tumors involves it functioning as a competitive endogenous RNA that interacts with other proteins, regulates various genes and influences a downstream target molecule. The present review summarizes recent research on the relationship between SNHG16 and numerous types of digestive system cancer, encompassing its biological functions, underlying mechanisms and potential clinical implications. Furthermore, it outlines the association between SNHG16 expression and pertinent risk factors, such as smoking, infection and diet. The present review indicated the promise of SNHG16 as a potential biomarker and therapeutic target in human digestive system cancer.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuling Kan
- Central Laboratory of Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Lu Wang
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiquan Pan
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yun Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Haiyan Zhu
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xinhua Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Weifang Key Laboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Haipeng Ren
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
9
|
Liu M, Liu S, Lu Z, Chen H, Xu Y, Gong X, Chen G. Machine Learning-Based Prediction of Helicobacter pylori Infection Study in Adults. Med Sci Monit 2024; 30:e943666. [PMID: 38850016 PMCID: PMC11168235 DOI: 10.12659/msm.943666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/02/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Helicobacter pylori has a high infection rate worldwide, and epidemiological study of H. pylori is important. Artificial intelligence has been widely used in the field of medical research and has become a hotspot in recent years. This paper proposed a prediction model for H. pylori infection based on machine learning in adults. MATERIAL AND METHODS Adult patients were selected as research participants, and information on 30 factors was collected. The chi-square test, mutual information, ReliefF, and information gain were used to screen the feature factors and establish 2 subsets. We constructed an H. pylori infection prediction model based on XGBoost and optimized the model using a grid search by analyzing the correlation between features. The performance of the model was assessed by comparing its accuracy, recall, precision, F1 score, and AUC with those of 4 other classical machine learning methods. RESULTS The model performed better on the part B subset than on the part A subset. Compared with the other 4 machine learning methods, the model had the highest accuracy, recall, F1 score, and AUC. SHAP was used to evaluate the importance of features in the model. It was found that H. pylori infection of family members, living in rural areas, poor washing hands before meals and after using the toilet were risk factors for H. pylori infection. CONCLUSIONS The model proposed in this paper is superior to other models in predicting H. pylori infection and can provide a scientific basis for identifying the population susceptible to H. pylori and preventing H. pylori infection.
Collapse
Affiliation(s)
- Min Liu
- Department of Biology and Medicine, China University of Mining and Technology of School of Chemical Engineering & Technology, Xuzhou, Jiangsu, PR China
| | - Shiyu Liu
- Department of Gastroenterology, The First People’s Hospital of Xuzhou (Municipal Hospital Affiliated to Xuzhou Medical University), Xuzhou, Jiangsu, PR China
| | - Zhaolin Lu
- Department of Information, The First People’s Hospital of Xuzhou (Municipal Hospital Affiliated to Xuzhou Medical University), Xuzhou, Jiangsu, PR China
| | - Hu Chen
- The First Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yuling Xu
- Department of Biology and Medicine, China University of Mining and Technology of School of Chemical Engineering & Technology, Xuzhou, Jiangsu, PR China
| | - Xue Gong
- Department of Biology and Medicine, China University of Mining and Technology of School of Chemical Engineering & Technology, Xuzhou, Jiangsu, PR China
| | - Guangxia Chen
- Department of Gastroenterology, The First People’s Hospital of Xuzhou (Municipal Hospital Affiliated to Xuzhou Medical University), Xuzhou, Jiangsu, PR China
| |
Collapse
|
10
|
Lai Y, Dong X, Song Y, Zhao J, Du Y, Li Z. Novel MAXPOWER biological antibacterial liquid for eradicating oral Helicobacter pylori. BMC Infect Dis 2024; 24:540. [PMID: 38811871 PMCID: PMC11137934 DOI: 10.1186/s12879-024-09424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Eradication of oral Helicobacter pylori (H. pylori) not only reduces the infection rate from the transmission route but also improves the success rate of intragastric eradication. MAXPOWER Biological Bacteriostatic Liquid, developed in our previous work, is a composite biological preparation with strong antibacterial ability and unique antibacterial mechanism. The present study evaluated the efficacy of the MAXPOWER biocontrol solution on H. pylori and its success rate in eradicating oral H. pylori in clinical patients. METHODS Live-dead cell staining and hemolysis test were used to evaluate the cellular safety of MAXPOWER biocontrol solution; plate spreading, live-dead bacterial staining, and scanning electron microscopy methods were used to evaluate its antimicrobial effect against H. pylori. Transcriptomics was used to analyze the changes in H. pylori genes before and after treatment. After seven days of gavage treatment, H&E staining and mice feces were collected for 16SrDNA sequencing to evaluate the animals' safety. Oral H. pylori-positive patients were randomized to be given a placebo and MAXPOWER Bio-Bacteriostatic Liquid gargle for seven days to evaluate the effect on oral H. pylori eradication. RESULTS In vitro tests demonstrated that this product has excellent biocompatibility and hemocompatibility and can effectively eradicate oral H. pylori. In vivo tests further showed that it has good biosafety and virtually no adverse effect on intestinal microflora. Transcriptomics analysis revealed that it kills H. pylori cells mainly by disrupting their cell membranes and metabolism. Additionally, the results of randomized controlled trials on humans disclosed that the oral H. pylori eradication rates achieved by MAXPOWER Biological Antibacterial Liquid were 71.4% and 78.9% according to the intention-to-treat and the per-protocol analysis, respectively. CONCLUSION MAXPOWER Biological Antibacterial Liquid is both safe and efficacious in the eradication of oral H. pylori. TRIAL REGISTRATION This study was retrospectively registered in the ClinicalTrials.gov Trial Registry on 21/09/2023 (NCT06045832).
Collapse
Affiliation(s)
- Yongkang Lai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China
- Department of Gastroenterology, Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou, 341000, China
| | - Xiaoyang Dong
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China
| | - Yingxiao Song
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China.
- National Clinical Research Center for Digestive Diseases, Changhai Hospital, Naval Medical University, Shanghai, China.
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, China.
- Changhai Clinical Research Unit, Changhai hospital, Naval Medical University, Shanghai, China.
| | - Yiqi Du
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China.
- National Clinical Research Center for Digestive Diseases, Changhai Hospital, Naval Medical University, Shanghai, China.
- National key laboratory of Immunity and inflammation, Naval Medical University, Shanghai, China.
- Changhai Clinical Research Unit, Changhai hospital, Naval Medical University, Shanghai, China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangp u District, Shanghai, 200433, China
| |
Collapse
|
11
|
Vieira RV, Peiter GC, de Melo FF, Zarpelon-Schutz AC, Teixeira KN. In silico prospective analysis of the medicinal plants activity on the CagA oncoprotein from Helicobacter pylori. World J Clin Oncol 2024; 15:653-663. [PMID: 38835850 PMCID: PMC11145963 DOI: 10.5306/wjco.v15.i5.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Colonization with Helicobacter pylori (H. pylori) has a strong correlation with gastric cancer, and the virulence factor CagA is implicated in carcinogenesis. Studies have been conducted using medicinal plants with the aim of eliminating the pathogen; however, the possibility of blocking H. pylori-induced cell differentiation to prevent the onset and/or progression of tumors has not been addressed. This type of study is expensive and time-consuming, requiring in vitro and/or in vivo tests, which can be solved using bioinformatics. Therefore, prospective computational analyses were conducted to assess the feasibility of interaction between phenolic compounds from medicinal plants and the CagA oncoprotein. AIM To perform a computational prospecting of the interactions between phenolic compounds from medicinal plants and the CagA oncoprotein of H. pylori. METHODS In this in silico study, the structures of the phenolic compounds (ligands) kaempferol, myricetin, quercetin, ponciretin (flavonoids), and chlorogenic acid (phenolic acid) were selected from the PubChem database. These phenolic compounds were chosen based on previous studies that suggested medicinal plants as non-drug treatments to eliminate H. pylori infection. The three-dimensional structure model of the CagA oncoprotein of H. pylori (receptor) was obtained through molecular modeling using computational tools from the I-Tasser platform, employing the threading methodology. The primary sequence of CagA was sourced from GenBank (BAK52797.1). A screening was conducted to identify binding sites in the structure of the CagA oncoprotein that could potentially interact with the ligands, utilizing the GRaSP online platform. Both the ligands and receptor were prepared for molecular docking using AutoDock Tools 4 (ADT) software, and the simulations were carried out using a combination of ADT and AutoDock Vina v.1.2.0 software. Two sets of simulations were performed: One involving the central region of CagA with phenolic compounds, and another involving the carboxy-terminus region of CagA with phenolic compounds. The receptor-ligand complexes were then analyzed using PyMol and BIOVIA Discovery Studio software. RESULTS The structure model obtained for the CagA oncoprotein exhibited high quality (C-score = 0.09) and was validated using parameters from the MolProbity platform. The GRaSP online platform identified 24 residues (phenylalanine and leucine) as potential binding sites on the CagA oncoprotein. Molecular docking simulations were conducted with the three-dimensional model of the CagA oncoprotein. No complexes were observed in the simulations between the carboxy-terminus region of CagA and the phenolic compounds; however, all phenolic compounds interacted with the central region of the oncoprotein. Phenolic compounds and CagA exhibited significant affinity energy (-7.9 to -9.1 kcal/mol): CagA/kaempferol formed 28 chemical bonds, CagA/myricetin formed 18 chemical bonds, CagA/quercetin formed 16 chemical bonds, CagA/ponciretin formed 13 chemical bonds, and CagA/chlorogenic acid formed 17 chemical bonds. Although none of the phenolic compounds directly bound to the amino acid residues of the K-Xn-R-X-R membrane binding motif, all of them bound to residues, mostly positively or negatively charged, located near this region. CONCLUSION In silico, the tested phenolic compounds formed stable complexes with CagA. Therefore, they could be tested in vitro and/or in vivo to validate the findings, and to assess interference in CagA/cellular target interactions and in the oncogenic differentiation of gastric cells.
