1
|
Wen H, Liang R, Liu X, Yu Y, Lin S, Song Z, Huang Y, Yu X, Chen S, Chen L, Qian B, Shen J, Xiao H, Shen S. Predicting Pathological Response of Neoadjuvant Conversion Therapy for Hepatocellular Carcinoma Patients Using CT-Based Radiomics Model. J Hepatocell Carcinoma 2024; 11:2145-2157. [PMID: 39502744 PMCID: PMC11537151 DOI: 10.2147/jhc.s487370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Predicting the pathological response after neoadjuvant conversion therapy for initially unresectable hepatocellular carcinoma (HCC) is essential for surgical decision-making and survival outcomes but remains a challenge. We aimed to develop a radiomics model to predict pathological responses. Methods We included 203 patients with HCC who underwent hepatectomy after neoadjuvant conversion therapy between 2015 and 2023 and separated them into a training set (100 patients from Center A) and a validation set (103 patients from Center B). Pathological complete response (pCR)-related radiomic features were extracted from the largest tumor layer in the arterial and portal vein phases of the CT. A synthetic minority oversampling technique (SMOTE) was used to balance the minority groups in the training set. The SMOTE radiomics model was constructed using a logistic regression model in the SMOTE training set and its performance was verified in the validation set. Results The AUC of the preoperative modified response evaluation criteria in solid tumors (mRECIST) assessment for pCR was 0.656 and 0.589 in the training and validation sets, respectively. The SMOTE radiomics model was established based on ten radiomic features and showed good pCR-predictive performance in the SMOTE training set (AUC, 0.889; accuracy, 87.7%) and the validation set (AUC: 0.843, accuracy: 86.4%). The RFS of the radiomics-predicted-pCR group was significantly better than that of the predicted-non-pCR group in the training cohort (P = 0.001, 2-year RFS: 69.5% and 30.1% respectively) and the validation cohort (P = 0.012, 2-year RFS: 65.9% and 38.0% respectively). Conclusion The SMOTE radiomics model has great potential for predicting pathological response and evaluating RFS in patients with unresectable HCC after neoadjuvant conversion therapy.
Collapse
Affiliation(s)
- Haoxiang Wen
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong Province, People’s Republic of China
| | - Ruiming Liang
- Department of Medical Statistics, Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xiaofei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-senUniversity, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yang Yu
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shuirong Lin
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Zimin Song
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yihao Huang
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xi Yu
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shuling Chen
- Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Lili Chen
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Baifeng Qian
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jingxian Shen
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Han Xiao
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shunli Shen
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
2
|
Frühling P, Stillström D, Holmquist F, Nilsson A, Freedman J. Change in tissue resistance after irreversible electroporation in liver tumors as an indicator of treatment success - A multi-center analysis with long term follow-up. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108508. [PMID: 38950490 DOI: 10.1016/j.ejso.2024.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION A nationwide multicenter study was performed to examine whether there is a correlation between decrease in tissue resistance and time to local tumor recurrence after irreversible electroporation (IRE) in patients with hepatocellular carcinoma (HCC) and colorectal cancer liver metastases (CRCLM). METHODS All patients treated with IRE for liver tumors in Sweden from 2011 until 2018 were included. Patient characteristics and recurrence patterns were obtained from medical records and radiological imaging. All procedural data from the IRE hardware at the three hospitals performing IRE were retrieved. The resistance during each pulse and the change during each treatment were calculated. The electrode pair with the smallest decrease in tissue resistance was used and compared with the time to LTP. RESULTS 149 patients with 206 tumors were treated. Exclusion due to missing and inaccurate data resulted in 124 patients with 170 tumors for the analyses. In a multivariable Cox regression model, a smaller decrease in tissue resistance and larger tumor size were associated with shorter time to local tumor recurrence for CRCLM, but not for HCC. CONCLUSION There was an association between a decrease in tissue resistance and time to local tumor recurrence for CRCLM. The decrease in resistance, in combination with a rise in current, may be the parameters the interventionist should use during IRE to decide if the treatment is successful.
Collapse
Affiliation(s)
- Petter Frühling
- Department of Surgical Sciences, Uppsala University, Uppsala Sweden.
| | - David Stillström
- Division of Surgery, Department of Clinical Sciences, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| | - Fredrik Holmquist
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Anders Nilsson
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Jacob Freedman
- Division of Surgery, Department of Clinical Sciences, Karolinska Institutet at Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Li Y, Fang Y, Li D, Wu J, Huang Z, Liao X, Liu X, Wei C, Huang Z. Constructing a prognostic model for hepatocellular carcinoma based on bioinformatics analysis of inflammation-related genes. Front Med (Lausanne) 2024; 11:1420353. [PMID: 39055701 PMCID: PMC11269197 DOI: 10.3389/fmed.2024.1420353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background This study aims to screen inflammation-related genes closely associated with the prognosis of hepatocellular carcinoma (HCC) to accurately forecast the prognosis of HCC patients. Methods Gene expression matrices and clinical information for liver cancer samples were obtained from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). An intersection of differentially expressed genes of HCC and normal and GeneCards yielded inflammation-related genes associated with HCC. Cox regression and the minor absolute shrinkage and selection operator (LASSO) regression analysis to filter genes associated with HCC prognosis. The prognostic value of the model was confirmed by drawing Kaplan-Meier and ROC curves. Select differentially expressed genes between the high-risk and low-risk groups and perform GO and KEGG pathways analyses. CIBERSORT analysis was conducted to assess associations of risk models with immune cells and verified using real-time qPCR. Results A total of six hub genes (C3, CTNNB1, CYBC1, DNASE1L3, IRAK1, and SERPINE1) were selected using multivariate Cox regression to construct a prognostic model. The validation evaluation of the prognostic model showed that it has an excellent ability to predict prognosis. A line plot was drawn to indicate the HCC patients' survival, and the calibration curve revealed satisfactory predictability. Among the six hub genes, C3 and DNASE1L3 are relatively low expressed in HCCLM3 and 97H liver cancer cell lines, while CTNNB1, CYBC1, IRAK1, and SERPINE1 are relatively overexpressed in liver cancer cell lines. Conclusion One new inflammatory factor-associated prognostic model was constructed in this study. The risk score can be an independent predictor for judging the prognosis of HCC patients' survival.
Collapse
Affiliation(s)
- Yinglian Li
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Fang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - DongLi Li
- Radiology Department, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, China
| | - Jiangtao Wu
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Zichong Huang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Xueyin Liao
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Xuemei Liu
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Chunxiao Wei
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Zhong Huang
- Department of Oncology, Kaiyuan Langdong Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Li J, Xu Y, Tan SD, Wang Z. Impact of red blood cell distribution width (RDW) on postoperative outcomes in hepatocellular carcinoma (HCC) patients. Medicine (Baltimore) 2024; 103:e38475. [PMID: 38875439 PMCID: PMC11175885 DOI: 10.1097/md.0000000000038475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024] Open
Abstract
This study examines the relationship between red blood cell distribution width (RDW) and the prognosis of patients undergoing hepatectomy for hepatocellular carcinoma (HCC). Additionally, it explores the potential effect of RDW for the early identification of high-risk patients after surgery, advocating for timely interventions to improve outcomes. A comprehensive literature search was conducted on May 16, 2022, across PubMed (23 studies), Embase (45 studies), the Cochrane Library (1 study), and CNKI (17 studies), resulting in 6 relevant articles after screening. This analysis primarily focused on the postoperative outcomes of patients. Hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled to assess prognosis, with survival indicators including overall survival (OS) and disease-free survival (DFS). All 6 studies reported on OS, and 2 addressed DFS. A total of 1645 patients from 6 studies were included. The pooled analysis revealed that RDW is an independent prognostic factor for both OS (HR = 1.50, I² = 84%, 95% CI = 1.23-1.77, P < .01) and DFS (HR = 2.06, I² = 15%, 95% CI = 1.51-2.82, P < .01). Patients in the high RDW group exhibited significantly poorer OS and DFS compared to those in the low RDW group. RDW is a prognostic factor for HCC patients after surgery. Elevated RDW levels are associated with a poorer prognosis, adversely affecting both OS and DFS. RDW may serve as a valuable marker for stratifying risk and guiding intervention strategies in the postoperative management of HCC patients.
Collapse
Affiliation(s)
- Jin Li
- Department of Clinical Laboratory, Chongqing Hospital of Jiangsu Province Hospital, The People’s Hospital of Qijiang District, Chongqing, China
| | - Yi Xu
- Department of Hepatobiliary Surgery, Chongqing Hospital of Jiangsu Province Hospital, The People’s Hospital of Qijiang District, Chongqing, China
| | - Shu-De Tan
- Department of Radiology, Chongqing Hospital of Jiangsu Province Hospital, The People’s Hospital of Qijiang District, Chongqing, China
| | - Zhi Wang
- Department of Hepatobiliary Surgery, Chongqing Hospital of Jiangsu Province Hospital, The People’s Hospital of Qijiang District, Chongqing, China
| |
Collapse
|
5
|
Liang J, Yao N, Deng B, Li J, Jiang Y, Liu T, Hu Y, Cao M, Hong J. GINS1 promotes ZEB1-mediated epithelial-mesenchymal transition and tumor metastasis via β-catenin signaling in hepatocellular carcinoma. J Cell Physiol 2024; 239:e31237. [PMID: 38468464 DOI: 10.1002/jcp.31237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
GINS1 regulates DNA replication in the initiation and elongation phases and plays an important role in the progression of various malignant tumors. However, the role of GINS1 in hepatocellular carcinoma (HCC) remains largely unclear. In this study, we investigated the role and underlying mechanisms of GINS1 in contributing to HCC metastasis. We found that GINS1 was significantly upregulated in HCC tissues and cell lines, especially in HCC tissues with vascular invasion and HCC cell lines with highly metastatic properties. Additionally, high expression of GINS1 was positively correlated with the progressive clinical features of HCC patients, including tumor number (multiple), tumor size (>5 cm), advanced tumor stage, vascular invasion and early recurrence, suggesting that GINS1 upregulation was greatly involved in HCC metastasis. Moreover, Kaplan-Meier survival analysis revealed that high GINS1 expression predicted a poor prognosis. Both in vitro and in vivo, silencing of GINS1 inhibited proliferation, migration, invasion and metastasis, while overexpression of GINS1 induced opposite effects. Mechanistically, we found that ZEB1 was a crucial regulator of GINS1-induced epithelial-mesenchymal transition (EMT), and GINS1 promoted EMT and tumor metastasis through β-catenin signaling. Overall, the present study demonstrated that GINS1 promoted ZEB1-mediated EMT and tumor metastasis via β-catenin signaling in HCC.
