1
|
Lu Y, Tang W, Zhang H, Liu J, Zhong S. Effect of hepatocyte damage in hepatic fibrogenesis of patients infected with Schistosoma japonicum. Infect Immun 2024; 92:e0002624. [PMID: 38767360 PMCID: PMC11237810 DOI: 10.1128/iai.00026-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Schistosomiasis is a serious public health problem, and previous studies found that liver function and hepatic cells are damaged. To evaluate the serum parameters of liver function and fibrosis in schistosomiasis patients infected with Schistosoma japonicum (Schistosoma J.) and analyze the correlations between liver function and serum fibrosis markers in patients infected with Schistosoma J., this retrospective study enrolled 133 patients. The study population was divided into four groups: healthy people control group (n = 20), chronic schistosomiasis without liver cirrhosis (CS) group (n = 21), schistosomiasis cirrhosis without hypoalbuminemia (SC-HA) group (n = 68), and schistosomiasis cirrhosis with hypoalbuminemia (SC +HA) group (n = 24). Clinical and laboratory data were collected for analysis. In the multiple comparison of abnormal rates of aspartate aminotransferase (AST) and total bilirubin (TBIL), the abnormal rate of the SC +HA group was significantly higher than that of the other three groups (P < 0.05), and the abnormal rate of γ-GT in the SC +HA group was significantly higher than that in the control group (P < 0.05). Multiple comparison results of serum levels of fibrosis markers showed that the SC group had a significantly higher level of indexes than other groups (P < 0.05). The levels of TGF-β1 in the CS group, SC-HA group and SC +HA group were significantly higher than those in the control group (P < 0.001). Our study demonstrated that the liver function and hepatic cells were damaged with the progression of liver disease in patients infected with Schistosoma J., and they played an important role in the occurrence and development of liver fibrosis.
Collapse
Affiliation(s)
- Yaqi Lu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wangxian Tang
- Institute of Liver Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Liu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan Zhong
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| |
Collapse
|
2
|
Tsai MY, Yang WC, Lin CF, Wang CM, Liu HY, Lin CS, Lin JW, Lin WL, Lin TC, Fan PS, Hung KH, Lu YW, Chang GR. The Ameliorative Effects of Fucoidan in Thioacetaide-Induced Liver Injury in Mice. Molecules 2021; 26:molecules26071937. [PMID: 33808318 PMCID: PMC8036993 DOI: 10.3390/molecules26071937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Liver disorders have been recognized as one major health concern. Fucoidan, a sulfated polysaccharide extracted from the brown seaweed Fucus serratus, has previously been reported as an anti-inflammatory and antioxidant. However, the discovery and validation of its hepatoprotective properties and elucidation of its mechanisms of action are still unknown. The objective of the current study was to investigate the effect and possible modes of action of a treatment of fucoidan against thioacetamide (TAA)-induced liver injury in male C57BL/6 mice by serum biochemical and histological analyses. The mouse model for liver damage was developed by the administration of TAA thrice a week for six weeks. The mice with TAA-induced liver injury were orally administered fucoidan once a day for 42 days. The treated mice showed significantly higher body weights; food intakes; hepatic antioxidative enzymes (catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD)); and a lower serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and C-reactive protein (CRP) levels. Additionally, a reduced hepatic IL-6 level and a decreased expression of inflammatory-related genes, such as cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) mRNA was observed. These results demonstrated that fucoidan had a hepatoprotective effect on liver injury through the suppression of the inflammatory responses and acting as an antioxidant. In addition, here, we validated the use of fucoidan against liver disorders with supporting molecular data.
Collapse
Affiliation(s)
- Ming-Yang Tsai
- Animal Industry Division, Livestock Research Institute, Council of Agriculture, Executive Yuan, 112 Muchang, Xinhua Dist, Tainan 71246, Taiwan;
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Wei-Cheng Yang
- School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan; (W.-C.Y.); (C.-S.L.)