Collapse
Affiliation(s)
| | | | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde-Campus Anísio Teixeira, Vitória da Conquista 45029-094, Brazil
| | - Ana Carla Zarpelon-Schutz
- Universidade Federal do Paraná, Campus Toledo, Toledo 85919-899, Brazil
- Universidade Federal do Paraná-Setor Palotina, Programa de Pós-graduação em Biotecnologia, Palotina 85950-000, Brazil
| | - Kádima Nayara Teixeira
- Universidade Federal do Paraná, Campus Toledo, Toledo 85919-899, Brazil
- Universidade Federal do Paraná-Setor Palotina, Programa de Pós-graduação em Biotecnologia, Palotina 85950-000, Brazil
| |
Collapse
|
12
|
Li G, Liu X, Miao Z, Fu J, Zheng X. Purification, identification and molecular docking of dual-functional peptides derived from corn protein hydrolysates with antioxidant and antiadhesive activity against Helicobacter pylori. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3676-3684. [PMID: 38158779 DOI: 10.1002/jsfa.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND More than 50% of the world's population is infected with Helicobacter pylori, which is classified as a group I carcinogen by the World Health Organization (WHO). RESULTS Corn protein dual-functional peptides were identified and functionally analyzed in vitro and in silico. Two novel dual-functional peptides were identified as Cys-Gln-Asp-Val-Pro-Leu-Leu (CQDVPLL, CQ7) and Thr-Ile-Phe-Pro-Gln-Cys (TIFPQC, TI6) using nanoscale liquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS). The antiadhesive effects against H. pylori of CQ7 and TI6 were 45.17 ± 2.41% and 48.62 ± 1.84% at 4 mg mL-1 , respectively. In silico prediction showed that CQ7 and TI6 had good physicochemical properties. Molecular docking demonstrated that CQ7 and TI6 could bind to the adhesins BabA and SabA by hydrophobic interactions and hydrogen bonds, preventing H. pylori infection. Moreover, CQ7 showed strong antioxidant activity due to its unique amino acid composition. CONCLUSION The present study demonstrated that the identified peptides, CQ7 and TI6, possess antioxidant and antiadhesive effects, preventing H. pylori infection and alleviating oxidative injury to the gastric mucosa. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanlong Li
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Techology, College of Food and Bioengineering, Qiqihar University, Qiqihar, PR China
| | - Xiaolan Liu
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Techology, College of Food and Bioengineering, Qiqihar University, Qiqihar, PR China
| | - Zhengfei Miao
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Techology, College of Food and Bioengineering, Qiqihar University, Qiqihar, PR China
| | - Jinshuang Fu
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Techology, College of Food and Bioengineering, Qiqihar University, Qiqihar, PR China
| | - Xiqun Zheng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, PR China
| |
Collapse
|
13
|
Huang J, Chen J, Li J. Quercetin promotes ATG5-mediating autophagy-dependent ferroptosis in gastric cancer. J Mol Histol 2024; 55:211-225. [PMID: 38441713 DOI: 10.1007/s10735-024-10186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Quercetin has been documented to possess a multitude of pharmacological effects, encompassing antioxidant, antiviral, antimicrobial, and anti-inflammatory properties. Nevertheless, the exact molecular mechanisms responsible for the anti-tumor properties of quercetin remain to be fully explicated. To this end, quercetin was administered to gastric cancer cells (in vitro) AGS and MKN45, as well as BALB/c mice (in vivo). The proliferation ability of cells was evaluated using cholecystokinin octapeptide (CCK-8) and colony formation assays. The evaluation of ferroptosis involved the measurement of iron, malondialdehyde (MDA), and lipid reactive oxygen species. Autophagy and apoptosis were evaluated using immunofluorescence staining, western blotting, and flow cytometry analysis. Our findings indicate that quercetin significantly inhibited cell viability and tumor volume compared to the control group. Additionally, quercetin was found to decrease glutathione (GSH), malondialdehyde, and reactive oxygen species (ROS) levels while suppressing beclin1 and LC3B levels in cancer cells. Remarkably, the utilization of siATG5 was found to reverse all the aforementioned effects of quercetin. Ultimately, the effects of quercetin on gastric cancer were validated. In summary, our findings provide evidence that quercetin facilitates autophagy-mediated ferroptosis in gastric cancer.
Collapse
Affiliation(s)
- Ju Huang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Shuai Fu Community, Dong Cheng District, Beijing, 100730, China
| | - Jian Chen
- Department of Oncology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No.20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, China.
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Shuai Fu Community, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
14
|
Kısa D, Baş Topcu KS, Tunçkol B, Genç N, Imamoğlu R. Evaluation of Biological Potency of two Endemic Species Integrated with in vitro and in silico Approches: LC-MS/MS Analysis of the Plants. Chem Biodivers 2024; 21:e202301351. [PMID: 38268337 DOI: 10.1002/cbdv.202301351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
In the present study, the main phytochemical components of endemic plant extracts and inhibitory potency were screened related to different biological activities. Seven compounds were quantified, and cyanidin-3-o-glucoside was the dominant secondary metabolite in the extract of plants. The extract from P. asiae-minoris (PAM) exhibited the best enzyme inhibitory activity against BChE (1.73±0.23 μg mL-1 ), tyrosinase (2.47±0.28 μg mL-1 ), α-glucosidase (5.28±0.66 μg mL-1 ), AChE (8.66±0.86 μg mL-1 ), and ACE (19.27±1.02 μg mL-1 ). In vitro antioxidant assay, PAM extract possessed the highest activity in respect of DPPH radical scavenging (24.29±0.23 μg/mL), ABTS⋅+ scavenging (13.50±0.27 μg/mL) and FRAP reducing power (1.56±0.01 μmol TE/g extract). MIC values ranged from 1-8 mg/mL for antibacterial ability, and the PAM extract showed a stronger effect for B. subtilis, E. faecalis, and E. coli at 1 mg/mL. The antiproliferative ability of A. bartinense (AB) extract demonstrated a suppressive effect (IC50 : 70.26 μg/mL) for pancreatic cancer cell lines. According to the affinity scores analysis, the cyanidin-3-o-glucoside demonstrated the lowest docking scores against ACE, AChE, BChE, and collagenase. It was found that the PAM extract exhibited better inhibitory capabilities than A. bartinense. The P. asiae-minoris plant, reported to be in the Critically Endangered (CR) category, should be conserved by culturing, considering its biological abilities.
Collapse
Affiliation(s)
- Dursun Kısa
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| | - Kübra Sena Baş Topcu
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| | - Bilge Tunçkol
- Ulus Vocational School Department of Forestry and Forest Products Program, Bartin University, 74600, Bartin, Turkey
| | - Nusret Genç
- Department of Chemistry, Faculty of Science and Letters, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Rizvan Imamoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| |
Collapse
|
15
|
Mohammed HS, Ibrahim MH, Abdel-Aziz MM, Ghareeb MA. Anti- Helicobacter pylori, anti-biofilm activity, and molecular docking study of citropten, bergapten, and its positional isomer isolated from Citrus sinensis L. leaves. Heliyon 2024; 10:e25232. [PMID: 38352786 PMCID: PMC10861955 DOI: 10.1016/j.heliyon.2024.e25232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Citrus sinensis L. is a candidate plant with promising antimicrobial potential. In the current study, the phytochemical investigation of C. sinensis leaf extract led to the isolation of three coumarins, namely bergapten, xanthotoxin, and citropten. Methods The chemical structures of the isolated coumarins were elucidated using NMR and ESI-MS techniques. The total aqueous ethanol leaf extract and the isolated coumarins were evaluated for their antimicrobial effects against Helicobacter pylori using the MTT-micro-well dilution method and its anti-biofilm activity using MBEC assay, as compared to clarithromycin. Results The results showed that citropten scored the lowest MIC value at 3.9 μg/mL and completely inhibited the planktonic growth of H. pylori. In addition, it completely suppressed H. pylori biofilm at 31.25 μg/mL. These findings have been supported by molecular docking studies on the active sites of the H. pylori inosine 5'-monophosphate dehydrogenase (HpIMPDH) model and the urease enzyme, showing a strong binding affinity of citropten to HpIMPDH with seven hydrogen bonds and a binding energy of -6.9 kcal/mol. Xanthotoxin and bergapten showed good docking scores, both at -6.5 kcal/mol for HpIMPDH, with each having four hydrogen bondings. Furthermore, xanthotoxin showed many hydrophobic interactions, while bergapten formed one Pi-anion interaction. Concerning docking in the urease enzyme, the compounds showed mild to moderate binding affinities as compared to the ligand. Thus, based on docking results and good binding scores observed with the HpIMPDH active site, an in-vitro HpIMPDH inhibition assay was done for the compounds. Citropten showed the most promising inhibitory activity with an IC50 value of 2.4 μM. Conclusion: The present study demonstrates that C. sinensis L. leaves are a good source for supplying coumarins that can act as naturally effective anti-H. pylori agents.
Collapse
Affiliation(s)
- Hala Sh Mohammed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11311, Egypt
| | - Mona H. Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11311, Egypt
| | - Marwa M. Abdel-Aziz
- The Regional Centre for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| |
Collapse
|
16
|
Wang C, Yao M, Zhong H, Meena SS, Shu F, Nie S, Xie M. Natural foods resources and dietary ingredients for the amelioration of Helicobacter pylori infection. Front Med (Lausanne) 2023; 10:1324473. [PMID: 38131043 PMCID: PMC10734694 DOI: 10.3389/fmed.2023.1324473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a gastric-persistent pathogen that can cause peptic ulcer disease, gastric cancer, and mucosal-associated lymphoid tissue lymphoma. This pathogen is commonly treated with antibiotic-based triple or quadruple therapy. However, antibiotic therapy could result in the bacterial resistance, imbalance of gut microbiota, and damage to the liver and kidneys, etc. Therefore, there is an urgent need for alternative therapeutic strategies. Interestingly, natural food resources, like vegetables, fruits, spices, and edible herbs, have potent inhibitory effects on H. pylori. In this review, we systematically summarized these foods with supporting evidence from both animal and clinical studies. The results have indicated that natural foods may possess temporary inhibition effect on H. pylori rather than durable eradication, and may help to reduce H. pylori colonization, enhance the effect of antibiotics and modulate the host's immune response.