Collapse
Affiliation(s)
- Junjie Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Nan Yao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Bo Deng
- Department of General Surgery, The Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Jinying Li
- Department of Digestive Endoscopy, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuchuan Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tongzheng Liu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, China
| | - Youzhu Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of General Surgery, The Affiliated Shunde Hospital, Jinan University, Foshan, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Wan Y, Jiang H, Liu Z, Bai C, Lian Y, Zhang C, Zhang Q, Huang J. Exploring the Molecular Mechanisms of Huaier on Modulating Metabolic Reprogramming of Hepatocellular Carcinoma: A Study based on Network Pharmacology, Molecular Docking and Bioinformatics. Curr Pharm Des 2024; 30:1894-1911. [PMID: 38747231 DOI: 10.2174/0113816128287535240429043610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/12/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Huaier (Trametes robiniophila Murr), a traditional Chinese medicine, is widely used in China as a complementary and alternative therapy to treat hepatocellular carcinoma (HCC). Past studies have shown that Huaier can arrest the cell cycle, promote apoptosis and inhibit the proliferation of cancer cells. However, how it regulates the metabolism of HCC is still unclear. OBJECTIVE This study explores the metabolic-related function of Huaier in treating HCC with an in-silico approach. METHODS A network pharmacology and bioinformatics-based approach was employed to investigate the molecular pathogenesis of metabolic reprogramming in HCC with Huaier. The compounds of Huaier were obtained from public databases. Oral bioavailability and drug likeness were screened using the TCMSP platform. The differential gene expressions between HCC and non-tumor tissue were calculated and used to find the overlap from the targets of Huaier. The enrichment analysis of the overlapped targets by Metascape helped filter out the metabolism-related targets of Huaier in treating HCC. Protein-protein interaction (PPI) network construction and topological screening revealed the hub nodes. The prognosis and clinical correlation of these targets were validated from the cancer genome atlas (TCGA) database, and the interactions between the hub nodes and active ingredients were validated by molecular docking. RESULTS The results showed that Peroxyergosterol, Daucosterol, and Kaempferol were the primary active compounds of Huaier involved in the metabolic reprogramming of HCC. The top 6 metabolic targets included AKR1C3, CYP1A1, CYP3A4, CYP1A2, CYP17A1, and HSD11B1. The decreased expression of CYP3A4 and increased expression of AKR1C3 were related to the poor overall survival of HCC patients. The molecular docking validated that Peroxyergosterol and Kaempferol exhibited the potential to modulate CYP3A4 and AKR1C3 from a computational perspective. CONCLUSION This study provided a workflow for understanding the mechanism of Huaier in regulating the metabolic reprogramming of HCC.
Collapse
Affiliation(s)
- Yuxiang Wan
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Honglin Jiang
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Zeyu Liu
- Department of VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chen Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanyan Lian
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Chunguang Zhang
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Qiaoli Zhang
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Jinchang Huang
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| |
Collapse
|
7
|
Qiao L, Hu W, Li L, Chen X, Liu L, Wang J. USP11 promotes glycolysis by regulating HIF-1α stability in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18017. [PMID: 38229475 PMCID: PMC10826445 DOI: 10.1111/jcmm.18017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 01/18/2024] Open
Abstract
Understanding the mechanisms underlying metastasis in hepatocellular carcinoma (HCC) is crucial for developing new therapies against this fatal disease. Deubiquitinase ubiquitin-specific protease 11 (USP11) belongs to the deubiquitinating family and has previously been reported to play a critical role in cancer pathogenesis. Although it has been established that USP11 can facilitate the metastasis and proliferation ability of HCC, the underlying regulatory mechanisms are poorly understood. The primary objective of this research was to reveal hitherto undocumented functions of USP11 during HCC progression, especially those related to metabolism. Under hypoxic conditions, USP11 was found to significantly impact the glycolysis of HCC cells, as demonstrated through various techniques, including RNA-Seq, migration and colony formation assays, EdU and co-immunoprecipitation. Interestingly, we found that USP11 interacted with the HIF-1α complex and maintained HIF-1α protein stability by removing ubiquitin. Moreover, USP11/HIF-1α could promote glycolysis through the PDK1 and LDHA pathways. In general, our results demonstrate that USP11 promotes HCC proliferation and metastasis through HIF-1α/LDHA-induced glycolysis, providing new insights and the experimental basis for developing new treatments for this patient population.
Collapse
Affiliation(s)
- Lijun Qiao
- College of Pharmacy, Shenzhen Technology UniversityShenzhenGuangdongChina
- Department of Hepatobiliary and Pancreas SurgeryThe Second Clinical Medical College, Jinan University (Shenzhen People's Hospital)ShenzhenGuangdongChina
- Department of Hepatobiliary and Pancreas Surgery, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Weibin Hu
- Institute for Brain Research and Rehabilitation, South China Normal UniversityGuangzhouGuangdongChina
| | - Linzhi Li
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
| | - Xin Chen
- College of Pharmacy, Shenzhen Technology UniversityShenzhenGuangdongChina
| | - Liping Liu
- Department of Hepatobiliary and Pancreas SurgeryThe Second Clinical Medical College, Jinan University (Shenzhen People's Hospital)ShenzhenGuangdongChina
- Department of Hepatobiliary and Pancreas Surgery, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Jingbo Wang
- College of Pharmacy, Shenzhen Technology UniversityShenzhenGuangdongChina
| |
Collapse
|
8
|
Qin Z, Zhu F, Xie B, Zhang Y, Yuan M, Yang P, Zhang L, Wei J, Zhu Z, Qian Z, Wang Z, Fan L, Xu S, Tan Y, Qian J. Comprehensive analysis of ASB3 as a prognostic biomarker in hepatocellular carcinoma. Transl Oncol 2024; 39:101816. [PMID: 37925796 PMCID: PMC10654593 DOI: 10.1016/j.tranon.2023.101816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/15/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Some reports have indicated a high expression level of ASB3 in various cancers, but its role in hepatocellular carcinoma (HCC) remains elusive. METHODS ASB3 levels and clinical features were obtained from the TCGA database. Meanwhile, the expression levels of ASB3 in tumor and paraneoplastic tissues were further verified by qRT-PCR and Imunohistochemistry (IHC). ASB3-related downstream molecular analysis was carried out with Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Pathways linked to ASB3 expression were identified by means of gene set enrichment analysis (GSEA). Single-sample GSEA (ssGSEA) aided in conducting a correlation analysis of ASB3 with immune infiltration. Functional experiments were performed in HepG2 cells by using the small interfering RNA. RESULTS ASB3 expression was remarkably higher in HCC tissues. Its remarkable precision in forecasting cancer suggests that ASB3 might serve as an unidentified diagnostic and prognostic indicator of HCC. Higher ASB3 expression led to worse overall survival (OS), particularly in various clinical subgroups of HCC. GO/KEGG analysis indicated that critical biological activities, such as the activation of complement systems and humoral immune response, could potentially underlie the progression of HCC. Furthermore, GSEA demonstrated enrichment of certain pathways, including the MAPK, IL17, and fibrinolysis pathways, in samples with elevated ASB3 levels. ASB3 exhibited a substantial association with T helper cells, dendritic cells (DCs), and central memory T (Tcm) cell infiltration level. Cell function experiments confirmed elevated ASB3 levels in HCC cell lines as opposed to hepatic epithelial cell lines. Moreover, the ability of HCC cells to proliferate and invade was remarkably reduced by ASB3 knockdown. CONCLUSION Summarize briefly, we found that ASB3 can be a promising biomarker in HCC.
Collapse
Affiliation(s)
- Zhongqiang Qin
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Fangquan Zhu
- Department of Cancer Center, Lu'an Hospital of Anhui Medical University, Lu'an, China
| | - Bo Xie
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Yang Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Mu Yuan
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Peipei Yang
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Lan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jianzhu Wei
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Ziyi Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Zhen Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Zhaoying Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Longfei Fan
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Shuaishuai Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Yulin Tan
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| | - Jingyu Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical College, No 287 Changhuai Road, Longzihu District, Bengbu, Anhui Province 233000, China
| |
Collapse
|
9
|
Ning S, Li X, Ma X, Liu J, Chang X. Efficacy of TACE Combined with Lenvatinib Plus Sintilimab for Hepatocellular Carcinoma with Tumor Thrombus in the Inferior Vena Cava and/or Right Atrium. J Hepatocell Carcinoma 2023; 10:1511-1525. [PMID: 37724186 PMCID: PMC10505388 DOI: 10.2147/jhc.s410967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 09/20/2023] Open
Abstract
Purpose To validate the safety and effectiveness of transarterial chemoembolization (TACE) combination with lenvatinib and sintilimab in treating hepatocellular carcinoma (HCC) patients with inferior vena cava (IVC) and/or right atrium (RA) tumor thrombosis (TT). Methods This study retrospectively analyzed HCC patients with IVC and/or RA TT treated with TACE combined with lenvatinib plus sintilimab. Overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR) were calculated to evaluate the anti-tumor efficacy. Treatment-related adverse events (TRAEs) were analyzed to assess the safety profiles. Results A total of 58 patients were screened for eligibility between March 2019 and May 2022. At the time of data collection, 48.2% of patients were still receiving treatment. The median follow-up was 23.5 months. The ORR was 48.3%, the DCR was 91.4%, the median OS was 17.3 months, and the median PFS was 13.0 months. The ORR for IVC/RA TT was 62.1%, DCR was 94.9%, and the median PFS was 14.3 months. 56.9% of patients experienced ≥ grade 3 TRAEs, such as hypertension (10.3%) and elevated liver enzymes (13.8%). No new safety signals were identified. Participants with low levels of serum PCT value had satisfactory prognoses. Conclusion TACE combination with lenvatinib plus sintilimab is effective in treating HCC with IVC and/or RA TT. The toxicities were manageable, with no unexpected safety signals. The baseline levels of serum PCT might be the predictive biomarkers for the triple combination therapy.
Collapse
Affiliation(s)
- Shangkun Ning
- Department of Interventional Therapy I, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Xinge Li
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Xiangyu Ma
- Department of Interventional Therapy I, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Jibing Liu
- Department of Interventional Therapy I, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Xu Chang
- Department of Interventional Therapy II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
10
|
Yi C, Wei W, Wan M, Chen Y, Zhang B, Wu W. Expression Patterns of HOX Gene Family Defines Tumor Microenvironment and Immunotherapy in Hepatocellular Carcinoma. Appl Biochem Biotechnol 2023; 195:5072-5093. [PMID: 36976502 DOI: 10.1007/s12010-023-04443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Hepatocellular carcinoma (HCC) pathophysiology is prevalently related with HOX genes. However, the study on associations of extensive HOX genes with tumor microenvironment and drug sensitivity of HCC remains scarce. The data sets of HCC were downloaded from TCGA, ICGC, and GEO by bioinformatics method and analyzed. Based on a computational frame, HCC samples were divided into a high and a low HOXscore group, and significantly shorter survival time in the high HOXscore was observed relative to low HOXscore group using survival analysis. Gene set enrichment analysis (GSEA) revealed that the high HOXscore group was more likely to be enriched in cancer-specific pathways. Furthermore, the high HOXscore group was involved in the infiltration of inhibitory immune cells. In response to anti-cancer drugs, the high HOXscore group was more sensitive to mitomycin and cisplatin. Importantly, the HOXscore was associated with the therapeutic efficacy of PD-L1 blockade, suggesting that the development of potential drugs targeting these HOX genes to aid the clinical benefits of immunotherapy is needed. In addition, RT-qPCR and immunohistochemistry showed 10 HOX genes mRNA expression was higher in HCC compared to the normal tissues. This study provides a comprehensive analysis of HOX genes family in HCC and revealed the potential function of these HOX genes family in tumor microenvironment (TME) and identified their therapeutic liability in targeted therapy and immunotherapy. Eventually, this work highlights the cross-talk and potential clinical utility of HOX genes family in HCC therapy.