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Shuefu Road, Neipu, Pingtung 912301, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
| | - Hsien-Yueh Liu
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Chen-Si Lin
- School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 10617, Taiwan; (W.-C.Y.); (C.-S.L.)
| | - Jen-Wei Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
| | - Pei-Shan Fan
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
- Correspondence: (K.-H.H.); (Y.-W.L.); (G.-R.C.)
| | - Yu-Wen Lu
- Department of Chinese Medicine, Show Chwan Memorial Hospital, 1 Section, 542 Chung-Shan Road, Changhua 50008, Taiwan
- Department of Chinese Medicine, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Changhua 50544, Taiwan
- Correspondence: (K.-H.H.); (Y.-W.L.); (G.-R.C.)
| | - Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (C.-M.W.); (T.-C.L.); (P.-S.F.)
- Correspondence: (K.-H.H.); (Y.-W.L.); (G.-R.C.)
| |
Collapse
|
3
|
Serhan CN, Gupta SK, Perretti M, Godson C, Brennan E, Li Y, Soehnlein O, Shimizu T, Werz O, Chiurchiù V, Azzi A, Dubourdeau M, Gupta SS, Schopohl P, Hoch M, Gjorgevikj D, Khan FM, Brauer D, Tripathi A, Cesnulevicius K, Lescheid D, Schultz M, Särndahl E, Repsilber D, Kruse R, Sala A, Haeggström JZ, Levy BD, Filep JG, Wolkenhauer O. The Atlas of Inflammation Resolution (AIR). Mol Aspects Med 2020; 74:100894. [PMID: 32893032 PMCID: PMC7733955 DOI: 10.1016/j.mam.2020.100894] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute inflammation is a protective reaction by the immune system in response to invading pathogens or tissue damage. Ideally, the response should be localized, self-limited, and returning to homeostasis. If not resolved, acute inflammation can result in organ pathologies leading to chronic inflammatory phenotypes. Acute inflammation and inflammation resolution are complex coordinated processes, involving a number of cell types, interacting in space and time. The biomolecular complexity and the fact that several biomedical fields are involved, make a multi- and interdisciplinary approach necessary. The Atlas of Inflammation Resolution (AIR) is a web-based resource capturing an essential part of the state-of-the-art in acute inflammation and inflammation resolution research. The AIR provides an interface for users to search thousands of interactions, arranged in inter-connected multi-layers of process diagrams, covering a wide range of clinically relevant phenotypes. By mapping experimental data onto the AIR, it can be used to elucidate drug action as well as molecular mechanisms underlying different disease phenotypes. For the visualization and exploration of information, the AIR uses the Minerva platform, which is a well-established tool for the presentation of disease maps. The molecular details of the AIR are encoded using international standards. The AIR was created as a freely accessible resource, supporting research and education in the fields of acute inflammation and inflammation resolution. The AIR connects research communities, facilitates clinical decision making, and supports research scientists in the formulation and validation of hypotheses. The AIR is accessible through https://air.bio.informatik.uni-rostock.de.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute & School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute & School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Oliver Soehnlein
- Department of Physiology and Pharmacology (FyFA), Karolinska Institutet, 17177, Stockholm, Sweden; German Center for Cardiovascular Research (DZHK), München, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, 80336, München, Germany
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan; National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, 00133, Rome, Italy; Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Angelo Azzi
- School of Graduate Biomedical Pharmacology and Drug Development Program at Tufts University, Boston, MA 02111, USA
| | - Marc Dubourdeau
- Ambiotis, Canal Biotech 2 - 3 Rue des Satellites, 31400, Toulouse, France
| | - Suchi Smita Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Patrick Schopohl
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Matti Hoch
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Dragana Gjorgevikj
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Faiz M Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - David Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Anurag Tripathi
- CSIR - Indian Institute of Toxicology Research, 226001, Lucknow, India
| | | | - David Lescheid
- Department of Medical Affairs & Research, Heel GmbH, 76532, Baden-Baden, Germany
| | - Myron Schultz
- Department of Medical Affairs & Research, Heel GmbH, 76532, Baden-Baden, Germany
| | - Eva Särndahl
- iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; School of Medical Sciences, Örebro University, SE-701 82, Örebro, Sweden
| | - Dirk Repsilber
- School of Medical Sciences, Örebro University, SE-701 82, Örebro, Sweden
| | - Robert Kruse
- iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Angelo Sala
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, and IRIB, C.N.R, 90146, Palermo, Italy
| | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Bruce D Levy
- Brigham and Women's Hospital, Department of Medicine, Pulmonary and Critical Care Medicine and Harvard Medical School, Boston, MA, 02115, USA
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal, and Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, H1T 2M4, Canada
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany; Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
4
|
Serhan CN, Gupta SK, Perretti M, Godson C, Brennan E, Li Y, Soehnlein O, Shimizu T, Werz O, Chiurchiù V, Azzi A, Dubourdeau M, Gupta SS, Schopohl P, Hoch M, Gjorgevikj D, Khan FM, Brauer D, Tripathi A, Cesnulevicius K, Lescheid D, Schultz M, Särndahl E, Repsilber D, Kruse R, Sala A, Haeggström JZ, Levy BD, Filep JG, Wolkenhauer O. WITHDRAWN: The Atlas of Inflammation Resolution (AIR). Mol Aspects Med 2020:100893. [PMID: 32873427 DOI: 10.1016/j.mam.2020.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.mam.2020.100894. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute & School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute & School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Oliver Soehnlein
- Department of Physiology and Pharmacology (FyFA), Karolinska Institutet, 17177, Stockholm, Sweden; German Center for Cardiovascular Research (DZHK), München, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, 80336, München, Germany
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 113-0033, Tokyo, Japan; National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, 00133, Rome, Italy; Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Angelo Azzi
- School of Graduate Biomedical Pharmacology and Drug Development Program at Tufts University, Boston, MA, 02111, USA
| | - Marc Dubourdeau
- Ambiotis, Canal Biotech 2 - 3 Rue des Satellites, 31400, Toulouse, France
| | - Suchi Smita Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Patrick Schopohl
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Matti Hoch
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Dragana Gjorgevikj
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Faiz M Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - David Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Anurag Tripathi
- CSIR - Indian Institute of Toxicology Research, 226001, Lucknow, India
| | | | - David Lescheid
- Department of Medical Affairs & Research, Heel GmbH, 76532, Baden-Baden, Germany
| | - Myron Schultz
- Department of Medical Affairs & Research, Heel GmbH, 76532, Baden-Baden, Germany
| | - Eva Särndahl
- IRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Dirk Repsilber
- School of Medical Sciences, University of Örebro, SE-701 82, Örebro, Sweden
| | - Robert Kruse
- IRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Angelo Sala
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, and IRIB, C.N.R, 90146, Palermo, Italy
| | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Bruce D Levy
- Brigham and Women's Hospital, Department of Medicine, Pulmonary and Critical Care Medicine and Harvard Medical School, Boston, MA, 02115, USA
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal, Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, H1T 2M4, Canada
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany; Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
5
|
From personalised nutrition to precision medicine: the rise of consumer genomics and digital health. Proc Nutr Soc 2020; 79:300-310. [PMID: 32468984 DOI: 10.1017/s0029665120006977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advances in genomics generated the concept that a better understanding of individual characteristics, e.g. genotype, will lead to improved tailoring of pharmaceutical and nutritional therapies. Subsequent developments in proteomics and metabolomics, in addition to wearable technologies for tracking parameters, such as dietary intakes, physical activity, heart rate and blood glucose, have further driven this idea. Alongside these innovations, there has been a rapid rise in companies offering direct-to-consumer genetic and/or microbiome testing, in combination with the marketing of personalised nutrition services. Key scientific questions include how disparate datasets are integrated, how accurate are current predictions and how these may be developed in the future. In this regard, lessons can be learned from systems biology, which aims both to integrate data from different levels of organisation (e.g. genomic, proteomic and metabolomic) and predict the emergent behaviours of biological systems or organisms as a whole. The present paper reviews the origins and recent advancement of 'big data' and systems approaches in medicine and nutrition. Conclusions are that systems integration of multiple technologies has generated mechanistic insights and informed the evolution of precision medicine and personalised nutrition. Pertinent ethical issues include who is entitled to access new technologies and how commercial companies are storing, using and/or re-mining consumer data. Questions about efficacy (both long-term behavioural change and health outcomes), cost-benefit and impacts on health inequalities remain to be fully addressed.