Collapse
Affiliation(s)
- Chengyuan Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Meixiang Yao
- Jiangzhong Dietary Therapy Technology Co. Ltd, Jiujiang, Jiangxi, China
| | - Hongguang Zhong
- Jiangzhong Dietary Therapy Technology Co. Ltd, Jiujiang, Jiangxi, China
| | - Stephene S. Meena
- Jiangzhong Cancer Research, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Fuxing Shu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Rezaul Islam M, Rauf A, Akash S, Kumer A, Hussain MS, Akter S, Gupta JK, Thameemul Ansari L, Mahfoj Islam Raj MM, Bin Emran T, Aljohani AS, Abdulmonem WA, Thiruvengadam R, Thiruvengadam M. Recent perspective on the potential role of phytocompounds in the prevention of gastric cancer. Process Biochem 2023; 135:83-101. [DOI: 10.1016/j.procbio.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
18
|
Elhefni N, Ebada SS, Abdel-Aziz MM, Marwan ESM, El-Sharkawy S, El-Neketi M. Promising anti- Helicobacter pylori and anti-inflammatory metabolites from unused parts of Phoenix dactylifera CV 'Zaghloul': in vitro and in silico study. PHARMACEUTICAL BIOLOGY 2023; 61:657-665. [PMID: 37092359 PMCID: PMC10128457 DOI: 10.1080/13880209.2023.2200841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Date palm waste is an agricultural waste that accumulates in massive amounts causing serious pollution and environmental problems. OBJECTIVES Date palm trees, Phoenix dactylifera Linn CV 'Zaghloul' (Arecaceae) grown in Egypt, leave behind waste products that were investigated to produce compounds with anti-Helicobacter pylori and anti-inflammatory activities. MATERIALS AND METHODS Chromatographic workup of P. dactylifera aqueous methanol extract derived from fibrous mesh and fruit bunch (without fruit) afforded a new sesquiterpene lactone derivative, phodactolide A (1), along with ten known compounds (2-11), primarily identified as polyphenols. Chemical structures were unambiguously elucidated based on mass and 1D/2D NMR spectroscopy. All isolated compounds were assessed for their activities against H. pylori using broth micro-well dilution method and clarithromycin as a positive control. The anti-inflammatory response of isolated compounds was evaluated by inhibiting cyclooxygenase-2 enzyme using TMPD Assay followed by an in silico study to validate their mechanism of action using celecoxib as a standard drug. RESULTS Compounds 4, 6 and 8-10 exhibited potent anti-H. pylori activity with MIC values ranging from 0.48 to 1.95 µg/mL that were comparable to or more potent than clarithromycin. For COX-2 inhibitory assay, 4, 7 and 8 revealed promising activities with IC50 values of 1.04, 0.65 and 0.45 μg/mL, respectively. These results were verified by molecular docking studies, where 4, 7 and 8 showed the best interactions with key amino acid residues of COX-2 active site. CONCLUSION The present study characterizes a new sesquiterpene lactone and recommends 4 and 8 for future in vivo studies as plausible anti-ulcer remedies.
Collapse
Affiliation(s)
- Nada Elhefni
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sherif S. Ebada
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - El-Sayed M. Marwan
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Saleh El-Sharkawy
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mona El-Neketi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- CONTACT Mona El-Neketi Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, 35516Mansoura, Egypt
| |
Collapse
|
19
|
Liu Z, Huang H, Yu Y, Li L, Shi X, Wang F. Exploring the mechanism of ellagic acid against gastric cancer based on bioinformatics analysis and network pharmacology. J Cell Mol Med 2023; 27:3878-3896. [PMID: 37794689 PMCID: PMC10718161 DOI: 10.1111/jcmm.17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Ellagic acid (EA) is a natural polyphenolic compound. Recent studies have shown that EA has potential anticancer properties against gastric cancer (GC). This study aims to reveal the potential targets and mechanisms of EA against GC. This study adopted methods of bioinformatics analysis and network pharmacology, including the weighted gene co-expression network analysis (WGCNA), construction of protein-protein interaction (PPI) network, receiver operating characteristic (ROC) and Kaplan-Meier (KM) survival curve analysis, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, molecular docking and molecular dynamics simulations (MDS). A total of 540 EA targets were obtained. Through WGCNA, we obtained a total of 2914 GC clinical module genes, combined with the disease database for screening, a total of 606 GC-related targets and 79 intersection targets of EA and GC were obtained by constructing Venn diagram. PPI network was constructed to identify 14 core candidate targets; TP53, JUN, CASP3, HSP90AA1, VEGFA, HRAS, CDH1, MAPK3, CDKN1A, SRC, CYCS, BCL2L1 and CDK4 were identified as the key targets of EA regulation of GC by ROC and KM curve analysis. The enrichment analysis of GO and KEGG pathways of key targets was performed, and they were mainly enriched in p53 signalling pathway, PI3K-Akt signalling pathway. The results of molecular docking and MDS showed that EA could effectively bind to 13 key targets to form stable protein-ligand complexes. This study revealed the key targets and molecular mechanisms of EA against GC and provided a theoretical basis for further study of the pharmacological mechanism of EA against GC.
Collapse
Affiliation(s)
- Zhiyao Liu
- Department of Rehabilitation MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Hailiang Huang
- Department of Rehabilitation MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Ying Yu
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Lingling Li
- Department of Rehabilitation MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Xin Shi
- Department of Rehabilitation MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Fangqi Wang
- Department of Rehabilitation MedicineShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
20
|
Liao Y, Gui Y, Li Q, An J, Wang D. The signaling pathways and targets of natural products from traditional Chinese medicine treating gastric cancer provide new candidate therapeutic strategies. Biochim Biophys Acta Rev Cancer 2023; 1878:188998. [PMID: 37858623 DOI: 10.1016/j.bbcan.2023.188998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Gastric cancer (GC) is one of the severe malignancies with high incidence and mortality, especially in Eastern Asian countries. Significant advancements have been made in diagnosing and treating GC over the past few decades, resulting in tremendous improvements in patient survival. In recent years, traditional Chinese medicine (TCM) has garnered considerable attention as an alternative therapeutic approach for GC due to its multicomponent and multitarget characteristics. Consequently, natural products found in TCM have attracted researchers' attention, as growing evidence suggests that these natural products can impede GC progression by regulating various biological processes. Nevertheless, their molecular mechanisms are not systematically uncovered. Here, we review the major signaling pathways involved in GC development. Additionally, clinical GC samples were analyzed. Moreover, the anti-GC effects of natural products, their underlying mechanisms and potential targets were summarized. These summaries are intended to facilitate further relevant research, and accelerate the clinical applications of natural products in GC treatment.
Collapse
Affiliation(s)
- Yile Liao
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Gui
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Qingzhou Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun An
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
21
|
Qi C, Liu L, Wang J, Jin Y. Up-regulation of microRNA-183 reduces FOXO1 expression in gastric cancer patients with Helicobacter pylori infection. Histol Histopathol 2023; 38:1349-1357. [PMID: 36805538 DOI: 10.14670/hh-18-593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The aim of the study is to detect the expression of FOXO1 mRNA and protein in samples from gastric cancer patients with Helicobacter pylori (H. pylori) infection, and to investigate the relationship between FOXO1 expression and miR-183 expression. Twenty-six gastric cancer patients with H. pylori infection and 26 gastric cancer patients without H. pylori infection were included into experimental group and control group, respectively. Tumor tissues and peripheral blood were collected from all subjects. QRT-PCR was used to determine the expression of miRNA and mRNA. Western blotting was carried out to measure protein expression. Dual luciferase reporter assay was used to identify direct interaction between miRNA and 3'-UTR of mRNA. Cell proliferation was examined by CCK-8 assay. FOXO1 mRNA and protein expression was down-regulated in gastric cancer patients, being possibly related to H. pylori infection. The expression of miR-183 in tumor tissues and serum from gastric cancer patients with H. pylori infection was elevated, and probably regulated the expression of FOXO1 by direct targeting. Stimulation by H. pylori up-regulated the expression of miR-183 in gastric cancer AGS cells, and reduced the levels of FOXO1 mRNA and protein. Inhibition of miR-183 elevated the expression of FOXO1 and suppressed the proliferation of AGS cells. The present study demonstrates that the expression of FOXO1 in tumor tissues and blood from gastric cancer patients with H. pylori infection is significantly down-regulated, and may be related to the up-regulation of miR-183. H. pylori may regulate FOXO1 expression through miR-183 to affect the pathological process of gastric cancer.
Collapse
Affiliation(s)
- Chuan Qi
- Laboratory of Genetics, Women and Children's Hospital of Jinzhou, Jinzhou, PR China.
| | - Li Liu
- Department of Gynaecology, Beijing University of Chinese Medicine Shenzhen Hospital, Shenzhen, Guangdong Province, PR China
| | - Jiayu Wang
- Laboratory of Genetics, Women and Children's Hospital of Jinzhou, Jinzhou, PR China
| | - Yu Jin
- Laboratory of Genetics, Women and Children's Hospital of Jinzhou, Jinzhou, PR China
| |
Collapse
|
22
|
Aramouni K, Assaf RK, Azar M, Jabbour K, Shaito A, Sahebkar A, Eid AA, Rizzo M, Eid AH. Infection with Helicobacter pylori may predispose to atherosclerosis: role of inflammation and thickening of intima-media of carotid arteries. Front Pharmacol 2023; 14:1285754. [PMID: 37900161 PMCID: PMC10611526 DOI: 10.3389/fphar.2023.1285754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Atherosclerosis is a major instigator of cardiovascular disease (CVD) and a main cause of global morbidity and mortality. The high prevalence of CVD calls for urgent attention to possible preventive measures in order to curb its incidence. Traditional risk factors of atherosclerosis, like age, smoking, diabetes mellitus, dyslipidemia, hypertension and chronic inflammation, are under extensive investigation. However, these only account for around 50% of the etiology of atherosclerosis, mandating a search for different or overlooked risk factors. In this regard, chronic infections, by Helicobacter pylori for instance, are a primary candidate. H. pylori colonizes the gut and contributes to several gastrointestinal diseases, but, recently, the potential involvement of this bacterium in extra-gastric diseases including CVD has been under the spotlight. Indeed, H. pylori infection appears to stimulate foam cell formation as well as chronic immune responses that could upregulate key inflammatory mediators including cytokines, C-reactive protein, and lipoproteins. These factors are involved in the thickening of intima-media of carotid arteries (CIMT), a hallmark of atherosclerosis. Interestingly, H. pylori infection was found to increase (CIMT), which along with other evidence, could implicate H. pylori in the pathogenesis of atherosclerosis. Nevertheless, the involvement of H. pylori in CVD and atherosclerosis remains controversial as several studies report no connection between H. pylori and atherosclerosis. This review examines and critically discusses the evidence that argues for a potential role of this bacterium in atherogenesis. However, additional basic and clinical research studies are warranted to convincingly establish the association between H. pylori and atherosclerosis.
Collapse
Affiliation(s)
- Karl Aramouni
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Roland K. Assaf
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maria Azar
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Karen Jabbour
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, College of Medicine, Qatar University, Doha, Qatar
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Applied Biomedical Research Center, Department of Biotechnology, School of Pharmacy, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Assaad A. Eid
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
23
|
Pereira de Oliveira Borlot JR, Schlittler Dos Santos L, Schwarzt Sampaio GJ, Santos Borges A, Rodrigues RP, de Cássia Ribeiro Gonçalves R, Bezerra Dos Santos R, Kitagawa RR. Synthesis, Docking Studies and Evaluation of Chalcones as Anti-Helicobacter pylori and antitumoral Agents. Chem Biodivers 2023; 20:e202301066. [PMID: 37646700 DOI: 10.1002/cbdv.202301066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Helicobacter pylori colonizes the gastric epithelium of 50 % of world population and it is the main etiological agent of human chronic gastritis, peptic ulcer, and gastric cancer. In this study, we synthesized and characterized a series of 14 chalcones and evaluated their anti-H. pylori, NO inhibition (in vitro and in silico), and AGS cells cytotoxic effects. Compounds 3b and 3h showed MIC of 8 μg/mL. We observed structure-activity relationships, mainly related to the influence of methoxy substituent at C-2 (3b) and the nitro group at C-4 (3h) in chalcone scaffold. The fourteen chalcones inhibited the NO production in LPS-stimulated macrophages and showed potential for interaction on the active site of the iNOS enzyme. Finally, 3b and 3h showed the highest selectivity to the AGS cell lines. Thus, ours results suggest 3b and 3h as potential candidates for design of new and effective agents against H. pylori and related diseases.