Collapse
Affiliation(s)
- Changhong Yi
- Department of Interventional Radiology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wei Wei
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Maolin Wan
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Ya Chen
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Bo Zhang
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Wenze Wu
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China.
| |
Collapse
|
11
|
Xu Z, Bao J, Jin X, Li H, Fan K, Wu Z, Yao M, Zhang Y, Liu G, Wang D, Yu X, Guo J, Xu R, Gong Q, Wang F, Wang J. The Effects of Cinobufagin on Hepatocellular Carcinoma Cells Enhanced by MRT68921, an Autophagy Inhibitor. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1595-1611. [PMID: 37489112 DOI: 10.1142/s0192415x23500726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cinobufagin, a cardiotonic steroid derived from toad venom extracts, exhibits significant anticancer properties by inhibiting Na[Formula: see text]/K[Formula: see text]-ATPase in cancer cells. It is frequently used in clinical settings to treat advanced-stage cancer patients, improving their quality of life and survival time. However, its long-term use can result in multidrug resistance to other chemotherapy drugs, and the exact mechanism underlying this effect remains unknown. Therefore, this study explores the molecular mechanism underlying the anticancer effects of cinobufagin in hepatocellular carcinomas (HCCs), specifically in HepG2 and Huh-7 cells. As determined using transcriptome analysis, cinobufagin-triggered protective autophagy suppressed cell apoptosis in liver cancer HepG2 and Huh-7 cells by inhibiting the phosphoinositide-3-Kinase (PI3K)-AKT serine/threonine kinase (AKT)-mammalian target of rapamycin (mTOR) pathway. Cinobufagin-inhibited cell proliferation, induced apoptosis, and generated cell autophagy by upregulating the expression of MAP1 light chain 3 protein II, Beclin1, and autophagy-related protein 12-5. In addition, the autophagy inhibitor MRT68921 improved the antiproliferative and proapoptotic effects of cinobufagin in the studied cell lines. Overall, this study suggests that combining cinobufagin with an autophagy inhibitor can effectively treat HCC, providing a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Jun Bao
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Xiaohan Jin
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Heng Li
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Kaiyuan Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Zhidong Wu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Min Yao
- Department of Internal Medicine, Tianjin Armed Police Corps Hospital, Tianjin 300126, P. R. China
| | - Yan Zhang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Gang Liu
- Xinjiang General Corps Hospital, Chinese People's Armed Police Force, Urumqi, Xinjiang 839001, P. R. China
| | - Dan Wang
- Xinjiang General Corps Hospital, Chinese People's Armed Police Force, Urumqi, Xinjiang 839001, P. R. China
| | - Xiaoping Yu
- Xinjiang General Corps Hospital, Chinese People's Armed Police Force, Urumqi, Xinjiang 839001, P. R. China
| | - Jia Guo
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Ruicheng Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, P. R. China
| | - Qian Gong
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P. R. China
| | - Fengmei Wang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin 300170, P. R. China
| | - Jin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, P. R. China
| |
Collapse
|
12
|
Zhao J, He R, Zhong H, Liu S, Liu X, Hussain M, Sun P. A cold-water extracted polysaccharide-protein complex from Grifola frondosa exhibited anti-tumor activity via TLR4-NF-κB signaling activation and gut microbiota modification in H22 tumor-bearing mice. Int J Biol Macromol 2023; 239:124291. [PMID: 37028620 DOI: 10.1016/j.ijbiomac.2023.124291] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Grifola frondosa polysaccharide-protein complex (G. frondosa PPC) is a polymer which consists of polysaccharides and proteins/peptides linked by covalent bonds. In our previous ex vivo research, it has been demonstrated that a cold-water extracted G. frondosa PPC has stronger antitumor activity than a G. frondosa PPC extracted from boiling water. The main purpose of the current study was to further evaluate the anti-hepatocellular carcinoma and gut microbiota regulation effects of two PPCs isolated from G. frondosa at 4 °C (GFG-4) and 100 °C (GFG-100) in vivo. The results exhibited that GFG-4 remarkably upregulated the expression of related proteins in TLR4-NF-κB and apoptosis pathway, thereby inhibiting the development of H22 tumors. Additionally, GFG-4 increased the abundance of norank_f__Muribaculaceae and Bacillus and reduced the abundance of Lactobacillus. Short chain fatty acids (SCFAs) analysis suggested that GFG-4 promoted SCFAs production, particularly butyric acid. Conclusively, the present experiments revealed GFG-4 has the potential of anti-hepatocellular carcinoma growth via activating TLR4-NF-κB pathway and regulating gut microbiota. Therefore, G. frondosa PPCs could be considered as safe and effective natural ingredient for treatment of hepatocellular carcinoma. The present study also provides a theoretical foundation for the regulation of gut microbiota by G. frondosa PPCs.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| |
Collapse
|
13
|
Revamping the innate or innate-like immune cell-based therapy for hepatocellular carcinoma: new mechanistic insights and advanced opportunities. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:84. [PMID: 36680649 DOI: 10.1007/s12032-023-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
A cancerous tumour termed hepatocellular carcinoma (HCC) is characterized by inflammation and subsequently followed by end-stage liver disease and necrosis of the liver. The liver's continuous exposure to microorganisms and toxic molecules affects the immune response because normal tissue requires some immune tolerance to be safeguarded from damage. Several innate immune cells are involved in this process of immune system activation which includes dendritic cells, macrophages, and natural killer cells. The liver is an immunologic organ with vast quantities of innate and innate-like immune cells subjected to several antigens (bacteria, fungal or viral) through the gut-liver axis. Tumour-induced immune system engagement may be encouraged or suppressed through innate immunological systems, which are recognized promoters of liver disease development in pre-HCC conditions such as fibrosis or cirrhosis, ultimately resulting in HCC. Immune-based treatments containing several classes of drugs have transformed the treatment of several types of cancers in recent times. The effectiveness of such immunotherapies relies on intricate interactions between lymphocytes, tumour cells, and neighbouring cells. Even though immunotherapy therapy has already reported to possess potential effect to treat HCC, a clear understanding of the crosstalk between innate and adaptive immune cell pathways still need to be clearly understood for better exploitation of the same. The identification of predictive biomarkers, understanding the progression of the disease, and the invention of more efficient combinational treatments are the major challenges in HCC immunotherapy. The functions and therapeutic significance of innate immune cells, which have been widely implicated in HCC, in addition to the interplay between innate and adaptive immune responses during the pathogenesis, have been explored in the current review.
Collapse
|
14
|
Fan Z, Zhou P, Jin B, Li G, Feng L, Zhuang C, Wang S. Recent therapeutics in hepatocellular carcinoma. Am J Cancer Res 2023; 13:261-275. [PMID: 36777510 PMCID: PMC9906068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 12/26/2022] [Indexed: 02/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor of hepatocytes. It is a common malignant tumor of the digestive system that often has initially hidden presentation followed by rapid progression. There are no obvious symptoms in the early stage of HCC. When diagnosed, most patients have locally advanced tumor or distant metastasis; therefore, HCC is difficult to treat and only supportive and symptomatic treatment is adopted. The prognosis is poor and survival time is short. How to effectively treat HCC is important clinically. In recent years, advances in medical technology have resulted in comprehensive treatment methods based on surgery.
Collapse
Affiliation(s)
- Zhe Fan
- Department of General Surgery & Department of Central Laboratory, The Third People’s Hospital of Dalian, Dalian Medical UniversityDalian, Liaoning, China
| | - Pengcheng Zhou
- School of Medicine, Southeast UniversityNanjing, Jiangsu, China
| | - Binghui Jin
- Department of General Surgery & Department of Central Laboratory, The Third People’s Hospital of Dalian, Dalian Medical UniversityDalian, Liaoning, China
| | - Guangyao Li
- Department of General Surgery & Department of Central Laboratory, The Third People’s Hospital of Dalian, Dalian Medical UniversityDalian, Liaoning, China
| | - Lu Feng
- Department of Pathology, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, China
| | - Chengjun Zhuang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, China
| | - Shuang Wang
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, China
| |
Collapse
|
15
|
Gan L, Lang M, Tian X, Ren S, Li G, Liu Y, Han R, Zhu K, Li H, Wu Q, Cui Y, Zhang W, Fang F, Li Q, Song T. A Retrospective Analysis of Conversion Therapy with Lenvatinib, Sintilimab, and Arterially-Directed Therapy in Patients with Initially Unresectable Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:673-686. [PMID: 37125392 PMCID: PMC10132469 DOI: 10.2147/jhc.s404675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Purpose The purpose of this study was to investigate the triple-combination therapy of lenvatinib plus sintilimab plus arterially-directed therapy as a conversion therapy for initially unresectable hepatocellular carcinoma (HCC). Patients and Methods We retrospectively analyzed data from all HCC patients who underwent lenvatinib plus sintilimab plus arterially-directed therapy at Tianjin Medical University Cancer Hospital between December 2018 and October 2020. Of 98 enrolled patients, 37 patients were classified as potentially resectable. We compared the potentially resectable population (PRP) with the non-potentially resectable population (NPRP). The primary study endpoint was conversion rate, and secondary endpoints included progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), and safety. Results The baseline characteristics were comparable between populations except for a higher proportion of patients with extrahepatic metastases in the NPRP versus PRP (23/61 [37.7%] vs 3/37 [8.1%], respectively; p=0.003). For PRP, the ORR was 67.6% based on RECIST v1.1 (75.7% based on mRECIST), conversion rate was 40.5% (15/37). Of the 15 patients who underwent surgical resection, three achieved complete pathological remission. The median follow-up for all patients was 28 months (range: 2-47). For NPRP, the ORR was 22.9% based on RECIST v1.1 (31.1% based on mRECIST), The median PFS for PRP was significantly longer than that of NPRP (25 vs 13 months, p = 0.0025). The median OS for PRP was significantly longer than that of NPRP (not reached VS 21 months, p=0.014). Hypertension was the most common grade ≥3 adverse reaction in both PRP and NPRP. No new safety signals were observed for any of the treatments. Conclusion The triple-combination therapy of lenvatinib plus sintilimab plus arterially-directed therapy can convert potentially unresectable HCC into resectable disease and improve long-term survival.