Collapse
|
6
|
From sugar to liver fat and public health: systems biology driven studies in understanding non-alcoholic fatty liver disease pathogenesis. Proc Nutr Soc 2019; 78:290-304. [PMID: 30924429 DOI: 10.1017/s0029665119000570] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now a major public health concern with an estimated prevalence of 25-30% of adults in many countries. Strongly associated with obesity and the metabolic syndrome, the pathogenesis of NAFLD is dependent on complex interactions between genetic and environmental factors that are not completely understood. Weight loss through diet and lifestyle modification underpins clinical management; however, the roles of individual dietary nutrients (e.g. saturated and n-3 fatty acids; fructose, vitamin D, vitamin E) in the pathogenesis or treatment of NAFLD are only partially understood. Systems biology offers valuable interdisciplinary methods that are arguably ideal for application to the studying of chronic diseases such as NAFLD, and the roles of nutrition and diet in their molecular pathogenesis. Although present in silico models are incomplete, computational tools are rapidly evolving and human metabolism can now be simulated at the genome scale. This paper will review NAFLD and its pathogenesis, including the roles of genetics and nutrition in the development and progression of disease. In addition, the paper introduces the concept of systems biology and reviews recent work utilising genome-scale metabolic networks and developing multi-scale models of liver metabolism relevant to NAFLD. A future is envisioned where individual genetic, proteomic and metabolomic information can be integrated computationally with clinical data, yielding mechanistic insight into the pathogenesis of chronic diseases such as NAFLD, and informing personalised nutrition and stratified medicine approaches for improving prognosis.
Collapse
|
7
|
Maldonado EM, Fisher CP, Mazzatti DJ, Barber AL, Tindall MJ, Plant NJ, Kierzek AM, Moore JB. Multi-scale, whole-system models of liver metabolic adaptation to fat and sugar in non-alcoholic fatty liver disease. NPJ Syst Biol Appl 2018; 4:33. [PMID: 30131870 PMCID: PMC6102210 DOI: 10.1038/s41540-018-0070-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue associated with high fat, high sugar diets. However, the molecular mechanisms mediating NAFLD pathogenesis are only partially understood. Here we adopt an iterative multi-scale, systems biology approach coupled to in vitro experimentation to investigate the roles of sugar and fat metabolism in NAFLD pathogenesis. The use of fructose as a sweetening agent is controversial; to explore this, we developed a predictive model of human monosaccharide transport, signalling and metabolism. The resulting quantitative model comprising a kinetic model describing monosaccharide transport and insulin signalling integrated with a hepatocyte-specific genome-scale metabolic network (GSMN). Differential kinetics for the utilisation of glucose and fructose were predicted, but the resultant triacylglycerol production was predicted to be similar for monosaccharides; these predictions were verified by in vitro data. The role of physiological adaptation to lipid overload was explored through the comprehensive reconstruction of the peroxisome proliferator activated receptor alpha (PPARα) regulome integrated with a hepatocyte-specific GSMN. The resulting qualitative model reproduced metabolic responses to increased fatty acid levels and mimicked lipid loading in vitro. The model predicted that activation of PPARα by lipids produces a biphasic response, which initially exacerbates steatosis. Our data support the evidence that it is the quantity of sugar rather than the type that is critical in driving the steatotic response. Furthermore, we predict PPARα-mediated adaptations to hepatic lipid overload, shedding light on potential challenges for the use of PPARα agonists to treat NAFLD.