Collapse
Affiliation(s)
- Jessica Rodrigues Pereira de Oliveira Borlot
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Bonfim, 29047-105, Vitória, ES, Brazil
- Graduate Program of Chemistry, Exact Sciences Center, Federal University of Espírito Santo, Avenida Fernando Ferrari 514, Goiabeiras, 29075-910, Vitória, ES, Brazil
| | - Luna Schlittler Dos Santos
- Department of Chemistry, Exact Sciences Center, Federal University of Espírito Santo, Avenida Fernando Ferrari 514, Goiabeiras, 29075-910, Vitória, ES, Brazil
| | - Guilherme José Schwarzt Sampaio
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Bonfim, 29047-105, Vitória, ES, Brazil
| | - Augusto Santos Borges
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Bonfim, 29047-105, Vitória, ES, Brazil
| | - Ricardo Pereira Rodrigues
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Bonfim, 29047-105, Vitória, ES, Brazil
| | - Rita de Cássia Ribeiro Gonçalves
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Bonfim, 29047-105, Vitória, ES, Brazil
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Bonfim, 29047-105, Vitória, ES, Brazil
| | - Reginaldo Bezerra Dos Santos
- Department of Chemistry, Exact Sciences Center, Federal University of Espírito Santo, Avenida Fernando Ferrari 514, Goiabeiras, 29075-910, Vitória, ES, Brazil
| | - Rodrigo Rezende Kitagawa
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Bonfim, 29047-105, Vitória, ES, Brazil
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Bonfim, 29047-105, Vitória, ES, Brazil
- Graduate Program of Chemistry, Exact Sciences Center, Federal University of Espírito Santo, Avenida Fernando Ferrari 514, Goiabeiras, 29075-910, Vitória, ES, Brazil
| |
Collapse
|
24
|
Noiri Y, Nagata R. Current status of gastric and oral infection/diseases caused by Helicobacter pylori. ORAL SCIENCE INTERNATIONAL 2023; 20:182-189. [DOI: 10.1002/osi2.1172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 01/06/2025]
Abstract
AbstractHelicobacter pylori is found in the stomach, which is its optimal habitat, and is considered an important factor in various serious diseases, including stomach cancer. The World Health Organization has identified H. pylori as a causative agent of gastric cancer, as confirmed by animal experiments in rodents. The fact that H. pylori can live in the harsh environment of stomach acid was the greatest hindrance to the discovery of H. pylori. It was not so long ago, in 1983, that it was successfully isolated and cultured. Subsequently, H. pylori eradication therapy was established, and it became possible to control gastric cancer to some extent. However, the mechanism, route, and mode of H. pylori infection still remain unclear. Furthermore, currently, the prevention of first‐episode gastric cancer and control of recurrent gastric cancer are not perfect. One of the reasons for this may be that the status of H. pylori in the oral cavity, which is the entry point for the organism (the beginning of the digestive system: the first route of infection), is still unknown. Therefore, we reviewed the current status of H. pylori infection in the stomach and oral cavity, focusing on (1) the mechanism of infection, (2) pathogenic factors, (3) the actual status of eradication therapy, and (4) control strategies.
Collapse
Affiliation(s)
- Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata Japan
| | - Ryoko Nagata
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences Niigata University Niigata Japan
| |
Collapse
|
25
|
Alexandre Carvalho F, Valadares de Moraes N, Eduardo Miller Crotti A, José Crevelin E, Gonzaga Dos Santos A. Casearia Essential Oil: An Updated Review on the Chemistry and Pharmacological Activities. Chem Biodivers 2023; 20:e202300492. [PMID: 37410861 DOI: 10.1002/cbdv.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Casearia species are found in the America, Africa, Asia, and Australia and present pharmacological activities, besides their traditional uses. Here, we reviewed the chemical composition, content, pharmacological activities, and toxicity of the essential oils (EOs) from Casearia species. The EO physical parameters and leaf botanical characteristics were also described. The bioactivities of the EOs from the leaves and their components include cytotoxicity, anti-inflammatory, antiulcer, antimicrobial, antidiabetic, antioxidant, antifungal, and antiviral activities. The main components associated with these activities are the α-zingiberene, (E)-caryophyllene, germacrene D, bicyclogermacrene, spathulenol, α-humulene, β-acoradiene, and δ-cadinene. Data on the toxicity of these EOs are scarce in the literature. Casearia sylvestris Sw. is the most studied species, presenting more significant pharmacological potential. The chemical variability of EOs components was also investigated for this species. Caseria EOs have relevant pharmacological potential and must be further investigated and exploited.
Collapse
Affiliation(s)
- Flavio Alexandre Carvalho
- Department of Drugs and Medicines, São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara-Jaú Road, Km 01, s/n, 14.800-903, Araraquara, SP, Brazil
| | - Natália Valadares de Moraes
- Center of Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, USA, FL 32827
| | - Antônio Eduardo Miller Crotti
- Department of Chemistry, University of São Paulo (USP), Faculty of Philosophy, Sciences and Letters, Av. do Café, s/n, 14.040-903, Ribeirão Preto, SP, Brazil
| | - Eduardo José Crevelin
- Department of Chemistry, University of São Paulo (USP), Faculty of Philosophy, Sciences and Letters, Av. do Café, s/n, 14.040-903, Ribeirão Preto, SP, Brazil
| | - André Gonzaga Dos Santos
- Department of Drugs and Medicines, São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara-Jaú Road, Km 01, s/n, 14.800-903, Araraquara, SP, Brazil
| |
Collapse
|
26
|
Meurer M, Felisbino F, Müller FB, Somensi LB, Cury BJ, Jerônimo DT, Venzon L, França TCS, Mariott M, Santos AC, Nunes RKS, Boeing T, Bella-Cruz A, Souza PDE, Roman-Junior WA, Arunachalam K, Oliveira RG, Silva LM. Antiulcer mechanisms of the hydroalcoholic extract from Aztec marigolds' medicinal and edible flowers (Tagetes erecta L.). AN ACAD BRAS CIENC 2023; 95:e20220427. [PMID: 37556712 DOI: 10.1590/0001-3765202320220427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/15/2022] [Indexed: 08/11/2023] Open
Abstract
The antiulcer mechanisms of the dry extract of T. erecta flowers (DETe) were studied here. The acute ulcers induced by acidified ethanol or indomethacin were reproduced in mice pretreated with DETe (3 - 300 mg/kg). The antiulcer activity of DETe was also verified in mice pretreated with NEM, L-NAME, indomethacin, or yohimbine. The antisecretory effect of DETe was verified in rats, and its anti-Helicobacter pylori activity was determined in vitro. DETe (300 mg/kg, p.o) reduced the ethanol- or indomethacin-induced ulcer by 49 and 93%, respectively. The pre-treatment with L-NAME, NEM or yohimbine abolished the gastroprotective effect of DETe. However, DETe did not change the volume, acidity, or peptic activity in rats and did not affect H. pylori. This study expands knowledge about the antiulcerogenic potential of DETe, evidencing the role of nitric oxide, non-protein sulfhydryl groups, α2 adrenergic receptors, and prostaglandins, but not antisecretory or anti-H. pylori properties.
Collapse
Affiliation(s)
- Mariane Meurer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Fabiula Felisbino
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Fabiana B Müller
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Lincon B Somensi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
- Programa de Pós-Graduação em Desenvolvimento e Sociedade, Universidade Alto Vale do Rio do Peixe, Rua Victor Baptista Adami, 800, Centro, 89500-000 Caçador, SC, Brazil
| | - Benhur J Cury
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Daniele T Jerônimo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Larissa Venzon
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Tauani C S França
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Marihá Mariott
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Ana C Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Ruan Kaio S Nunes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Alexandre Bella-Cruz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Priscila DE Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Walter A Roman-Junior
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, 89809-900 Chapecó, SC, Brazil
| | - Karuppusamy Arunachalam
- Chinese Academy of Sciences, Kunming Institute of Botany, Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, People's Republic of China
| | - Ruberlei G Oliveira
- Universidade Federal de Mato Grosso, Escola de Educação Física (Programa de Pós-Graduação), Avenida Universitária, 3500, Parque Universitário, 78060-900 Cuiabá, MT, Brazil
| | - Luisa M Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| |
Collapse
|
27
|
Dmitrieva A, Kozlova O, Atuchin V, Milentieva I, Vesnina A, Ivanova S, Asyakina L, Prosekov A. Study of the Effect of Baicalin from Scutellaria baicalensis on the Gastrointestinal Tract Normoflora and Helicobacter pylori. Int J Mol Sci 2023; 24:11906. [PMID: 37569279 PMCID: PMC10419321 DOI: 10.3390/ijms241511906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
The antimicrobial properties of baicalin against H. pylori and several probiotic cultures were evaluated. Baicalin was isolated from a dry plant extract obtained by extraction with water at 70 °C. For isolation, extraction was carried out with n-butanol and purification on a chromatographic column. The antimicrobial potential was assessed by evaluating changes in the optical density of the bacterial suspension during cultivation; additionally, the disk diffusion method was used. During the study, the baicalin concentrations (0.25, 0.5, and 1 mg/mL) and the pH of the medium in the range of 1.5-8.0 were tested. The test objects were: suspensions of H. pylori, Lactobacillus casei, L. brevis, Bifidobacterium longum, and B. teenis. It was found that the greater the concentration of the substance in the solution, the greater the delay in the growth of the strain zone. Thus, the highest antimicrobial activity against H. pylori was observed at pH 1.5-2.0 and a baicalin concentration of 1.00 mg/mL. In relation to probiotic strains, a stimulating effect of baicalin (1.00 mg/mL) on the growth of L. casei biomass at pH 1.5-2.0 was observed. The results open up the prospects for the use of baicalin and probiotics for the treatment of diseases caused by H. pylori.