Collapse
Affiliation(s)
- Leijuan Gan
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Mengran Lang
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, Hebei, 065001, People’s Republic of China
| | - Xindi Tian
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Shaohua Ren
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Guangtao Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Yayue Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Ruyu Han
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Kangwei Zhu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Huikai Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Qiang Wu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Yunlong Cui
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Wei Zhang
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Feng Fang
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Qiang Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, People’s Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
- Correspondence: Tianqiang Song, Tel +86-022-23340123, Fax +86 022-23537796, Email
| |
Collapse
|
16
|
Construction of a Novel Diagnostic Model Based on Ferroptosis-Related Genes for Hepatocellular Carcinoma Using Machine and Deep Learning Methods. JOURNAL OF ONCOLOGY 2023; 2023:1624580. [PMID: 36873737 PMCID: PMC9981290 DOI: 10.1155/2023/1624580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/16/2022] [Accepted: 11/24/2022] [Indexed: 02/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most general malignant tumors. Ferroptosis, a type of necrotic cell death that is oxidative and iron-dependent, has a strong correlation with the development of tumors and the progression of cancer. The present study was designed to identify potential diagnostic Ferroptosis-related genes (FRGs) using machine learning. From GEO datasets, two publicly available gene expression profiles (GSE65372 and GSE84402) from HCC and nontumor tissues were retrieved. The GSE65372 database was used to screen for FRGs with differential expression between HCC cases and nontumor specimens. Following this, a pathway enrichment analysis of FRGs was carried out. In order to locate potential biomarkers, an analysis using the support vector machine recursive feature elimination (SVM-RFE) model and the LASSO regression model were carried out. The levels of the novel biomarkers were validated further using data from the GSE84402 dataset and the TCGA datasets. In this study, 40 of 237 FRGs exhibited a dysregulated level between HCC specimens and nontumor specimens from GSE65372, including 27 increased and 13 decreased genes. The results of KEGG assays indicated that the 40 differential expressed FRGs were mainly enriched in the longevity regulating pathway, AMPK signaling pathway, the mTOR signaling pathway, and hepatocellular carcinoma. Subsequently, HSPB1, CDKN2A, LPIN1, MTDH, DCAF7, TRIM26, PIR, BCAT2, EZH2, and ADAMTS13 were identified as potential diagnostic biomarkers. ROC assays confirmed the diagnostic value of the new model. The expression of some FRGs among 11 FRGs was further confirmed by the GSE84402 dataset and TCGA datasets. Overall, our findings provided a novel diagnostic model using FRGs. Prior to its application in a clinical context, there is a need for additional research to evaluate the diagnostic value for HCC.
Collapse
|
17
|
Yang C, Zhang L, Hao X, Tang M, Zhou B, Hou J. Identification of a Novel N7-Methylguanosine-Related LncRNA Signature Predicts the Prognosis of Hepatocellular Carcinoma and Experiment Verification. Curr Oncol 2022; 30:430-448. [PMID: 36661684 PMCID: PMC9857529 DOI: 10.3390/curroncol30010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
(1) Background: It is well-known that long non-coding RNAs (lncRNAs) and N7-methylguanosine (m7G) contribute to hepatocellular carcinoma (HCC) progression. However, it remains unclear whether lncRNAs regulating m7G modification could predict HCC prognosis. Thus, we sought to explore the prognostic implications of m7G-related lncRNAs in HCC patients. (2) Methods: Prognostic M7G-related lncRNAs obtained from The Cancer Genome Atlas (TCGA) database were screened by co-expression analysis and univariate Cox regression analysis. Next, the m7G-related lncRNA signature (m7GRLSig) was conducted by Least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression analysis. Kaplan-Meier analysis and time-dependent receiver operating characteristics (ROC) assessed the prognostic abilities of our signature. Univariate and multivariate Cox regression, nomogram, and principal component analysis (PCA) were conducted to evaluate our signature. Subsequently, we investigated the role of m7GRLSig on the immune landscape and sensitivity to drugs in HCC patients. The potential function of lncRNAs obtained from the prognostic signature was explored by in vitro experiments. (3) Results: A novel m7GRLSig was identified using seven meaningful lncRNA (ZFPM2-AS1, AC092171.2, PIK3CD-AS2, NRAV, CASC19, HPN-AS1, AC022613.1). The m7GLPSig exhibited worse survival in the high-risk group and served as an independent prognostic factor. The m7GRLSig stratification was sensitive in assessing the immune landscape and sensitivity to drugs between the high-risk and low-risk groups. Finally, in vitro experiments confirmed that the knockdown of NRAV was accompanied by the downregulation of METTL1 during HCC progression. (4) Conclusions: The m7G-related signature is a potential predictor of HCC prognosis and contributes to individualize the effective drug treatment of HCC.
Collapse
Affiliation(s)
| | | | | | | | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Luo PQ, Ye ZH, Zhang LX, Song ED, Wei ZJ, Xu AM, Lu Z. Prognostic factors for disease-free survival in postoperative patients with hepatocellular carcinoma and construction of a nomogram model. World J Clin Cases 2022; 10:13250-13263. [PMID: 36683638 PMCID: PMC9850999 DOI: 10.12998/wjcc.v10.i36.13250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 11/25/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has a high risk of invasion and metastasis along with a poor prognosis.
AIM To investigate the independent predictive markers for disease-free survival (DFS) in patients with HCC and establish a trustworthy nomogram.
METHODS In this study, 445 patients who were hospitalized in The First Affiliated Hospital of Anhui Medical College between December 2009 and December 2014 were retrospectively examined. The survival curve was plotted using the Kaplan–Meier method and survival was determined using the log-rank test. To identify the prognostic variables, multivariate Cox regression analyses were carried out. To predict the DFS in patients with HCC, a nomogram was created. C-indices and receiver operator characteristic curves were used to evaluate the nomogram's performance. Decision curve analysis (DCA) was used to evaluate the clinical application value of the nomogram.
RESULTS Longer DFS was observed in patients with the following characteristics: elderly, I–II stage, and no history of hepatitis B. The calibration curve showed that this nomogram was reliable and had a higher area under the curve value than the tumor node metastasis (TNM) stage. Moreover, the DCA curve revealed that the nomogram had good clinical applicability in predicting 3- and 5-year DFS in HCC patients after surgery.
CONCLUSION Age, TNM stage, and history of hepatitis B infection were independent factors for DFS in HCC patients, and a novel nomogram for DFS of HCC patients was created and validated.
Collapse
Affiliation(s)
- Pan-Quan Luo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - Zheng-Hui Ye
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - Li-Xiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - En-Dong Song
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - Zhi-Jian Wei
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230031, Anhui Province, China
| | - Zhen Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230011, Anhui Province, China
- Anhui Public Health Clinical Center, Hefei 230011, Anhui Province, China
| |
Collapse
|
19
|
An Elevated Neutrophil-to-Lymphocyte Ratio Predicts Poor Prognosis in Patients with Liver Cancer after Interventional Treatments. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6141317. [DOI: 10.1155/2022/6141317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
This study is aimed at examining the prognostic value of blood neutrophil-to-lymphocyte ratio (NLR) in patients with hepatocellular carcinoma (HCC). Demographic and clinical data of 543 HCC patients treated with interventional therapies were retrospectively analyzed. Preoperative NLRs were determined and receiver operating characteristic (ROC) curves were plotted for survival time in patients with high (NLR ≥3.8) and low (NLR<3.8) NLR. The median overall survival (OS) was 1241 days after interventional therapies and was significantly reduced in the high NLR group when compared to the low NLR group. The median progression-free survival time (PFST) of patients was also significantly shorter in the high NLR group than in the low NLR group. Univariate analysis revealed that tumor type, therapy method, maximum tumor size (>3 mm), and NLR (>3.8) were risk factors for OST and PFST (
). Multivariate analysis indicated that tumor type, maximum tumor diameter, therapy method, and NLR (>3.8) were independent risk factors for PFST (
). Our results demonstrate that preoperative NLR has prognostic value for patients with HCC undergoing interventional therapies, and high NLR is an indication of poor prognosis.
Collapse
|
20
|
Acid-sensing ion channel 1: potential therapeutic target for tumor. Biomed Pharmacother 2022; 155:113835. [DOI: 10.1016/j.biopha.2022.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
|
21
|
Sharafi F, Hasani SA, Alesaeidi S, Kahrizi MS, Adili A, Ghoreishizadeh S, Shomali N, Tamjidifar R, Aslaminabad R, Akbari M. A comprehensive review about the utilization of immune checkpoint inhibitors and combination therapy in hepatocellular carcinoma: an updated review. Cancer Cell Int 2022; 22:269. [PMID: 35999569 PMCID: PMC9400240 DOI: 10.1186/s12935-022-02682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
A pharmacological class known as immune checkpoint inhibitors (ICIs) has been developed as a potential treatment option for various malignancies, including HCC. In HCC, ICIs have demonstrated clinically significant advantages as monotherapy or combination therapy. ICIs that target programmed cell death protein 1 (PD-1) and programmed cell death protein ligand 1 (PD-L1), as well as cytotoxic T lymphocyte antigen 4 (CTLA-4), have made significant advances in cancer treatment. In hepatocellular carcinoma (HCC), several ICIs are being tested in clinical trials, and the area is quickly developing. As immunotherapy-related adverse events (irAEs) linked with ICI therapy expands and gain worldwide access, up-to-date management guidelines become crucial to the safety profile of ICIs. This review aims to describe the evidence for ICIs in treating HCC, emphasizing the use of combination ICIs.
Collapse
Affiliation(s)
- Faezeh Sharafi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Abaei Hasani
- Cancer Research Center, Department of General Surgery, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Samira Alesaeidi
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, Florida, USA
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rozita Tamjidifar
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, 35100, Turkey
- Department of Stem Cell, Institute of Health Sciences, Ege University, Izmir, 35100, Turkey
| | - Ramin Aslaminabad
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, 35100, Turkey
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Chen N, Qi Y, Ma X, Xiao X, Liu Q, Xia T, Xiang J, Zeng J, Tang J. Rediscovery of Traditional Plant Medicine: An Underestimated Anticancer Drug of Chelerythrine. Front Pharmacol 2022; 13:906301. [PMID: 35721116 PMCID: PMC9198297 DOI: 10.3389/fphar.2022.906301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
In many studies, the extensive and significant anticancer activity of chelerythrine (CHE) was identified, which is the primary natural active compound in four traditional botanical drugs and can be applied as a promising treatment in various solid tumors. So this review aimed to summarize the anticancer capacities and the antitumor mechanism of CHE. The literature searches revolving around CHE have been carried out on PubMed, Web of Science, ScienceDirect, and MEDLINE databases. Increasing evidence indicates that CHE, as a benzophenanthridine alkaloid, exhibits its excellent anticancer activity as CHE can intervene in tumor progression and inhibit tumor growth in multiple ways, such as induction of cancer cell apoptosis, cell cycle arrest, prevention of tumor invasion and metastasis, autophagy-mediated cell death, bind selectively to telomeric G-quadruplex and strongly inhibit the telomerase activity through G-quadruplex stabilization, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), and PKC. The role of CHE against diverse types of cancers has been investigated in many studies and has been identified as the main antitumor drug candidate in drug discovery programs. The current complex data suggest the potential value in clinical application and the future direction of CHE as a therapeutic drug in cancer. Furthermore, the limitations and the present problems are also highlighted in this review. Despite the unclearly delineated molecular targets of CHE, extensive research in this area provided continuously fresh data exploitable in the clinic while addressing the present requirement for further studies such as toxicological studies, combination medication, and the development of novel chemical methods or biomaterials to extend the effects of CHE or the development of its derivatives and analogs, contributing to the effective transformation of this underestimated anticancer drug into clinical practice. We believe that this review can provide support for the clinical application of a new anticancer drug in the future.