Collapse
Affiliation(s)
- Elaina M. Maldonado
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH UK
| | - Ciarán P. Fisher
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ UK
| | | | - Amy L. Barber
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH UK
| | - Marcus J. Tindall
- Department of Mathematics and Statistics, University of Reading, Berkshire, RG6 6AX UK
- Institute of Cardiovascular and Metabolic Research, University of Reading, Berkshire, RG6 6UR UK
| | - Nicholas J. Plant
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH UK
- Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT UK
| | - Andrzej M. Kierzek
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH UK
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ UK
| | - J. Bernadette Moore
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH UK
- School of Food Science & Nutrition, University of Leeds, Leeds, West Yorkshire, LS2 9JT UK
| |
Collapse
|
8
|
Skubic C, Drakulić Ž, Rozman D. Personalized therapy when tackling nonalcoholic fatty liver disease: a focus on sex, genes, and drugs. Expert Opin Drug Metab Toxicol 2018; 14:831-841. [PMID: 29969922 DOI: 10.1080/17425255.2018.1492552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most frequent liver disease in the world. It describes a term for a group of hepatic diseases including steatosis, fibrosis, and cirrhosis that can finally lead to hepatocellular carcinoma. There are many factors influencing NAFLD initiation and progression, such as obesity, dyslipidemia, insulin resistance, genetic factors, and hormonal changes. However, there is also lean-NAFLD which is not associated with obesity. NAFLD is considered to be a sexually dimorphic disease. In most cases, men have a higher prevalence for the disease compared to premenopausal women. Areas covered: In this review, we first summarize the NAFLD disease epidemiology, pathology, and diagnosis. We describe NAFLD progression with the focus on sexual and genetic differences for disease development and pharmacological treatment. Personalized treatment for multifactorial NAFLD is discussed in consideration of different factors, including genetics, gender and sex. Expert opinion: The livers of female and male NAFLD patients have different metabolic capacities which influence the metabolism of all drugs applied to such patients. This aspect is not yet sufficiently taken into account. The liver computational models might quicken the pace toward assessing personalized disease progression and treatment options.
Collapse
Affiliation(s)
- Cene Skubic
- a Centre for Functional Genomic and Biochips, Institute of Biochemistry, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| | - Živa Drakulić
- a Centre for Functional Genomic and Biochips, Institute of Biochemistry, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| | - Damjana Rozman
- a Centre for Functional Genomic and Biochips, Institute of Biochemistry, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
9
|
Fagonia indica Repairs Hepatic Damage through Expression Regulation of Toll-Like Receptors in a Liver Injury Model. J Immunol Res 2018; 2018:7967135. [PMID: 30057922 PMCID: PMC6051044 DOI: 10.1155/2018/7967135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023] Open
Abstract
Fagonia indica is a traditionally used phytomedicine to cure hepatic ailments. However, efficient validation of its hepatoprotective effect and molecular mechanisms involved are not yet well established. Therefore, the present study was designed to evaluate the hepatoprotective activity of Fagonia indica and to understand the molecular mechanisms involved in the reversal of hepatic injury. The liver injury mouse model was established by thioacetamide followed by oral administration of plant extract. Serum biochemical and histological analyses were performed to assess the level of hepatic injury. Expression analysis of proinflammatory, hepatic, and immune regulatory genes was performed with RT-PCR. Results of serological and histological analyses described the restoration of normal liver function and architecture in mice treated with plant extract. In addition, altered expression of proinflammatory (IL-1β, IL-6, TNF-α, and TGF-β) and hepatic (krt-18 and albumin) markers further strengthens the liver injury reversal effects of Fagonia indica. Furthermore, a significant expression regulation of innate immunity components such as toll-like receptors 4 and 9 and MyD-88 was observed suggesting an immune regulatory role of the plant in curing liver injury. In conclusion, the current study not only proposes Fagonia indica, a strong hepatoprotective candidate, but also recommends an immune regulatory toll-like receptor pathway as an important therapeutic target in liver diseases.
Collapse
|
10
|
Boeckmans J, Natale A, Buyl K, Rogiers V, De Kock J, Vanhaecke T, Rodrigues RM. Human-based systems: Mechanistic NASH modelling just around the corner? Pharmacol Res 2018; 134:257-267. [PMID: 29964161 DOI: 10.1016/j.phrs.2018.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic liver disease characterized by excessive triglyceride accumulation in the liver accompanied by inflammation, cell stress and apoptosis. It is the tipping point to the life-threatening stages of non-alcoholic fatty liver disease (NAFLD). Despite the high prevalence of NASH, up to five percent of the global population, there are currently no approved drugs to treat this disease. Animal models, mostly based on specific diets and genetic modifications, are often employed in anti-NASH drug development. However, due to interspecies differences and artificial pathogenic conditions, they do not represent the human situation accurately and are inadequate for testing the efficacy and safety of potential new drugs. Human-based in vitro models provide a more legitimate representation of the human NASH pathophysiology and can be used to investigate the dysregulation of cellular functions associated with the disease. Also in silico methodologies and pathway-based approaches using human datasets, may contribute to a more accurate representation of NASH, thereby facilitating the quest for new anti-NASH drugs. In this review, we describe the molecular components of NASH and how human-based tools can contribute to unraveling the pathogenesis of this disease and be used in anti-NASH drug development. We also propose a roadmap for the development and application of human-based approaches for future investigation of NASH.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Alessandra Natale
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Karolien Buyl
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Vera Rogiers
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Joery De Kock
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Tamara Vanhaecke
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Robim M Rodrigues
- Department of In VitroToxicology & Dermato-Cosmetology (IVTD) Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
11
|
Ma YH. Renal dysfunction in patients with nonalcoholic fatty liver disease and risk factors. Shijie Huaren Xiaohua Zazhi 2018; 26:667-672. [DOI: 10.11569/wcjd.v26.i11.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the renal function in patients with nonalcoholic fatty liver disease (NAFLD) and to identify the risk factors for renal dysfunction.