Collapse
Affiliation(s)
- Anastasia Dmitrieva
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Oksana Kozlova
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
| | - Irina Milentieva
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Anna Vesnina
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Svetlana Ivanova
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
- Department of General Mathematics and Informatics, Kemerovo State University, 650043 Kemerovo, Russia
| | - Lyudmila Asyakina
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| |
Collapse
|
28
|
Wu H, Sun Q, Dong H, Qiao J, Lin Y, Yu C, Li Y. Gastroprotective action of the extract of Corydalis yanhusuo in Helicobacter pylori infection and its bioactive component, dehydrocorydaline. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116173. [PMID: 36681166 DOI: 10.1016/j.jep.2023.116173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/01/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Helicobacter pylori (H. pylori) infection is a frequent chronic infection. Persistent infection is the strongest risk factor for developing gastric complications leading to gastric cancer. The antibiotic resistance of current anti-H. pylori drugs lead to the search for novel candidates from medicinal plants. Traditionally, Corydalis yanhusuo (Y.H. Chou & Chun C.Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae) has been used for the treatment of digestive system diseases in China. So, it's essential to explore and confirm the anti-H. pylori activity of C. yanhusuo and characterize the pharmacologically active compounds. AIM OF THE STUDY This study aims to evaluate the efficacy of C. yanhusuo as complementary or alternative modes of treatment against H. pylori-related diseases and ascertain the active substances of C. yanhusuo to develop non-toxic, natural, and inexpensive products. MATERIALS AND METHODS C. yanhusuo was subjected to solid-liquid extraction with water (WECY), ethanol EECY), and chloroform (CECY). The extracts were screened by agar diffusion assay, the minimum inhibitory concentrations (MIC), the minimum bactericidal (MBC) for their in vitro antimicrobial activity, and by Berthelot reaction for urease inhibition. To assess the in vivo action, H. pylori-induced C57BL/6 mice were used to detect RUT biopsy, perform visual and histopathological analyses and evaluate IgG expression. Furthermore, we compared the anti-H. pylori activities of major alkaloids in CECY to identify the bioactive constituents. RESULTS Among the three C. yanhusuo extracts, CECY showed the maximum in vitro antibacterial activity. Administration of CECY significantly inhibited the survival of H. pylori colonized in the gastric mucosa and alleviated gastric damage along with a reduction in the expression levels of IgG in H. pylori-infected mice. Berberine and dehydrocorydaline exhibited obvious anti-H. pylori activity with MIC of 25 and 12.5 μg/mL, respectively. CONCLUSION C. yanhusuo extracts showed anti-H. pylori activity in different degrees. Among them, CECY showed significant anti-H. pylori, gastroprotective and anti-inflammatory activities in vivo and in vitro. Dehydrocorydalmine, an active alkaloid compound isolated from C. yanhusuo, warranted further investigation for its potential anti-H. pylori activity.
Collapse
Affiliation(s)
- Hao Wu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qingyue Sun
- No. one Clinical Medicine School of Binzhou Medical University, Binzhou Medical University, Yantai, 264003, China
| | - Huirong Dong
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jiasen Qiao
- No. one Clinical Medicine School of Binzhou Medical University, Binzhou Medical University, Yantai, 264003, China
| | - Ying Lin
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Chen Yu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Yanni Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
29
|
Luo Q, Liu N, Pu S, Zhuang Z, Gong H, Zhang D. A review on the research progress on non-pharmacological therapy of Helicobacter pylori. Front Microbiol 2023; 14:1134254. [PMID: 37007498 PMCID: PMC10063898 DOI: 10.3389/fmicb.2023.1134254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Helicobacter pylori is a pathogenic microorganism that mainly resides in the human stomach and is the major cause of chronic gastritis, peptic ulcer and gastric cancer. Up to now, the treatment of Helicobacter pylori has been predominantly based on a combination of antibiotics and proton pump inhibitors. However, the increasing antibiotic resistance greatly limits the efficacy of anti-Helicobacter pylori treatment. Turning to non-antibiotic or non-pharmacological treatment is expected to solve this problem and may become a new strategy for treating Helicobacter pylori. In this review, we outline Helicobacter pylori's colonization and virulence mechanisms. Moreover, a series of non-pharmacological treatment methods for Helicobacter pylori and their mechanisms are carefully summarized, including probiotics, oxygen-rich environment or hyperbaric oxygen therapy, antibacterial photodynamic therapy, nanomaterials, antimicrobial peptide therapy, phage therapy and modified lysins. Finally, we provide a comprehensive overview of the challenges and perspectives in developing new medical technologies for treating Helicobacter pylori without drugs.
Collapse
Affiliation(s)
- Qian Luo
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Na Liu
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Sugui Pu
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Ze Zhuang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Hang Gong
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, Lanzhou, China
| |
Collapse
|
30
|
Elbestawy MKM, El-Sherbiny GM, Moghannem SA. Antibacterial, Antibiofilm and Anti-Inflammatory Activities of Eugenol Clove Essential Oil against Resistant Helicobacter pylori. Molecules 2023; 28:molecules28062448. [PMID: 36985419 PMCID: PMC10058968 DOI: 10.3390/molecules28062448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Eugenol essential oil (EEO) is the major component in aromatic extracts of Syzygium aromaticum (clove) and has several biological properties, such as antibacterial, antioxidant, and anti-inflammatory activities, as well as controlling vomiting, coughing, nausea, flatulence, diarrhea, dyspepsia, stomach distension, and gastrointestinal spasm pain. It also stimulates the nerves. Therefore, the aim of this study was to extract and purify EEO from clove buds and assess its ability to combat resistant Helicobacter pylori. Additionally, EEO's anti-inflammatory activity and its ability to suppress H. pylori biofilm formation, which is responsible for antibiotic resistance, was also investigated. Syzygium aromaticum buds were purchased from a local market, ground, and the EEO was extracted by using hydro-distillation and then purified and chemically characterized using gas chromatography-mass spectrometry (GC-MS). A disk-diffusion assay showed that Helicobacter pylori is sensitive to EEO, with an inhibition zone ranging from 10 ± 06 to 22 ± 04 mm. The minimum inhibition concentration (MIC) of EEO ranged from 23.0 to 51.0 μg/mL against both Helicobacter pylori clinical isolates and standard strains. In addition, EEO showed antibiofilm activity at 25 µg/mL and 50 µg/mL against various Helicobacter pylori strains, with suppression percentages of 49.32% and 73.21%, respectively. The results obtained from the anti-inflammatory assay revealed that EEO possesses strong anti-inflammatory activity, with human erythrocyte hemolysis inhibition percentages of 53.04, 58.74, 61.07, and 63.64% at concentrations of 4, 8, 16, and 32 μg/L, respectively. GC-MS analysis revealed that EEO is a major component of Syzygium aromaticum when extracted with a hydro-distillation technique, which was confirmed by its purification using a chemical separation process. EEO exhibited antibacterial action against resistant Helicobacter pylori strains, as well as antibiofilm and anti-inflammatory activities, and is a promising natural alternative in clinical therapy.
Collapse
Affiliation(s)
- Mahmoud K M Elbestawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Saad A Moghannem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
31
|
Lee JY, Son HG, Koo Y, Jung SH, Park SD, Shim JJ, Lee JL, Lee YH. Protective Effects of Cudrania tricuspidata Against Helicobacter pylori-Induced Inflammation in C57BL/6 Mice. J Med Food 2023; 26:224-231. [PMID: 36862521 DOI: 10.1089/jmf.2022.k.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Helicobacter pylori modulates the host inflammatory response, resulting in chronic gastritis, which contributes to gastric cancer pathogenesis. We verified the effect of Cudrania tricuspidata on H. pylori infection by inhibiting H. pylori-induced inflammatory activity. Five-week-old C57BL/6 mice (n = 8) were administered C. tricuspidata leaf extract (10 or 20 mg/kg per day) for 6 weeks. An invasive test (campylobacter-like organism [CLO]) and noninvasive tests (stool antigen test [SAT] and H. pylori antibody enzyme-linked immunosorbent assay) were performed to confirm the eradication of H. pylori. To evaluate the anti-inflammatory effect of C. tricuspidata, pro-inflammatory cytokines levels and inflammation scores were measured in mouse gastric tissue. C. tricuspidata significantly decreased the CLO score and H. pylori immunoglobulin G antibody optical density levels at both 10 and 20 mg/kg per day doses (P < .05). C. tricuspidata decreased the H. pylori antibody levels in a concentration-dependent manner, increased negative responses to SAT by up to 37.5%, and inhibited the pro-inflammatory cytokines interleukin (IL; IL-1β, IL-6, 1L-8, and tumor necrosis factor alpha). C. tricuspidata also relieved gastric erosions and ulcers and significantly reduced the inflammation score (P < .05). We measured rutin in C. tricuspidata extract as a standard for high-performance liquid chromatography. C. tricuspidata leaf extract showed anti-H. pylori activity through the inhibition of inflammation. Our findings suggest that C. tricuspidata leaf extract is potentially an effective functional food material against H. pylori.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Hyung Gu Son
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | - Yejin Koo
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| | | | | | | | | | - Yoo-Hyun Lee
- Department of Food and Nutrition, University of Suwon, Hwasung, South Korea
| |
Collapse
|
32
|
Wang B, Zhou W, Zhang H, Wang W, Zhang B, Li S. Exploring the effect of Weifuchun capsule on the toll-like receptor pathway mediated HES6 and immune regulation against chronic atrophic gastritis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115930. [PMID: 36403744 DOI: 10.1016/j.jep.2022.115930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weifuchun capsule (WFC) is a traditional Chinese patent medicine for chronic atrophic gastritis (CAG) in clinic. However, the mechanism of action of WFC for CAG still remains unclear due to its complex composition. AIM OF THE STUDY The study was projected to uncover the mechanism of action of WFC and the corresponding pharmacodynamic substance of WFC against CAG as well as providing a standard example for the research of traditional Chinese medicine (TCM) from the perspective of the network and the system. MATERIALS AND METHODS We identified the compounds of WFC through LC-MS/MS analysis and performed a systematic network targets analysis for WFC in the treatment of CAG which thoroughly described the mechanism of action of WFC for CAG. Based on analysis integrating omics data and algorithms, we focused on the specific immune regulatory role of WFC in the treatment of CAG, especially on a hub pathway, Toll-like receptor signaling pathway and thus deciphered the role of WFC in immune regulation, anti-inflammation and mediation of HES6. In experiments part, MNNG-GES-1-cell line and rat models were used to validate our findings. RESULTS In this study, compounds of WFC are identified through LC‒MS/MS and network target analysis is performed to dissect the specific immunoregulatory effect as well as mediation of HES6, a newly discovered biomolecule related to gastritis carcinoma progression, of WFC on CAG through the Toll-like receptor signaling pathway. Based on cell line and rat models, we verify the mechanism of action of WFC for CAG in inhibiting inflammatory cytokines, regulating immune cells like T cells and macrophages, related genes including TLR2 and CD14. It is also validated that WFC inhibits the expression of HES6 (P < 0.05). CONCLUSION Based on the combination of computational strategy and experiments, our study offers a comprehensive analysis to reveal the role of WFC in regulating immune response, inhibiting inflammation in the treatment of CAG, and provides a standard example for the research of TCM from the perspective of the network and the system.