Collapse
Affiliation(s)
- Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Qi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Xia
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juyi Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Su R, Wei X, Wei Q, Lu D, Lin Z, Wang S, Shao C, Xu X. Extrahepatic organs in the development of non-alcoholic fatty liver disease in liver transplant patients. Hepatobiliary Surg Nutr 2022; 11:400-411. [PMID: 35693397 PMCID: PMC9186206 DOI: 10.21037/hbsn-20-568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/23/2020] [Indexed: 08/30/2023]
Abstract
BACKGROUND AND OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in patients who undergo liver transplantation (LT). Whereas there is huge data on NAFLD, little is known about NAFLD in LT. In this review, we aim to explore extrahepatic organs and their potential mechanisms in the development of NAFLD in LT patients and discuss current limitations in preclinical and clinical scenarios with suggestions for future study. METHODS The following keywords, such as NAFLD, NASH, liver transplant, therapy, pathogenesis and biomarkers, were set for literature retrieval. The articles which were published articles in English till 25th June 2020 in PubMed database were included, and there is no limit for the study design type. KEY CONTENT AND FINDINGS Following LT, there are significant shifts in the microbiota and farnesoid X receptor may be a potential therapeutic target for NAFLD in LT settings. The roles of probiotics and diet on NALFD remain inconclusive in LT background. Nevertheless, the adipokines and cytokines disorder and local insulin resistance of adipose tissue may contribute to NAFLD process. Bariatric surgeries are promising in controlling de novo and recurrent NAFLD with significant reduction in abdominal adipose tissue, despite the optimal timing is inconclusive in LT cases. Furthermore, circumstantial evidence indicates that miRNA-33a may function as a mediator bridging sarcopenia and NAFLD of post-LT. β-Hydroxy-β-Methyl-Butyrate treatment could improve muscle status in graft recipients and shows protective potential for NAFLD in LT settings. CONCLUSIONS Gut, adipose tissue and muscle are intricately intertwined in promoting NAFLD in LT cases. Further animal studies are needed to deepen our understanding of mechanisms in multi-organ crosstalk. High quality clinical trials are warrant for making guidelines and developing management strategies on NAFLD after LT.
Collapse
Affiliation(s)
- Renyi Su
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Lu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Zuyuan Lin
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shuo Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shu Lan Hospital, Shu Lan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Chuxiao Shao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| |
Collapse
|
24
|
Su RY, Ling SB, Shan QN, Wei XY, Wang R, Jia CK, Zhuang L, Shen T, Ding LM, Xu ZD, Luo LB, Sun LB, Li GM, Fang TS, Jiang N, Zhang K, Su ZJ, Peng ZH, Lang R, Jiang T, He Q, Ye LS, Yang Y, He YT, Guo WZ, Lan LG, Sun XY, Chen D, Chen ZS, Zhou DW, Ye SJ, Ye QF, Tian M, Shi JH, Wang B, Liu J, Lu Q, Rao W, Cai JZ, Lv T, Yang JY, Wang PS, Zhong L, Ma JS, Li QG, Wu SD, Lu CJ, Lu CD, Zhang DH, Wang X, Li ZQ, Teng MJ, Li JJ, Jiang WT, Li JH, Zhang QB, Zhu NQ, Wang ZX, He K, Xia Q, Song SH, Fu ZR, Qiu W, Lv GY, Song RP, Wang JZ, Wang Z, Zhou J, Chen G, Zhao YP, Li L, Hu ZM, Luo QJ, Si ZZ, Xie B, He XS, Guo ZY, Zheng SS, Xu X. Efficacy and safety of sirolimus early conversion protocol in liver transplant patients with hepatocellular carcinoma: A single-arm, multicenter, prospective study. Hepatobiliary Pancreat Dis Int 2022; 21:106-112. [PMID: 34583911 DOI: 10.1016/j.hbpd.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
Mammalian target of rapamycin (mTOR) inhibitor as an attractive drug target with promising antitumor effects has been widely investigated. High quality clinical trial has been conducted in liver transplant (LT) recipients in Western countries. However, the pertinent studies in Eastern world are paucity. Therefore, we designed a clinical trial to test whether sirolimus can improve recurrence-free survival (RFS) in hepatocellular carcinoma (HCC) patients beyond the Milan criteria after LT. This is an open-labeled, single-arm, prospective, multicenter, and real-world study aiming to evaluate the clinical outcomes of early switch to sirolimus-based regimens in HCC patients after LT. Patients with a histologically proven HCC and beyond the Milan criteria will be enrolled. The initial immunosuppressant regimens are center-specific for the first 4-6 weeks. The following regimens integrated sirolimus into the regimens as a combination therapy with reduced calcineurin inhibitors based on the condition of patients and centers. The study is planned for 4 years in total with a 2-year enrollment period and a 2-year follow-up. We predict that sirolimus conversion regimen will provide survival benefits for patients particular in the key indicator RFS as well as better quality of life. If the trial is conducted successfully, we will have a continued monitoring over a longer follow-up time to estimate indicator of overall survival. We hope that the outcome will provide better evidence for clinical decision-making and revising treatment guidelines based on Chinese population data. Trial register: Trial registered at http://www.chictr.org.cn: ChiCTR2100042869.
Collapse
Affiliation(s)
- Ren-Yi Su
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Sun-Bin Ling
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Qiao-Nan Shan
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Xu-Yong Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Rui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chang-Ku Jia
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China
| | - Tian Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Li-Min Ding
- Department of Transplantation, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Zhi-Dan Xu
- Department of Transplantation, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Lai-Bang Luo
- Department of Transplantation, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Li-Bo Sun
- Liver Transplantation Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Guang-Ming Li
- Liver Transplantation Center, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Tai-Shi Fang
- Department of Hepatic Surgery, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Nan Jiang
- Department of Hepatic Surgery, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Kun Zhang
- Department of General Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361000, China
| | - Zhao-Jie Su
- Department of General Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361000, China
| | - Zhi-Hai Peng
- Department of General Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361000, China
| | - Ren Lang
- Deartment of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Tao Jiang
- Deartment of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Qiang He
- Deartment of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Lin-Sen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yu-Ting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liu-Gen Lan
- Department of Liver Transplantation, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Xu-Yong Sun
- Department of Liver Transplantation, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi-Shui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Da-Wei Zhou
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shao-Jun Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qi-Fa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Min Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jian-Hua Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiang Liu
- Liver Transplantation Center, Tsinghua Changgung Hospital, Beijing 102218, China
| | - Qian Lu
- Liver Transplantation Center, Tsinghua Changgung Hospital, Beijing 102218, China
| | - Wei Rao
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, 59 Haier Road, Laoshan District, Qingdao 266061, China
| | - Jin-Zhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, 59 Haier Road, Laoshan District, Qingdao 266061, China
| | - Tao Lv
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Jia-Yin Yang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Pu-Sen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jing-Sheng Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qi-Gen Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Sheng-Dong Wu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315041, China
| | - Chang-Jiang Lu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315041, China
| | - Cai-De Lu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315041, China
| | - Dong-Hua Zhang
- Liver Transplant Center, General Hospital of Eastern Theater Command, Nanjing 210002, China
| | - Xuan Wang
- Liver Transplant Center, General Hospital of Eastern Theater Command, Nanjing 210002, China
| | - Zi-Qiang Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Mu-Jian Teng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Jun-Jie Li
- Liver Transplant Department, Tianjin First Center Hospital, Tianjin 300192, China
| | - Wen-Tao Jiang
- Liver Transplant Department, Tianjin First Center Hospital, Tianjin 300192, China
| | - Jian-Hua Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Quan-Bao Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ning-Qi Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zheng-Xin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shao-Hua Song
- Liver Transplantaiton Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Ren Fu
- Liver Transplantaiton Center, Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Guo-Yue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Rui-Peng Song
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ji-Zhou Wang
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zheng Wang
- Department of Liver Surgery & Transplantation, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Gang Chen
- Department of hepato-biliary-pancreatic surgery and liver transplantation center, the First People' s Hospital of Kunming, Kunming 650000, China
| | - Ying-Peng Zhao
- Department of hepato-biliary-pancreatic surgery and liver transplantation center, the First People' s Hospital of Kunming, Kunming 650000, China
| | - Li Li
- Department of hepato-biliary-pancreatic surgery and liver transplantation center, the First People' s Hospital of Kunming, Kunming 650000, China
| | - Ze-Min Hu
- Department of Hepatobiliary Surgery, Zhongshan City People's Hospital, Zhongshan 528499, China
| | - Qi-Jie Luo
- Department of Hepatobiliary Surgery, Zhongshan City People's Hospital, Zhongshan 528499, China
| | - Zhong-Zhou Si
- Department of Liver Transplantation Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Bin Xie
- Department of Liver Transplantation Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Xiao-Shun He
- Department of Hepatic Surgery and Liver Transplantation Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510062, China
| | - Zhi-Yong Guo
- Department of Hepatic Surgery and Liver Transplantation Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510062, China
| | - Shu-Sen Zheng
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
25
|