METHODS A total of 856 volunteers who underwent health examination were initially enrolled in this study to identify those with NAFLD. The biochemical indexes of patients with NAFLD and healthy volunteers were statistically analyzed, and the renal function with estimated glomerular filtration rate was calculated. In addition, the risk factors for renal damage were identified.
RESULTS A total of 253 patients with NAFLD were identified, and the remaining 603 cases were used as a control group. There was no significant difference in serum BUN between the two groups (t = 1.678, P = 0.062), while other biochemical indexes differed significantly (P < 0.05). The prevalence of renal function impairment was higher in individuals with NAFLD compared to those without (28.8% vs 17.5%, P < 0.0001). Logistic regression analysis showed that NAFLD was associated with renal function impairment, even after adjustment for demographics and components of metabolic syndrome (OR = 2.85, 95%CI: 1.93-4.21, P = 0.000).
CONCLUSION The biochemical indexes of NAFLD patients are significantly abnormal, and renal function impairment is associated with NAFLD. Patients with NAFLD should be regularly assessed for renal function to avoid progressing into chronic kidney disease and increasing the medical burden.
Collapse
Affiliation(s)
- Yan-Hong Ma
- Department of Infectious Diseases, Binhai Hospital of Tianjin Medical University General Hospital, Tianjin 300480, China
| |
Collapse
|
12
|
Christ B, Dahmen U, Herrmann KH, König M, Reichenbach JR, Ricken T, Schleicher J, Ole Schwen L, Vlaic S, Waschinsky N. Computational Modeling in Liver Surgery. Front Physiol 2017; 8:906. [PMID: 29249974 PMCID: PMC5715340 DOI: 10.3389/fphys.2017.00906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Molecular Hepatology Lab, Clinics of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias König
- Department of Biology, Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tim Ricken
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| | - Jana Schleicher
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany.,Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | | | - Sebastian Vlaic
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Navina Waschinsky
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
13
|
Maldonado EM, Leoncikas V, Fisher CP, Moore JB, Plant NJ, Kierzek AM. Integration of Genome Scale Metabolic Networks and Gene Regulation of Metabolic Enzymes With Physiologically Based Pharmacokinetics. CPT Pharmacometrics Syst Pharmacol 2017; 6:732-746. [PMID: 28782239 PMCID: PMC5702902 DOI: 10.1002/psp4.12230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/14/2017] [Accepted: 07/28/2017] [Indexed: 12/30/2022] Open
Abstract
The scope of physiologically based pharmacokinetic (PBPK) modeling can be expanded by assimilation of the mechanistic models of intracellular processes from systems biology field. The genome scale metabolic networks (GSMNs) represent a whole set of metabolic enzymes expressed in human tissues. Dynamic models of the gene regulation of key drug metabolism enzymes are available. Here, we introduce GSMNs and review ongoing work on integration of PBPK, GSMNs, and metabolic gene regulation. We demonstrate example models.