Collapse
Affiliation(s)
- Boyang Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Wuai Zhou
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Huan Zhang
- TCM Network Pharmacology Department, Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, 300457, Tianjin, China
| | - Weihua Wang
- Center of Pharmaceutical Technology, Tsinghua University, China
| | - Bo Zhang
- TCM Network Pharmacology Department, Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, 300457, Tianjin, China.
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
33
|
Shome S, Talukdar AD, Upadhyaya H. Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review. Biotechnol Appl Biochem 2022; 69:2357-2386. [PMID: 34826356 DOI: 10.1002/bab.2289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Multidrug-resistant bacterial infections can kill 700,000 individuals globally each year and is considered among the top 10 global health threats faced by humanity as the arsenal of antibiotics is becoming dry and alternate antibacterial molecule is in demand. Nanoparticles of curcumin exhibit appreciable broad-spectrum antibacterial activity using unique and novel mechanisms and thus the process deserves to be reviewed and further researched to clearly understand the mechanisms. Based on the antibiotic resistance, infection, and virulence potential, a list of clinically important bacteria was prepared after extensive literature survey and all recent reports on the antibacterial activity of curcumin and its nanoformulations as well as their mechanism of antibacterial action have been reviewed. Curcumin, nanocurcumin, and its nanocomposites with improved aqueous solubility and bioavailability are very potential, reliable, safe, and sustainable antibacterial molecule against clinically important bacterial species that uses multitarget mechanism such as inactivation of antioxidant enzyme, reactive oxygen species-mediated cellular damage, and inhibition of acyl-homoserine-lactone synthase necessary for quorum sensing and biofilm formation, thereby bypassing the mechanisms of bacterial antibiotic resistance. Nanoformulations of curcumin can thus be considered as a potential and sustainable antibacterial drug candidate to address the issue of antibiotic resistance.
Collapse
Affiliation(s)
- Soumitra Shome
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | | |
Collapse
|
34
|
Song MY, Lee DY, Han YM, Kim EH. Anti-Inflammatory Effect of Korean Propolis on Helicobacter pylori-Infected Gastric Mucosal Injury Mice Model. Nutrients 2022; 14:nu14214644. [PMID: 36364906 PMCID: PMC9659254 DOI: 10.3390/nu14214644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Propolis, a natural resinous substance obtained from a variety of buds and plants, has been reported to possess various biological functions. Several recent studies have demonstrated the inhibitory effects of propolis on the growth of Helicobacter pylori (H. pylori) in vitro; however, current research efforts on Korean propolis (KP) remain insufficient especially in vivo. Our study aims to investigate the anti-inflammatory effect and molecular mechanism of KP on mouse gastric mucosa during H. pylori infection. We examined an in vivo H. pylori-induced gastric mucosal injury mice model. We found that KP inhibited the growth of H. pylori and attenuated the expression of H. pylori virulence factors such as cytotoxin-associated gene A, encoding urease A subunit, surface antigen gene and neutrophil-activating protein A. Moreover, KP reduced both gross lesions and pathological scores in H. pylori-challenged mice. In addition, KP markedly restrained the production of pro-inflammatory cytokines and nitric oxide levels compared with an untreated H. pylori-infected group. In particular, we found that KP repressed the phosphorylation of IκBα and NF-κB p65 subunit, and subsequently suppressed their downstream target genes. Taken together, these findings demonstrate the beneficial effects of KP on inflammation through the inhibition of NF-κB signaling as well as inhibition of H. pylori growth in a mouse model infected with H. pylori. This suggests the potential application of KP as a natural supplement for patient’s suffering from gastric mucosal injury caused by H. pylori infection.
Collapse
|
35
|
Alomar HA, Fathallah N, Abdel-Aziz MM, Ibrahim TA, Elkady WM. GC-MS Profiling, Anti- Helicobacter pylori, and Anti-Inflammatory Activities of Three Apiaceous Fruits' Essential Oils. PLANTS (BASEL, SWITZERLAND) 2022; 11:2617. [PMID: 36235480 PMCID: PMC9570728 DOI: 10.3390/plants11192617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Eradication of Helicobacter pylori is a challenge due to rising antibiotic resistance and GIT-related disorders. Cuminum cyminum, Pimpinella anisum, and Carum carvi are fruits belonging to the Apiaceae family. Their essential oils were extracted, analyzed using GC-MS, tested for anti-H. pylori activity by a micro-well dilution technique, identified for potential anti-H. pylori inhibitors by an in-silico study, and investigated for anti-inflammatory activity using a COX-2 inhibition assay. Results showed that the main components of C. cyminum, P. anisum, and C. carvi were cumaldehyde (41.26%), anethole (92.41%), and carvone (51.38%), respectively. Essential oil of C. cyminum exhibited the greatest anti-H. pylori activity (3.9 µg/mL) followed by P. anisum (15.63 µg/mL), while C. carvi showed the lowest activity (62.5 µg/mL). The in-silico study showed that cumaldehyde in C. cyminum has the best fitting energy to inhibit H. pylori.C. cyminum essential oil showed the maximum ability to reduce the production of Cox-2 expression approaching celecoxib with IC50 = 1.8 ± 0.41 µg/mL, followed by the C. carvi oil IC50 = 7.3 ± 0.35 µg/mL and then oil of P. anisum IC50 = 10.7±0.63 µg/mL. The investigated phytochemicals in this study can be used as potential adjunct therapies with conventional antibiotics against H. pylori.
Collapse
Affiliation(s)
- Hatun A Alomar
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Noha Fathallah
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Marwa M Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt
| | - Taghreed A Ibrahim
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Wafaa M Elkady
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| |
Collapse
|
36
|
Razuka-Ebela D, Polaka I, Daugule I, Parshutin S, Santare D, Ebela I, Rudzite D, Vangravs R, Herrero R, Young Park J, Leja M. Lifestyle and dietary factors associated with serologically detected gastric atrophy in a Caucasian population in the GISTAR study. Eur J Cancer Prev 2022; 31:442-450. [PMID: 35131967 DOI: 10.1097/cej.0000000000000723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify dietary and lifestyle factors associated with decreased pepsinogen levels indicative of gastric atrophy. METHODS Participants aged 40 to 64 from the "Multicentric randomized study of H. pylori eradication and pepsinogen testing for prevention of gastric cancer mortality (GISTAR study)" in Latvia tested for serum pepsinogen, as well as for Helicobacter pylori infection by 13 C-urea breath test or serology were included. Data on sex, age, education, employment, diet, smoking, alcohol and proton pump inhibitor use were obtained by survey and compared for participants with and without serologically detected gastric atrophy defined as pepsinogen I/pepsinogen II ≤ 2 and pepsinogen I ≤ 30 ng/mL. RESULTS Of 3001 participants (median age 53, interquartile range, 11.0, 36.9% male) 52.8% had H. pylori and 7.7% had serologically detected gastric atrophy. In multivariate analysis, increasing age, consumption of alcohol, coffee, and onions were positively, while H. pylori , former smoking, pickled product and proton pump inhibitor use were inversely associated with gastric atrophy. Pepsinogen values were higher in smokers and those with H. pylori . Pepsinogen ratio was lower in those with H. pylori . When stratifying by H. pylori presence, significantly higher pepsinogen levels remained for smokers without H. pylori . CONCLUSION Several dietary factors and smoking were associated with serologically detected gastric atrophy. Pepsinogen levels differed by smoking and H. pylori status, which may affect the serologic detection of gastric atrophy. There seems to be a complicated interaction between multiple factors. A prospective study including atrophy determined by both serology and histology is necessary.