Chen Q, Lu X, Xie J, Ma N, Xu W, Zhang Z, Huang X, Liu H, Hou J, Zhang X, Zhu W. Analysis of L Antigen Family Member 3 as a Potential Biomarker and Therapeutic Target Associated With the Progression of Hepatocellular Carcinoma. Front Oncol 2022; 12:813275. [PMID: 35433409 PMCID: PMC9008773 DOI: 10.3389/fonc.2022.813275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third cause of cancer-related deaths worldwide. L antigen family member 3 (LAGE3) is a prognostic biomarker and associated with progression in a variety of tumors. However, little has been reported about the role and potential mechanism of LAGE3 in HCC. Methods The clinical value and function of LAGE3 in HCC were obtained from multiple online databases. The potential functions and pathways of LAGE3 in HCC were analysed by R package of “clusterProfiler”. LAGE3 knockdown cells were constructed in HepG2, HuH7 and MHCC97H cell lines, respectively. The biological roles of LAGE3 were examined by in vitro and in vivo experiments. Results LAGE3 was upregulated in HCC tissues compared with normal tissues, and high expression of LAGE3 was significantly associated with several clinical characteristics and indicated a worse prognosis of HCC. The co-expressed genes of LAGE3 could be enriched in the mTOR signaling pathway in HCC. LAGE3 was upregulated in HCC cell lines. Functionally, knocking down LAGE3 expression not only increased apoptosis and inhibited growth rate, cell death mediated by T cells, colony formation, migration and invasion ability of HCC cell lines in vitro, but also reduced the progression of HCC in the subcutaneous xenotransplanted tumor model. Conclusion Our results suggested that LAGE3 served as an oncogenic factor of HCC and could be a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Qianhui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayi Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Ma
- Department of Pathology, The First People’s Hospital of Foshan, Foshan, China
| | - Weikang Xu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiming Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhu, ; Xiaoyong Zhang, ; Jinlin Hou,
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhu, ; Xiaoyong Zhang, ; Jinlin Hou,
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhu, ; Xiaoyong Zhang, ; Jinlin Hou,
| |
Collapse
|
26
|
Tian H, Chen Y, Zhang R, Liu J. The Role of COL22A1 in the Pathophysiology of Hepatocellular Carcinoma: Evidence from Bioinformatics Exploration. Cancer Manag Res 2022. [DOI: 10.2147/cmar.s349991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Qiu Q, Jiang L, Zhen H, Huang F, Zhen D, Ye M, Meng X, Liu Y, Qin X. Promotion of HepG2 cell apoptosis by Sedum emarginatum Migo and the mechanism of action. BMC Complement Med Ther 2022; 22:31. [PMID: 35101006 PMCID: PMC8805402 DOI: 10.1186/s12906-022-03503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sedum emarginatum Migo(S. emarginatum) has anti-tumor and anti-oxidant effects. This study aimed to screen the extractions of S. emarginatum against liver cancer in vitro and explore its anti-liver cancer mechanism. METHODS The CCK-8(Cell Counting Kit-8) method was used to detect the inhibitory effect of different extracts of S. emarginatum on the proliferation of liver cancer HepG2 cells. The morphological changes of the cells after administration were observed with microscopy, cell apoptosis was detected by flow cytometry, and the expression of Bax, Bcl-2 and Caspase-3 mRNA in the cells were detected by RT-PCR (Reverse Transcription-Polymerase Chain Reaction) to explore the mechanism of action. RESULTS CCK-8 method test results showed that among the different extracts of S. emarginatum, the ethyl acetate extract(1000 μg/ml, 2000 μg/ml, 2500 μg/ml, 3000 μg/ml) and n-butanol extract(1000 μg/ml, 2000 μg/ml, 2500 μg/ml, 3000 μg/ml) have the strongest inhibitory effect on the proliferation of HepG2 cells. In these 4 concentrations, the inhibitory effect increased as the concentration increased. The IC50 of the ethyl acetate extract on HepG2 cells was less than that of the n-butanol extract, so the ethyl acetate extract has a better proliferation inhibitory effect on HepG2 cells than the n-butanol extract, followed by the 70% ethanol extract(3000 μg/ml) and the water extract(3000 μg/ml), petroleum ether extract was the weakest. The results of microscopy showed that ethyl acetate extract caused hepatocarcinoma HepG2 cell morphology changed, cell density decreased, and suspension cells increased. Moreover, the results of flow cytometry showed that the ethyl acetate extract of S. emarginatum could induce HepG2 cell apoptosis at the concentrations of 2500μg/ml and 3000μg/ml. RT-PCR results showed that the expression of Bax mRNA was up-regulate by the middle(2500 μg/ml) and high(3000 μg/ml) dose groups of ethyl acetate extract. The expression of Caspase-3 mRNA was up-regulated by the low(2000 μg/ml), medium(2500 μg/ml) and high(3000 μg/ml) dose groups of ethyl acetate extract. The expression of Bcl-2 mRNA was down-regulated by the high(3000 μg/ml) dose group of ethyl acetate extract. CONCLUSION The ethyl acetate extract of S. emarginatum has the best effect on human liver cancer HepG2 cells. Its anti-hepatocellular mechanism may be related to affect the expression of apoptosis genes (Bax, Bcl-2 and Caspase-3mRNA) and promote the apoptosis of liver cancer cells. It provided a reference for the research and development of drugs for the treatment of liver cancer.
Collapse
Affiliation(s)
- Qin Qiu
- Guangxi University of Chinese Medicine, Nanning, 530001, China
- Guangxi Superior Chinese Patent Medicine and National Medicine Development Engineering Technology Research Center, Nanning, 530001, China
| | - Lujuan Jiang
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Hanshen Zhen
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Fengyin Huang
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Dandan Zhen
- Guangxi University of Chinese Medicine, Nanning, 530001, China.
| | - Meifang Ye
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Xueyan Meng
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Yuanyuan Liu
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Xijun Qin
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| |
Collapse
|
28
|
Huang Y, Huang S, Ma L, Wang Y, Wang X, Xiao L, Qin W, Li L, Yuan X. Exploring the Prognostic Value, Immune Implication and Biological Function of H2AFY Gene in Hepatocellular Carcinoma. Front Immunol 2021; 12:723293. [PMID: 34899687 PMCID: PMC8651705 DOI: 10.3389/fimmu.2021.723293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/02/2021] [Indexed: 12/09/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an extremely malignant cancer with poor survival. H2AFY gene encodes for a variant of H2A histone, and it has been found to be dysregulated in various tumors. However, the clinical value, biological functions and correlations with immune infiltration of H2AFY in HCC remain unclear. Methods We analyzed the expression and clinical significance of H2AFY in HCC using multiple databases, including Oncomine, HCCDB, TCGA, ICGC, and so on. The genetic alterations of H2AFY were analyzed by cBioPortal and COSMIC databases. Co-expression networks of H2AFY and its regulators were investigated by LinkedOmics. The correlations between H2AFY and tumor immune infiltration were explored using TIMER, TISIDB databases, and CIBERSORT method. Finally, H2AFY was knocked down with shRNA lentiviruses in HCC cell lines for functional assays in vitro. Results H2AFY expression was upregulated in the HCC tissues and cells. Kaplan-Meier and Cox regression analyses revealed that high H2AFY expression was an independent prognostic factor for poor survival in HCC patients. Functional network analysis indicated that H2AFY and its co-expressed genes regulates cell cycle, mitosis, spliceosome and chromatin assembly through pathways involving many cancer-related kinases and E2F family. Furthermore, we observed significant correlations between H2AFY expression and immune infiltration in HCC. H2AFY knockdown suppressed the cell proliferation and migration, promoted cycle arrest, and apoptosis of HCC cells in vitro. Conclusion Our study revealed that H2AFY is a potential biomarker for unfavorable prognosis and correlates with immune infiltration in HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Jiang X, Zhang W, Li L, Xie S. Integrated Transcriptomic Analysis Revealed Hub Genes and Pathways Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Pathol Oncol Res 2021; 27:1609985. [PMID: 34737677 PMCID: PMC8560649 DOI: 10.3389/pore.2021.1609985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC), a high mortality malignancy, has become a worldwide public health concern. Acquired resistance to the multikinase inhibitor sorafenib challenges its clinical efficacy and the survival benefits it provides to patients with advanced HCC. This study aimed to identify critical genes and pathways associated with sorafenib resistance in HCC using integrated bioinformatics analysis. Differentially expressed genes (DEGs) were identified using four HCC gene expression profiles (including 34 sorafenib-resistant and 29 sorafenib-sensitive samples) based on the robust rank aggregation method and R software. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING), and small molecules reversing sorafenib resistance were searched for using the connectivity map (CMAP) database. Pearson correlation and survival analyses of hub genes were performed using cBioPortal and Gene Expression Profiling and Interactive Analysis (GEPIA). Finally, the expression levels of hub genes in sorafenib-resistant HCC cells were verified using quantitative polymerase chain reaction (q-PCR). A total of 165 integrated DEGs (66 upregulated and 99 downregulated in sorafenib resistant samples compared sorafenib sensitive ones) primarily enriched in negative regulation of endopeptidase activity, extracellular exosome, and protease binding were identified. Some pathways were commonly shared between the integrated DEGs. Seven promising therapeutic agents and 13 hub genes were identified. These findings provide a strategy and theoretical basis for overcoming sorafenib resistance in HCC patients.
Collapse
Affiliation(s)
- Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Lifeng Li
- Department of Radiology, Changsha Central Hospital, Changsha, China
| | - Shucai Xie
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Could Photodynamic Therapy Be a Promising Therapeutic Modality in Hepatocellular Carcinoma Patients? A Critical Review of Experimental and Clinical Studies. Cancers (Basel) 2021; 13:cancers13205176. [PMID: 34680325 PMCID: PMC8534013 DOI: 10.3390/cancers13205176] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Hepatocellular Carcinoma (HCC) is one of the leading causes of cancer-associated mortality worldwide. With a limited number of therapeutic options available and a lack of effective anti-tumoral immune responses by the therapies, there is a dire need to search for new translational treatment options. Photodynamic Therapy (PDT), in recent years, has proven itself as an effective anti-cancer therapy. In this review, we discuss the mechanism of PDT, its evolution as an anti-cancer modality, with a special focus on HCC. We also highlight the immune response generated by PDT and how it could be essential in HCC treatment. Finally, we proposed an intraoperative procedure for the treatment of HCC by combining hepatectomy with PDT. Abstract Photodynamic Therapy (PDT) relies on local or systemic administration of a light-sensitive dye, called photosensitizer, to accumulate into the target site followed by excitation with light of appropriate wavelength and fluence. This photo-activated molecule reacts with the intracellular oxygen to induce selective cytotoxicity of targeted cells by the generation of reactive oxygen species. Hepatocellular carcinoma (HCC), one of the leading causes of cancer-associated mortality worldwide, has insufficient treatment options available. In this review, we discuss the mechanism and merits of PDT along with its recent developments as an anti-cancerous therapy. We also highlight the application of this novel therapy for diagnosis, visualization, and treatment of HCC. We examine the underlying challenges, some pre-clinical and clinical studies, and possibilities of future studies associated with PDT. Finally, we discuss the mechanism of an active immune response by PDT and thereafter explored the role of PDT in the generation of anti-tumor immune response in the context of HCC, with an emphasis on checkpoint inhibitor-based immunotherapy. The objective of this review is to propose PDT as a plausible adjuvant to existing therapies for HCC, highlighting a feasible combinatorial approach for HCC treatment.