Collapse
Affiliation(s)
- Elaina M. Maldonado
- School of Biosciences and MedicineFaculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Vytautas Leoncikas
- Quantitative Systems PharmacologySimcyp Limited (A Certara Company), Blades Enterprise CentreSheffieldUK
| | - Ciarán P. Fisher
- Translational Science and DMPKSimcyp Limited (A Certara Company), Blades Enterprise CentreSheffieldUK
| | - J. Bernadette Moore
- School of Biosciences and MedicineFaculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
- School of Food Science and NutritionFaculty of Mathematics and Physical Sciences, University of LeedsLeedsUK
| | - Nick J. Plant
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeedsUK
| | - Andrzej M. Kierzek
- School of Biosciences and MedicineFaculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
- Quantitative Systems PharmacologySimcyp Limited (A Certara Company), Blades Enterprise CentreSheffieldUK
| |
Collapse
|
14
|
Improving the economics of NASH/NAFLD treatment through the use of systems biology. Drug Discov Today 2017; 22:1532-1538. [DOI: 10.1016/j.drudis.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022]
|
15
|
Rusli F, Lute C, Boekschoten MV, van Dijk M, van Norren K, Menke AL, Müller M, Steegenga WT. Intermittent calorie restriction largely counteracts the adverse health effects of a moderate-fat diet in aging C57BL/6J mice. Mol Nutr Food Res 2017; 61:1600677. [PMID: 27995741 PMCID: PMC6120141 DOI: 10.1002/mnfr.201600677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
SCOPE Calorie restriction (CR) has been shown to extend life- and health-span in model species. For most humans, a life-long CR diet is too arduous to adhere to. The aim of this study was to explore whether weekly intermittent CR can (1) provide long-term beneficial effects and (2) counteract diet-induced obesity in male aging mice. METHODS AND RESULTS In this study, we have exposed C57Bl/6J mice for 24 months to an intermittent (INT) diet, alternating weekly between CR of a control diet and ad libitum moderate-fat (MF) feeding. This weekly intermittent CR significantly counteracted the adverse effects of the MF diet on mortality, body weight, and liver health markers in 24-month-old male mice. Hepatic gene expression profiles of INT-exposed animals appeared much more comparable to CR- than to MF-exposed mice. At 12 months of age, a subgroup of MF-exposed mice was transferred to the INT diet. Gene expression profiles in the liver of the 24-month-old diet switch mice were highly similar to the INT-exposed mice. However, a small subset of genes was consistently changed by the MF diet during the first phase of life. CONCLUSION Weekly intermittent CR largely, but not completely, reversed adverse effects caused by a MF diet.
Collapse
Affiliation(s)
- Fenni Rusli
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Carolien Lute
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Mark V. Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Miriam van Dijk
- Nutrition and Pharmacology Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Klaske van Norren
- Nutrition and Pharmacology Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
- Nutricia ResearchUtrechtThe Netherlands
| | | | - Michael Müller
- Nutrigenomics and Systems Nutrition Group, Norwich Medical SchoolUniversity of East AngliaNorwich NR4 7UQUK
| | - Wilma T. Steegenga
- Nutrition, Metabolism and Genomics Group, Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
16
|
Miguel NA, Andrade SF, Nai G, Laposy CB, Nascimento FF, Dinallo HR, Melchert A. EFFECTS OF RESVERATROL ON LIVER FUNCTION OF OBESE FEMALE WISTAR RATS. CIÊNCIA ANIMAL BRASILEIRA 2016. [DOI: 10.1590/1089-6891v17i332990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract Resveratrol has antioxidant, anti-inflammatory, lipolytic, and antifibrotic properties, which may be useful in supplementation of obese patients and with liver problems. This study evaluated the effects of 6-week resveratrol supplementation on the lipid profile and liver function of female Wistar rats fed a high-fat diet to induce obesity. Sixty-four Wistar rats were divided into 4 groups (n = 16): the control group (C); the control obese group (CO); the resveratrol group (R); and the resveratrol obese group (RO). At the end of the experiment, the animals were anesthetized for blood collection and subsequent euthanasia for collection of liver biopsy. The parameters for body weight, liver weight, retroperitoneal fat weight, serum lipid and liver profiles and histopathological analysis were evaluated. The 6-week resveratrol administration did not induce weight loss nor did it reduce the lipid profile; however, it decreased the liver enzymes aspartate aminotransferase (AST) and alkaline phosphatase (ALP) and reduced the incidence of steatosis (75.0%) in group RO compared with group CO (81.2%). Thus, we concluded that resveratrol supplementation for the short period of six weeks had a beneficial effect on liver function by reducing hepatic steatosis and the liver enzymes AST and ALP in obese female rats.