Collapse
Affiliation(s)
- Danute Razuka-Ebela
- Faculty of Medicine
- Institute of Clinical and Preventive Medicine, University of Latvia
| | - Inese Polaka
- Institute of Clinical and Preventive Medicine, University of Latvia
| | - Ilva Daugule
- Faculty of Medicine
- Institute of Clinical and Preventive Medicine, University of Latvia
| | - Sergei Parshutin
- Institute of Clinical and Preventive Medicine, University of Latvia
| | - Daiga Santare
- Faculty of Medicine
- Institute of Clinical and Preventive Medicine, University of Latvia
| | | | - Dace Rudzite
- Institute of Clinical and Preventive Medicine, University of Latvia
- Riga East University Hospital, Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia
| | - Rolando Herrero
- International Agency for Research on Cancer, Lyon, France
- Agencia Costarricense de Investigaciones Biomedicas, Fundación INCIENSA, Costa Rica
| | - Jin Young Park
- International Agency for Research on Cancer, Lyon, France
| | - Marcis Leja
- Faculty of Medicine
- Institute of Clinical and Preventive Medicine, University of Latvia
| |
Collapse
|
37
|
Wang L, Yi J, Yin XY, Hou JX, Chen J, Xie B, Chen G, Wang QF, Wang LN, Wang XY, Sun J, Huo LM, Che TJ, Wei HL. Vacuolating Cytotoxin A Triggers Mitophagy in Helicobacter pylori-Infected Human Gastric Epithelium Cells. Front Oncol 2022; 12:881829. [PMID: 35912184 PMCID: PMC9329568 DOI: 10.3389/fonc.2022.881829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Helicobacter pylori (H. pylori)-derived vacuolating cytotoxin A (VacA) causes damage to various organelles, including mitochondria, and induces autophagy and cell death. However, it is unknown whether VacA-induced mitochondrial damage can develop into mitophagy. In this study, we found that H. pylori, H. pylori culture filtrate (HPCF), and VacA could activate autophagy in a gastric epithelial cell line (GES-1). VacA-caused mitochondrial depolarization retards the import of PINK1 into the damaged mitochondria and evokes mitophagy. And, among mass spectrometry (LC-MS/MS) identified 25 mitochondrial proteins bound with VacA, Tom20, Tom40, and Tom70, TOM complexes responsible for PINK1 import, were further identified as having the ability to bind VacA in vitro using pull-down assay, co-immunoprecipitation, and protein–protein docking. Additionally, we found that the cell membrane protein STOM and the mitochondrial inner membrane protein PGAM5 also interacted with VacA. These findings suggest that VacA captured by STOM forms endosomes to enter cells and target mitochondria. Then, VacA is transported into the mitochondrial membrane space through the TOM complexes, and PGAM5 aids in inserting VacA into the inner mitochondrial membrane to destroy the membrane potential, which promotes PINK1 accumulation and Parkin recruitment to induce mitophagy. This study helps us understand VacA entering mitochondria to induce the mitophagy process.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Yang Yin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jin-Xia Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bei Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qun-Feng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Li-Na Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Sun
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Lei-Ming Huo
- Neurosurgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tuan-Jie Che
- Key Laboratory of Functional Genomics and Molecular Diagnosis of Gansu Province, Lanzhou Baiyuan Gene Technology Co., Ltd, Lanzhou, China
- *Correspondence: Tuan-Jie Che, ; Hu-Lai Wei,
| | - Hu-Lai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Functional Genomics and Molecular Diagnosis of Gansu Province, Lanzhou Baiyuan Gene Technology Co., Ltd, Lanzhou, China
- *Correspondence: Tuan-Jie Che, ; Hu-Lai Wei,
| |
Collapse
|
38
|
Na M, Jeong SY, Ko YJ, Kang DM, Pang C, Ahn MJ, Kim KH. Chemical Investigation of Tetradium ruticarpum Fruits and Their Antibacterial Activity against Helicobacter pylori. ACS OMEGA 2022; 7:23736-23743. [PMID: 35847243 PMCID: PMC9280968 DOI: 10.1021/acsomega.2c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fruit of Tetradium ruticarpum, known as Evodiae Fructus, is a traditional herbal medicine used to treat gastric and duodenal ulcers, vomiting, and diarrhea. The traditional usage can be potentially associated with the antibacterial activity of T. ruticarpum fruits against Helicobacter pylori. However, so far, the antibacterial activity of T. ruticarpum fruits and antibacterial components against H. pylori has not been investigated despite the traditional folk use. The current study was conducted to investigate the bioactive chemical components of T. ruticarpum fruits and evaluate their antibacterial activity against H. pylori. Phytochemical investigation of the EtOH extract of T. ruticarpum fruits led to the isolation and identification of nine compounds (1-9), including phellolactone (1), the absolute configuration of which has not yet been determined. The chemical structures of the isolated compounds were elucidated by analyzing the spectroscopic data from one-dimensional (1D) and two-dimensional (2D) NMR and high-resolution electrospray ionization mass spectrometry (HR-ESIMS) experiments. Specifically, the absolute configuration of compound 1 was established by the application of computational methods, including electronic circular dichroism (ECD) calculation and the NOE/ROE-based interproton distance measurement technique via peak amplitude normalization for the improved cross-relaxation (PANIC) method. In the anti-H. pylori activity test, compound 3 showed the most potent antibacterial activity against H. pylori strain 51, with 94.4% inhibition (MIC50 and MIC90 values of 22 and 50 μM, respectively), comparable to that of metronidazole (97.0% inhibition, and MIC50 and MIC90 values of 17 and 46 μM, respectively). Moreover, compound 5 exhibited moderate antibacterial activity against H. pylori strain 51, with 58.6% inhibition (MIC50 value of 99 μM), which was higher than that of quercetin (34.4% inhibition) as a positive control. Based on the bioactivity results, we also analyzed the structure-activity relationship of the anti-H. pylori activity. Conclusion: These findings demonstrated that T. ruticarpum fruits had antibacterial activity against H. pylori and could be used in the treatment of gastric and duodenal ulcers. Meanwhile, the active compound, 1-methyl-2-(8E)-8-tridecenyl-4(1H)-quinolinone (3), identified herein also indicated the potential application in the development of novel antibiotics against H. pylori.
Collapse
Affiliation(s)
- Myung
Woo Na
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Yun Jeong
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory
of Nuclear Magnetic Resonance, National Center for Inter-University
Research Facilities (NCIRF), Seoul National
University, Gwanak-gu, Seoul 08826, Republic
of Korea
| | - Dong-Min Kang
- College
of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changhyun Pang
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Jeong Ahn
- College
of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ki Hyun Kim
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
39
|
Wen J, Wu S, Ma X, Zhao Y. Zuojin Pill attenuates Helicobacter pylori-induced chronic atrophic gastritis in rats and improves gastric epithelial cells function in GES-1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114855. [PMID: 34808298 DOI: 10.1016/j.jep.2021.114855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin pill (ZJP), a classical Chinese medicine formula, has been widely applied in Chinese clinical practice for the treatment of gastric injury such as acute gastric lesion, acute gastric mucosal injury, chronic unpredictable mild stress, gastroesophageal reflux disease, etc, thereby exerting anti-chronic atrophic gastritis (CAG) effects in traditional Chinese herbal medicine. AIM OF THE STUDY This study was aimed to explore the therapeutic effects and molecular mechanisms of ZJP on Helicobacter pylori (H. pylori)-induced CAG based on the comprehensive approaches. MATERIALS AND METHODS Sprague-Dawley rats were infected with H. pylori for 8 weeks to establish CAG model. Then, rats in the ZJP groups received doses of 0.63, 1.26, and 2.52 g/kg ZJP for 4 weeks. Therapeutic effects of ZJP on serum indices and the histopathology of the gastric were analyzed in vivo. Moreover, GES-1 cells were infected with H. pylori to establish gastric epithelial cell injury model in vitro. Cell viability and gastric epithelial cell morphology were detected by a high-content screening (HCS) assay. Furthermore, the relative mRNA and protein expression of JMJD2B/COX-2/VEGF axis and HMGB1/NF-κB signaling pathway in vivo and in vitro were determined by RT-PCR and Western Blotting, respectively. RESULTS The results showed that the therapeutic effects of ZJP on CAG rats were presented in down-regulation serum biochemical indices and alleviating histological damage of gastric tissue. ZJP could dose-dependently decrease the serum IL-6, MCP-1, PGE2, TNF-α, and VEGF level and significantly improved gastric tissue inflammatory lesions. Besides, ZJP has an effect on increasing cell proliferation of GES-1 cells, ameliorating H. pylori-induced gastric epithelial cell damage. It was found that ZJP has a down-regulating effect on inflammatory reaction and could inhibit the relative mRNA and protein expression of JMJD2B/COX-2/VEGF axis and HMGB1/NF-κB signaling pathway in vivo and in vitro, including JMJD2B, COX-2, VEGF, VEGFR1, and VEGFR2, which in turn reduced the damage of gastric mucosal cells. CONCLUSIONS The results suggested that ZJP exerts therapeutic effects on H. pylori-induced CAG by inhibiting the JMJD2B/COX-2/VEGF axis and HMGB1/NF-κB signaling pathway. These findings deeply explained why ZJP could be used to treat CAG clinically and clarified its pharmacological effect and potential mechanism in the treatment of CAG.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Shihua Wu
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, 100039, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
40
|
TAŞKIN T, KAHVECİOĞLU D, TÜRKOĞLU EA, DOĞAN A, KUZU M. In vitro Biological Activities of Different Extracts from Alcea dissecta. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.787845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Widelski J, Okińczyc P, Paluch E, Mroczek T, Szperlik J, Żuk M, Sroka Z, Sakipova Z, Chinou I, Skalicka-Woźniak K, Malm A, Korona-Głowniak I. The Antimicrobial Properties of Poplar and Aspen–Poplar Propolises and Their Active Components against Selected Microorganisms, Including Helicobacter pylori. Pathogens 2022; 11:pathogens11020191. [PMID: 35215134 PMCID: PMC8875431 DOI: 10.3390/pathogens11020191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
There is a noticeable interest in alternative therapies where the outcome is the eradication of the Gram-negative bacterium, Helicobacter pylori (H. pylori), for the purpose of treating many stomach diseases (chronic gastritis and peptic ulcers) and preventing stomach cancer. It is especially urgent because the mentioned pathogen infects over 50% of the world’s population. Recent studies have shown the potential of natural products, such as medicinal plant and bee products, on the inhibition of H. pylori growth. Propolis is such a bee product, with known antimicrobial activities. The main scope of the study is the determination of the antimicrobial activity of ethanolic extracts from 11 propolis samples (mostly from Poland, Ukraine, Kazakhstan, and Greece) against H. pylori, as well as selected bacterial and yeast species. The most effective against H. pylori was the propolis from Ukraine, with an MIC = 0.02 mg/mL while the rest of samples (except one) had an MIC = 0.03 mg/mL. Moreover, significant antimicrobial activity against Gram+ bacteria (with an MIC of 0.02–2.50 mg/mL) and three yeasts (with an MIC of 0.04–0.63 mg/mL) was also observed. A phytochemical analysis (polyphenolic profile) of the propolis samples, by ultra-high-performance liquid chromatography-diode array detector-mass spectrometry (UPLC-DAD-MS), was performed. An evaluation of the impact of the propolis components on antimicrobial activity, consisting of statistical analyses (principal component analysis (PCA) and hierarchical fuzzy clustering), was then performed. It was observed that the chemical composition characteristics of the poplar propolis correlated with higher antibacterial activity, while that of the poplar and aspen propolis correlated with weaker antibacterial activity. To summarize the activity in vitro, all tested propolis samples indicate that they can be regarded as useful and potent factors in antimicrobial therapies, especially against H. pylori.
Collapse
Affiliation(s)
- Jarosław Widelski
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (J.W.); (P.O.); Tel.: +48-81-448-70-86 (J.W.); +48-71-448-70-86 (P.O.)
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, 50-556 Wroclaw, Poland;
- Correspondence: (J.W.); (P.O.); Tel.: +48-81-448-70-86 (J.W.); +48-71-448-70-86 (P.O.)
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, 50-376 Wroclaw, Poland;
| | - Tomasz Mroczek
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland; (T.M.); (K.S.-W.)
| | - Jakub Szperlik
- Faculty of Biological Sciences, Botanical Garden, Laboratory of Tissue Culture, University of Wrocław, 50-525 Wroclaw, Poland;
| | - Magdalena Żuk
- Faculty of Biotechnology, Wrocław University, 51-148 Wroclaw, Poland;
| | - Zbigniew Sroka
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, 50-556 Wroclaw, Poland;
| | - Zuriyadda Sakipova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Ioanna Chinou
- Division of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Krystyna Skalicka-Woźniak
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland; (T.M.); (K.S.-W.)