Collapse
|
31
|
Wang Y, Zhang J, Jiang P, Li K, Sun Y, Huang Y. ASIC1a promotes acidic microenvironment-induced HCC cells migration and invasion by inducing autophagy. Eur J Pharmacol 2021; 907:174252. [PMID: 34116040 DOI: 10.1016/j.ejphar.2021.174252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer with high incidence and metastatic rate. Recent studies have shown that the high metastasis of HCC is closely related to the acidic microenvironment of HCC cells. Acid-sensing ion Channel 1a (ASIC1a) plays an important role in HCC development, which can mediate tumor cell migration and invasion. However, the underlying mechanism of how ASIC1a promotes HCC cell migration and invasion in acidic microenvironments remains unclear, while autophagy may act as a mechanism for tumor cells to adapt to acidic microenvironment. Therefore, this study aims to investigate whether ASIC1a mediates autophagy and its effects on the migration and invasion of HCC cells. Interestingly, our study has shown that ASIC1a and autophagy were increased in HepG2 cells in acidic microenvironment, and both of them can promote HCC cells migration and invasion. Moreover, inhibition of ASIC1a with PcTx1 or ASIC1a ShRNA reduced the autophagy flux. Collectively, ASIC1a can promote acidic microenvironment-induced HepG2 cells migration and invasion by inducing autophagy, which may be correlated with Ca2+ influx.
Collapse
Affiliation(s)
- Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Jin Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Peng Jiang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Kai Li
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Yancai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China.
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
32
|
He Y, Lin Y, He F, Shao L, Ma W, He F. Role for calcium-activated potassium channels (BK) in migration control of human hepatocellular carcinoma cells. J Cell Mol Med 2021; 25:9685-9696. [PMID: 34514691 PMCID: PMC8505838 DOI: 10.1111/jcmm.16918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer‐related death worldwide. Its high metastasis rate is significantly correlated with poor patient prognosis. Elucidating the molecular mechanism underlying HCC metastasis is essential for HCC treatment. Owing to their high conductance, large‐conductance calcium‐activated potassium channels (BK channels) play a critical role in the control of membrane potential and have repeatedly been proposed as potential targets for cancer therapy. Emerging evidence suggests that BK channels are involved in the progression of cancer malignancies. The present study investigated the role of BK channels in mediating the hypoxia‐stimulated migration of HCC cells both in vitro and in vivo in the absence and presence of various BK channels modulators. We found that BK channels were functionally expressed on the membranes of the SMMC‐7721 and Huh7 HCC cell lines. Furthermore, blockage or activation of BK channels on the surface of HCC cells correspondingly inhibited or promoted HCC cell proliferation, migration and invasion in hypoxia conditions, with altered expression and distribution of cell‐cell adhesion molecule E‐cadherin and typical marker of mesenchymal cells, Vimentin, but not N‐cadherin. Hypoxia conditions did not alter BK channels expression but increased its open probability. Moreover, BK channels blocker IbTX significantly inhibited HCC cell remote colonization in HCC cell xenografted mice. In conclusion, the results of this study suggest that blocking BK channels offers an attractive strategy for treating HCC.
Collapse
Affiliation(s)
- Yuan He
- Department of General Surgery, Changzhi Medical College Affiliated Heping Hospital, Changzhi, China
| | - Yingying Lin
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fei He
- Department of Stomatology, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Lijuan Shao
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Wei Ma
- Translational Medicine Collaborative Innovation Center of Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center of Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
33
|
Tonon F, Farra R, Zennaro C, Pozzato G, Truong N, Parisi S, Rizzolio F, Grassi M, Scaggiante B, Zanconati F, Bonazza D, Grassi G, Dapas B. Xenograft Zebrafish Models for the Development of Novel Anti-Hepatocellular Carcinoma Molecules. Pharmaceuticals (Basel) 2021; 14:ph14080803. [PMID: 34451900 PMCID: PMC8400454 DOI: 10.3390/ph14080803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of tumor and the second leading cause of tumor-related death worldwide. Liver cirrhosis is the most important predisposing factor for HCC. Available therapeutic approaches are not very effective, especially for advanced HCC, which is the most common form of the disease at diagnosis. New therapeutic strategies are therefore urgently needed. The use of animal models represents a relevant tool for preclinical screening of new molecules/strategies against HCC. However, several issues, including animal husbandry, limit the use of current models (rodent/pig). One animal model that has attracted the attention of the scientific community in the last 15 years is the zebrafish. This freshwater fish has several attractive features, such as short reproductive time, limited space and cost requirements for husbandry, body transparency and the fact that embryos do not show immune response to transplanted cells. To date, two different types of zebrafish models for HCC have been developed: the transgenic zebrafish and the zebrafish xenograft models. Since transgenic zebrafish models for HCC have been described elsewhere, in this review, we focus on the description of zebrafish xenograft models that have been used in the last five years to test new molecules/strategies against HCC.
Collapse
Affiliation(s)
- Federica Tonon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Rossella Farra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Nhung Truong
- Stem Cell Research and Application Laboratory, VNUHCM, University of Science, Ho Chi Minh City 72711, Vietnam;
| | - Salvatore Parisi
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Doctoral School in Molecular Biomedicine, University of Trieste, I 34127 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, I 30170 Mestre, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I 34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Grassi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
- Correspondence:
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| |
Collapse
|
34
|
Baby J, Devan AR, Kumar AR, Gorantla JN, Nair B, Aishwarya TS, Nath LR. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review. J Food Biochem 2021; 45:e13761. [PMID: 34028054 DOI: 10.1111/jfbc.13761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/05/2023]
Abstract
Chemopreventive approaches with food-derived phytochemicals are progressively rising as a significant aspect of tumor management and control. Herein, we have showcased the major phytoconstituents belonging to the group of flavanoid, as anti-cancer agents used for the treatment and prevention of hepatocellular carcinoma (HCC). Sorafenib is the sole drug used for the treatment of advanced HCC, but its clinical application is limited because of its severe adverse effects and drug resistance. Diet-based chemoprevention seems to be the way forward for this disease of malignant nature. As HCC is derived from a chronic inflammatory milieu, the regular incorporation of bioactive phytochemicals in the diet will confer protection and prevent progression to hepatocarcinogenesis. Many preclinical studies proved that the health benefits of flavonoids confer cytotoxic potential against various types of cancers including hepatocellular carcinoma. As flavonoids with excellent safety profile are abundantly present in common vegetables and fruits, they can be better utilized for chemoprevention and chemosensitization in such chronic condition. This review highlights the plausible role of the eight most promising flavonoids (Curcumin, Kaempferol, Resveratrol, Quercetin, Silibinin, Baicalein, Galangin and Luteolin) as key orchestrators of chemoprevention in hepatocellular carcinoma with preclinical and clinical evidence. An attempt to address the challenges in its clinical translation is also included. This review also provides an insight into the close association of HCC and metabolic disorders which may further decipher the chemopreventive effect of dietary bioactive from a proof of concept to extensive clinical translation. PRACTICAL APPLICATIONS: According to GLOBOCAN 2020 database, it is estimated that 905,677 new cases of liver cancer and approximately 830,180 deaths related to that. The cancer incidence and mortality are almost similar as it is diagnosed at an advanced stage in patients where systemic drug therapy is the sole approach. Due to the emergence of multidrug resistance and drug-related toxicities, most of the patient can not adhere to the therapy regimen. Flavonoids are known to be a potential anticancer agent with an excellent safety profile. These are found to be effective preclinically against hepatocellular carcinoma through modulation of numerous pathways in hepatocarcinogenesis. But, the bioavailability issue, lack of well designed-validated clinical evidence, the possibility of food-drug interaction etc limit its clinical utility. The research inputs mainly to overcome pharmacokinetic issues along with suitable validation of efficacy and toxicity will be a critical point for establishing flavonoids as an effective, safe, affordable therapeutics.
Collapse
Affiliation(s)
- Jasmine Baby
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | | | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Thanatharayil Sathian Aishwarya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
35
|
Lin J, Ruan J, Zhu H, Chen Z, Chen J, Yu H. Tenacissoside H Induces Autophagy and Radiosensitivity of Hepatocellular Carcinoma Cells by PI3K/Akt/mTOR Signaling Pathway. Dose Response 2021; 19:15593258211011023. [PMID: 34035782 PMCID: PMC8127767 DOI: 10.1177/15593258211011023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Tenacissoside H (TEH), which has anti-inflammatory and anti-tumor effects, is a major active ingredient extracted from the stem of Marsdenia tenacissima. However, the effect of TEH on hepatocellular carcinoma (HCC) as well as the underlying mechanisms are still indistinct. Presently, HCC cells (including Huh-7 and HepG2) were dealt with different concentrations of TEH. The proliferation and apoptosis of HCC cells were determined via Cell Counting Kit-8 (CCK8) assay and flow cytometry. In addition, Western blot was conducted to evaluate the expressions of autophagy—and apoptosis-related proteins. Tissue immunofluorescence was carried out to evaluate LC3B expression in the tumor tissues. The data showed that TEH suppressed the growth of HCC cells in a concentration-dependent manner. Besides, TEH enhanced radiosensitivity and promoted the apoptosis of HCC cells. Moreover, the mRNA and protein levels of autophagy-related genes (LC3-II/LC2-I, ATG5, Beclin-1) were significantly promoted by TEH. Mechanistically, TEH attenuated the activation of PI3K/Akt/mTOR signaling pathway. However, inhibition of PI3 K pathway abolished the anti-tumor effects of TEH in HCC cells. Collectively, this study suggested that TEH increases the radiosensitivity of HCC cells via inducing autophagy and apoptosis through downregulating PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jiatian Lin
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jiyin Ruan
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hao Zhu
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zaizhong Chen
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Junhui Chen
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hongjian Yu
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
36
|
Xu G, Bu S, Wang X, Ge H. Silencing the Expression of Cyclin G1 Enhances the Radiosensitivity of Hepatocellular Carcinoma In Vitro and In Vivo by Inducing Apoptosis. Radiat Res 2021; 195:378-384. [PMID: 33543294 DOI: 10.1667/rade-20-00180.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/30/2020] [Indexed: 11/03/2022]
Abstract
Radiotherapy plays an important role in the treatment of hepatocellular carcinoma (HCC). Cyclin G1 is a novel member of the cyclin family, and it is abnormally expressed in HCC. In this study we investigated the role of cyclin G1 in the radiotherapy of HCC cells. The expression of cyclin G1 was silenced by transfection of cyclin G1-siRNA into HepG2 cells and Huh7 cells, and the expression of cyclin G1 mRNA and protein was measured by qRT-PCR and Western blot analysis. The proliferation was analyzed using MTT assay, and the radiosensitivity of HCC cells was detected using colony formation assay and a xenograft tumor model. The expression of apoptosis-related proteins (Bcl-2 and Bax) was detected by Western blot analysis, and caspase-3 was detected using fluorimetry. The expression of cyclin G1 mRNA and protein in HepG2/Huh7-cyclin G1-siRNA cells was found to be significantly decreased compared to that in HepG2/Huh7 cells. Silencing the expression of cyclin G1 inhibited the proliferation of HCC cells and enhanced radiosensitivity in HCC cells in vitro and in vivo. Knockdown of cyclin G1 expression significantly decreased Bcl-2 expression, and increased Bax expression and caspase-3 activity in HCC cells. Silencing of cyclin G1 expression enhances the radiosensitivity of HCC cells in vitro and in vivo. The mechanism for this may be related to the regulation of apoptosis-related proteins.