Collapse
|
17
|
AlGhamdi S, Leoncikas V, Plant KE, Plant NJ. Synergistic interaction between lipid-loading and doxorubicin exposure in Huh7 hepatoma cells results in enhanced cytotoxicity and cellular oxidative stress: implications for acute and chronic care of obese cancer patients. Toxicol Res (Camb) 2015; 4:1479-1487. [PMID: 26744621 PMCID: PMC4692330 DOI: 10.1039/c5tx00173k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/11/2015] [Indexed: 01/29/2023] Open
Abstract
There has been a dramatic increase in the number of clinically obese individuals in the last twenty years. This has resulted in an increasingly common scenario where obese individuals are treated for other diseases, including cancer. Here, we examine interactions between lipid-induced steatosis and doxorubicin treatment in the human hepatoma cell line Huh7. The response of cells to either doxorubicin, lipid-loading or a combination were examined at the global level by DNA microarray, and for specific endpoints of cytotoxicity, lipid-loading, reactive oxygen species, anti-oxidant response systems, and apoptosis. Both doxorubicin and lipid-loading caused a significant accumulation of lipid within Huh7 cells, with the combination resulting in an additive accumulation. In contrast, cytotoxicity was synergistic for the combination compared to the individual components, suggesting an enhanced sensitivity of lipid-loaded cells to the acute hepatotoxic effects of doxorubicin. We demonstrate that a synergistic increase in reactive oxygen species and deregulation of protective anti-oxidant systems, most notably metallothionein expression, underlies this effect. Transcriptome analysis confirms synergistic changes at the global level, and is consistent with enhanced pro-inflammatory signalling in steatotic cells challenged with doxorubicin. Such effects are consistent with a potentiation of progression along the fatty liver disease spectrum. This suggests that treatment of obese individuals with doxorubicin may increase the risk of both acute (i.e. hepatotoxicity) and chronic (i.e. progress of fatty liver disease) adverse effects. This work highlights the need for more study in the growing therapeutic area to develop risk mitigation strategies.
Collapse
Affiliation(s)
- S AlGhamdi
- Department of Biochemistry and Physiology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| | - V Leoncikas
- Department of Biochemistry and Physiology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| | - K E Plant
- Department of Biochemistry and Physiology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| | - N J Plant
- Department of Biochemistry and Physiology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| |
Collapse
|
18
|
Moore JB, Gunn PJ, Fielding BA. The role of dietary sugars and de novo lipogenesis in non-alcoholic fatty liver disease. Nutrients 2014; 6:5679-703. [PMID: 25514388 PMCID: PMC4276992 DOI: 10.3390/nu6125679] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
Dietary sugar consumption, in particular sugar-sweetened beverages and the monosaccharide fructose, has been linked to the incidence and severity of non-alcoholic fatty liver disease (NAFLD). Intervention studies in both animals and humans have shown large doses of fructose to be particularly lipogenic. While fructose does stimulate de novo lipogenesis (DNL), stable isotope tracer studies in humans demonstrate quantitatively that the lipogenic effect of fructose is not mediated exclusively by its provision of excess substrates for DNL. The deleterious metabolic effects of high fructose loads appear to be a consequence of altered transcriptional regulatory networks impacting intracellular macronutrient metabolism and altering signaling and inflammatory processes. Uric acid generated by fructose metabolism may also contribute to or exacerbate these effects. Here we review data from human and animal intervention and stable isotope tracer studies relevant to the role of dietary sugars on NAFLD development and progression, in the context of typical sugar consumption patterns and dietary recommendations worldwide. We conclude that the use of hypercaloric, supra-physiological doses in intervention trials has been a major confounding factor and whether or not dietary sugars, including fructose, at typically consumed population levels, effect hepatic lipogenesis and NAFLD pathogenesis in humans independently of excess energy remains unresolved.
Collapse
Affiliation(s)
- J Bernadette Moore
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Pippa J Gunn
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| |
Collapse
|