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (I.K.-G.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (I.K.-G.)
| |
Collapse
|
42
|
El-Sherbiny GM, Elbestawy MKM. A review – plant essential oils active against Helicobacter pylori. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2025464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gamal M. El-Sherbiny
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Mahmoud K. M. Elbestawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
43
|
In silico design and in vitro assessment of anti-Helicobacter pylori compounds as potential small-molecule arginase inhibitors. Mol Divers 2022; 26:3365-3378. [PMID: 34997872 DOI: 10.1007/s11030-021-10371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Related to a variety of gastrointestinal disorders ranging from gastric ulcer to gastric adenocarcinoma, the infection caused by the gram-negative bacteria Helicobacter pylori (H. pylori) poses as a great threat to human health; hence, the search for new treatments is a global priority. The H. pylori arginase (HPA) protein has been widely studied as one of the main virulence factors of this bacterium, being involved in the prevention of nitric oxide-mediated bacterial cell death, which is a central component of innate immunity. Given the growing need for the development of new drugs capable of combating the infection by H. pylori, the present work describes the search for new HPA inhibitors, using virtual screening techniques based on molecular docking followed by the evaluation of the proposed modes of interaction at the HPA active site. In vitro studies of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), followed by cytotoxicity activity in gastric adenocarcinoma and non-cancer cells, were performed. The results highlighted compounds 6, 11, and 13 as potential inhibitors of HPA; within these compounds, the results indicated 13 presented an improved activity toward H. pylori killing, with MIC and MBC both at 64 µg/mL. Moreover, compound 13 also presented a selectivity index of 8.3, thus being more selective for gastric adenocarcinoma cells compared to the commercial drug cisplatin. Overall, the present work demonstrates the search strategy based on in silico and in vitro techniques is able to support the rational design of new anti-H. pylori drugs.
Collapse
|
44
|
Khan S, Sharaf M, Ahmed I, Khan TU, Shabana S, Arif M, Kazmi SSUH, Liu C. Potential utility of nano-based treatment approaches to address the risk of Helicobacter pylori. Expert Rev Anti Infect Ther 2021; 20:407-424. [PMID: 34658307 DOI: 10.1080/14787210.2022.1990041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) has occupied a significant place among infectious pathogens and it has been documented as a leading challenge due to its higher resistance to the commonly used drugs, higher adaptability, and lower targeting specificity of the available drugs. AREAS COVERED New treatment strategies are urgently needed in order to improve the current advancement in modern medicine. Nanocarriers have gained an advantage of drug encapsulation and high retention time in the stomach with a prolonged drug release rate at the targeted site. This article aims to highlight the recent advances in nanotechnology with special emphasis on metallic, polymeric, lipid, membrane coated, and target-specific nanoparticles (NPs), as well as, natural products for treating H. pylori infection. We discussed a comprehensive approach to understand H. pylori infection and elicits to rethink about the increasing threat posed by H. pylori and its treatment strategies. EXPERT OPINION To address these issues, nanotechnology has got huge potential to combat H. pylori infection and has made great progress in the field of biomedicine. Moreover, combinatory studies of natural products and probiotics in conjugation with NPs have proven efficiency against H. pylori infection, with an advantage of lower cytotoxicity, minimal side effects, and stronger antibacterial potential.[Figure: see text].
Collapse
Affiliation(s)
- Sohaib Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Egypt
| | | | | | - Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Muhammad Arif
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
45
|
Cardos IA, Zaha DC, Sindhu RK, Cavalu S. Revisiting Therapeutic Strategies for H. pylori Treatment in the Context of Antibiotic Resistance: Focus on Alternative and Complementary Therapies. Molecules 2021; 26:molecules26196078. [PMID: 34641620 PMCID: PMC8512130 DOI: 10.3390/molecules26196078] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of Helicobacter pylori infection remains significant worldwide and it depends on many factors: gender, age, socio-economic status, geographic area, diet, and lifestyle. All successful infectious diseases treatments use antibiotic-susceptibility testing, but this strategy is not currently practical for H. pylori and the usual cure rates of H. pylori are lower than other bacterial infections. Actually, there is no treatment that ensures complete eradication of this pathogen. In the context of an alarming increase in resistance to antibiotics (especially to clarithromycin and metronidazole), alternative and complementary options and strategies are taken into consideration. As the success of antibacterial therapy depends not only on the susceptibility to given drugs, but also on the specific doses, formulations, use of adjuvants, treatment duration, and reinfection rates, this review discusses the current therapies for H. pylori treatment along with their advantages and limitations. As an alternative option, this work offers an extensively referenced approach on natural medicines against H. pylori, including the significance of nanotechnology in developing new strategies for treatment of H. pylori infection.
Collapse
Affiliation(s)
- Ioana Alexandra Cardos
- Faculty of Medicine and Pharmacy, Doctoral School of Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Dana Carmen Zaha
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, India
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| |
Collapse
|
46
|
Chen QH, Wu BK, Pan D, Sang LX, Chang B. Beta-carotene and its protective effect on gastric cancer. World J Clin Cases 2021; 9:6591-6607. [PMID: 34447808 PMCID: PMC8362528 DOI: 10.12998/wjcc.v9.i23.6591] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/16/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Beta-carotene is an important natural pigment that is very beneficial to human health. It is widely found in vegetables and fruits. The three main functions are antioxidant effects, cell gap junction-related functions and immune-related functions. Because of its diverse functions, beta-carotene is believed to prevent and treat many chronic diseases. Gastric cancer is one of the most important diseases it can treat. Gastric cancer is a type of cancer with a high incidence. Its etiology varies, and the pathogenesis is complex. Gastric cancer seriously affects human health. The role of beta-carotene, a natural nutrient, in gastric cancer has been explored by many researchers, including molecular mechanisms and epidemiological studies. Molecular studies have mainly focused on oxidative stress, cell cycle, signal transduction pathways and immune-related mechanisms of beta-carotene in gastric cancer. Many epidemiological surveys and cohort studies of patients with gastric cancer have been conducted, and the results of these epidemiological studies vary due to the use of different research methods and analysis of different regions. This paper will summarize the results of these studies, mainly in terms of molecular mechanisms and epidemiological research results, which will provide a systematic basis for future studies of the treatment and prognosis of gastric cancer. This paper will help researchers identify new research directions.
Collapse
Affiliation(s)
- Qian-Hui Chen
- Department of Intensive Care Unit, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bao-Kang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
47
|
González A, Casado J, Lanas Á. Fighting the Antibiotic Crisis: Flavonoids as Promising Antibacterial Drugs Against Helicobacter pylori Infection. Front Cell Infect Microbiol 2021; 11:709749. [PMID: 34354964 PMCID: PMC8329489 DOI: 10.3389/fcimb.2021.709749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over half of the world’s population is estimated to be infected with Helicobacter pylori. Chronic infection with this microbial class I carcinogen is considered the most important risk factor for developing gastric cancer. The increasing antimicrobial resistance to first-line antibiotics mainly causes the failure of current eradication therapies, inducing refractory infections. The alarming increase in multidrug resistance in H. pylori isolates worldwide is already beginning to limit the efficacy of existing treatments. Consequently, the World Health Organization (WHO) has included H. pylori in its list of “priority pathogens” for which new antibiotics are urgently needed. Novel strategies must be followed to fight this antibiotic crisis, including properly exploiting the proven therapeutic potential of medicinal plants and plant-derived phytochemicals. In this mini-review, we overview the impressive properties of naturally occurring flavonoids as effective antimicrobial agents against H. pylori, which support the use of these plant-derived bioactive compounds as promising drug candidates for inclusion in novel and personalized combinatory therapies against H. pylori infection.
Collapse
Affiliation(s)
- Andrés González
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Javier Casado
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Ángel Lanas
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain.,Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| |
Collapse
|
48
|
Moghadam MT, Chegini Z, Norouzi A, Dousari AS, Shariati A. Three-Decade Failure to the Eradication of Refractory Helicobacter pylori Infection and Recent Efforts to Eradicate the Infection. Curr Pharm Biotechnol 2021; 22:945-959. [PMID: 32767919 DOI: 10.2174/1389201021666200807110849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Helicobacter pylori causes dangerous and deadly diseases such as gastric cancer and duodenal ulcers. Eradication and treatment of this bacterium are very important due to the deadly diseases caused by H. pylori and the high cost of treatment for countries. METHODS Thus, we present a complete list of the most important causes of failure in the treatment and eradication of H. pylori, and address new therapeutic methods that may be effective in controlling this bacterium in the future. RESULTS Many efforts have been made to control and eradicate this bacterium over the years, but no success has been achieved since its eradication is a complex process affected by the bacterial properties and host factors. Previous studies have shown that various factors are involved in the failure to eradicate H. pylori, such as new genotypes of the bacterium with higher pathogenicity, inappropriate patient cooperation, mutations, biofilm formation and dormant forms that cause antibiotic resistance, acidic stomach pH, high bacterial load, smoking, immunosuppressive features and intracellular occurrence of H. pylori. On the other hand, recent studies reported that the use of probiotics, nanoparticles, antimicrobial peptides, natural product and vaccines can be helpful in the treatment and eradication of H. pylori infections. CONCLUSION Eradication of H. pylori is crucial for the treatment of important diseases such as gastric cancer. Therefore, it seems that identifying the failure causes of treating this bacterium can be helpful in controlling the infections. Besides, further studies on new therapeutic strategies may help eradicate H. pylori in the future.
Collapse
Affiliation(s)
- Majid T Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Chegini
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Norouzi
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Aref Shariati
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Anti- Helicobacter pylori Activity of Artemisia ludoviciana subsp. mexicana and Two of Its Bioactive Components, Estafiatin and Eupatilin. Molecules 2021; 26:molecules26123654. [PMID: 34203927 PMCID: PMC8232798 DOI: 10.3390/molecules26123654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Artemisia ludoviciana subsp. mexicana has been traditionally used for the treatment of digestive ailments such as gastritis, whose main etiological agent is Helicobacter pylori. In a previous screening study, the aqueous extract exhibited a good in vitro anti-H. pylori activity. With the aim of determining the efficacy of this species as a treatment for H. pylori related diseases and finding bioactive compounds, its aqueous extract was subjected to solvent partitioning and the fractions obtained were tested for their in vitro anti-H. pylori effect, as well as for their in vivo gastroprotective and anti-inflammatory activities. The aqueous extract showed a MIC = 250 µg/mL. No acute toxicity was induced in mice. A gastroprotection of 69.8 ± 3.8%, as well as anti-inflammatory effects of 47.6 ± 12.4% and 38.8 ± 10.2% (by oral and topical administration, respectively), were attained. Estafiatin and eupatilin were isolated and exhibited anti-H. pylori activity with MBCs of 15.6 and 31.2 µg/mL, respectively. The finding that A. ludoviciana aqueous extract has significant anti-H. pylori, gastroprotective and anti-inflammatory activities is a relevant contribution to the ethnopharmacological knowledge of this species. This work is the first report about the in vivo gastroprotective activity of A. ludoviciana and the anti-H. pylori activity of eupatilin and estafiatin.
Collapse
|
50
|
Kantar C, Baltaş N, Karaoğlu ŞA, Şaşmaz S. New Potential Monotherapeutic Candidates for Helicobacter pylori: Some Pyridinazo Compounds Having Both Urease Enzyme Inhibition and Anti-Helicobacter pylori Effectiveness. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02406-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|