Collapse
Affiliation(s)
- Gang Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Shanshan Bu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Xiushen Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Hong Ge
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, China
| |
Collapse
|
37
|
Targeted Cancer Therapy: What's New in the Field of Neuroendocrine Neoplasms? Cancers (Basel) 2021; 13:cancers13071701. [PMID: 33916707 PMCID: PMC8038369 DOI: 10.3390/cancers13071701] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Neuroendocrine tumors (NETs) are a heterogeneous family of neoplasms of increasing incidence and high prevalence due to their relatively indolent nature. Their wide anatomic distribution and their characteristic ability to secrete hormonally active substances pose unique challenges for clinical management. They are also characterized by the common expression of somatostatin receptors, a target that has been extremely useful for diagnosis and treatment (i.e., somatostatin analogues (SSAs) and peptide-receptor radionuclide therapy (PRRT)). Chemotherapy is of limited use for NETs of non-pancreatic origin, and the only approved targeted agents for advanced progressive NETs are sunitinib for those of pancreatic origin, and everolimus for lung, gastrointestinal and pancreatic primaries. Despite recent therapeutic achievements, thus, systemic treatment options remain limited. In this review we will discuss the state-of-the-art targeted therapies in the field of NETs, and also future perspectives of novel therapeutic drugs or strategies in clinical development, including recently presented results from randomized trials of yet unapproved antiangiogenic agents (i.e., pazopanib, surufatinib and axitinib), PRRT including both approved radiopharmaceuticals (177Lu-Oxodotreotide) and others in development (177Lu-Edotreotide, 177Lu-Satoreotide Tetraxetan), immunotherapy and other innovative targeted strategies (antibody-drug conjugates, bites,…) that shall soon improve the landscape of personalized treatment options in NET patients.
Collapse
|
38
|
Penzkofer L, Huber T, Mittler J, Lang H, Heinrich S. [Liver Resections Can Be Safely Performed in Cirrhotic Patients after Careful Patient Selection]. Zentralbl Chir 2021; 148:156-164. [PMID: 33663000 DOI: 10.1055/a-1373-6218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is the most frequent malignant primary liver tumour in a cirrhotic liver. Liver transplantation and resection are the only curative treatment options in compensated liver cirrhosis, but liver resections are associated with increased perioperative morbidity and mortality. PATIENTS We identified 108 cirrhotic patients, who underwent liver resections at the University Hospital of Mainz between January 2008 and December 2019. During the same period, 185 liver resections were performed for HCC in non-cirrhotic livers. Furthermore, 167 liver resections served as control group, which were performed for colorectal liver metastases (CRLM) with comparable extent of resection to HCC in cirrhotic livers. Preoperatively, we assessed the Charlson Comorbidity Index (CCI), MELD and Child scores in addition to the general patient characteristics. Perioperative morbidity was graded according to the Clavien-Dindo classification. Resections of HCC in cirrhosis and liver metastases were additionally compared by a matched-pair analysis. RESULTS The three groups were comparable in age. Preoperative liver function was best in patients with CRLM (p < 0.001). Resections for HCC in non-cirrhotic livers were more extended than in cirrhotic livers (p < 0.001). The overall morbidity (Clavien/Dindo stage III - IV) was higher after resections in cirrhotic livers than in CRLM resections (p = 0.026). Postoperative mortality was comparably low in all three groups (2.2%). Neither MELD nor Child score was predictive for postoperative morbidity or mortality (area under the curve: AUC < 0.6, each). Preoperative CCI was predictive for postoperative mortality (AUC = 0.78). CONCLUSIONS Liver resections in cirrhotic livers are feasible after adequate patient selection and limitation of the extent of surgery. Comorbidities additionally increase the postoperative mortality in addition to impaired liver function and should therefore always be included into the preoperative assessment of patients undergoing liver surgery.
Collapse
Affiliation(s)
- Lea Penzkofer
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
| | - Tobias Huber
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
| | - Jens Mittler
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
| | - Stefan Heinrich
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
| |
Collapse
|
39
|
Ren Z, Yue Y, Zhang Y, Dong J, Liu Y, Yang X, Lin X, Zhao X, Wei Z, Zheng Y, Wang T. Changes in the Peripheral Blood Treg Cell Proportion in Hepatocellular Carcinoma Patients After Transarterial Chemoembolization With Microparticles. Front Immunol 2021; 12:624789. [PMID: 33717135 PMCID: PMC7943450 DOI: 10.3389/fimmu.2021.624789] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Transarterial chemoembolization (TACE) stands for an ideal therapy for patients with intermediate stage HCC. This study was carried out to observe the effect of microparticles-transarterial chemoembolization (microparticles-TACE, m-TACE) on the immune function of hepatocellular carcinoma (HCC) patients by detecting the proportion of regulatory (Treg) cells in the peripheral blood of HCC patients before and after m-TACE, and to determine whether m-TACE has a positive regulatory effect on the immune function of HCC patients. Methods 33 HCC patients treated with Gelatn Sponge Microparticles (GSMs-TACE) were enrolled. Flow cytometry was used to determine the proportion of Treg cells and CD4+/CD8+ T cells in peripheral blood of HCC patients 1 day before GSMs-TACE, 1 to 2 weeks and 3 to 5 weeks after GSMs-TACE, respectively. Results The Tregs cell proportion of HCC patients was significantly higher than that of the healthy and cirrhosis controls and was associated with various clinical indicators of HCC patients. The Treg cell proportion in HCC patients with BCLC stage C was higher than that of stage B patients; The Treg cell proportion at 1 to 2 weeks postoperatively was 8.54 ± 1.27%, which was significantly lower than that before the GSMs-TACE. The Treg cell proportion at 3 to 5 weeks postoperatively was 7.59 ± 1.27%, which continued to decline. The ratio of CD4+/CD8+ T cells was 1.31 ± 0.56, 1.86 ± 0.73, 1.76 ± 0.58% (P<0.01) respectively. Conclusion These results indicated that m-TACE could exert a positive regulatory effect on the anticancer immune function of HCC patients, which may be used in combination with immune adjuvant therapies to enhance the efficacy of HCC.
Collapse
Affiliation(s)
- Zhizhong Ren
- Hepatobiliary Pancreatic Center Department, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, China
| | - Yuanxun Yue
- Department of Interventional and Pain, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuewei Zhang
- Hepatobiliary Pancreatic Center Department, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, China
| | - Jiahong Dong
- Hepatobiliary Pancreatic Center Department, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, China
| | - Ying Liu
- Hepatobiliary Pancreatic Center Department, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, China
| | - Xiaowei Yang
- Hepatobiliary Pancreatic Center Department, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, China
| | - Xin Lin
- School for Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xueqiang Zhao
- School for Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhanqi Wei
- School for Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yu Zheng
- School for Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Tianxiao Wang
- Hepatobiliary Pancreatic Center Department, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Firkins JL, Tarter R, Driessnack M, Hansen L. A closer look at quality of life in the hepatocellular carcinoma literature. Qual Life Res 2021; 30:1525-1535. [PMID: 33625648 DOI: 10.1007/s11136-021-02789-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Adults with hepatocellular carcinoma (HCC) have a high symptom burden. Their quality of life (QOL) has been shown to be significantly impacted by both the disease and its treatment, adding to the high symptom burden that these patients experience. The primary aims of this paper are as follows: (1) to identify how QOL is being defined in HCC literature and (2) to identify how QOL is being measured in the HCC literature using Ferrell's model of QOL. METHODS A systematic review was completed of relevant studies published after 2014, using PubMed, CINHAL, and PsycInfo. Relevant studies were reviewed by 2 reviewers using PRISMA guidelines. RESULTS From a total of 1312 papers obtained in the initial database search, 30 met inclusion criteria and are included in this review. From the included articles, 10% included a definition of QOL and 3% addressed the spiritual domain of QOL. Majority of study participants were in the early stage of HCC, though the majority of adults with HCC are diagnosed in the advanced stage. Only 3% of included studies included greater than 22% population of advanced stage of HCC. CONCLUSION The results of this systematic review demonstrate the need for future research into QOL in the advanced stage of QOL. It also identified gap in the literature concerning the definition of QOL in HCC and the spiritual domain of QOL in HCC.
Collapse
Affiliation(s)
- Jenny L Firkins
- School of Nursing, Oregon Health & Science University, 3455 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
| | - Robin Tarter
- School of Nursing, Oregon Health & Science University, 3455 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Martha Driessnack
- School of Nursing, Oregon Health & Science University, 3455 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Lissi Hansen
- School of Nursing, Oregon Health & Science University, 3455 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| |
Collapse
|
41
|
Zhu J, Tang B, Lv X, Meng M, Weng Q, Zhang N, Li J, Fan K, Zheng L, Fang S, Xu M, Ji J. Identifying Apoptosis-Related Transcriptomic Aberrations and Revealing Clinical Relevance as Diagnostic and Prognostic Biomarker in Hepatocellular Carcinoma. Front Oncol 2021; 10:519180. [PMID: 33680905 PMCID: PMC7931692 DOI: 10.3389/fonc.2020.519180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
In view of the unsatisfactory treatment outcome of liver cancer under current treatment, where the mortality rate is high and the survival rate is poor, in this study we aimed to use RNA sequencing data to explore potential molecular markers that can be more effective in predicting diagnosis and prognosis of hepatocellular carcinoma. RNA sequencing data and corresponding clinical information were obtained from multiple databases. After matching with the apoptotic genes from the Deathbase database, 14 differentially expressed human apoptosis genes were obtained. Using univariate and multivariate Cox regression analyses, two apoptosis genes (BAK1 and CSE1L) were determined to be closely associated with overall survival (OS) in HCC patients. And subsequently experiments also validated that knockdown of BAK1 and CSE1L significantly inhibited cell proliferation and promoted apoptosis in the HCC. Then the two genes were used to construct a prognostic signature and diagnostic models. The high-risk group showed lower OS time compared to low-risk group in the TCGA cohort (P < 0.001, HR = 2.11), GSE14520 cohort (P = 0.003, HR = 1.85), and ICGC cohort (P < 0.001, HR = 4). And the advanced HCC patients showed higher risk score and worse prognosis compared to early-stage HCC patients. Moreover, the prognostic signature was validated to be an independent prognostic factor. The diagnostic models accurately predicted HCC from normal tissues and dysplastic nodules in the training and validation cohort. These results indicated that the two apoptosis-related signature effectively predicted diagnosis and prognosis of HCC and may serve as a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuling Lv
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Miaomiao Meng
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Nannan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Li
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Fan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
42
|
Nandhini JT, Ezhilarasan D, Rajeshkumar S. An ecofriendly synthesized gold nanoparticles induces cytotoxicity via apoptosis in HepG2 cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:24-32. [PMID: 32794643 DOI: 10.1002/tox.23007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Microbes have long been used for the synthesis of a variety of nanoparticles. Hepatocellular carcinoma (HCC) is the primary liver cancer and it is the second leading cause of cancer-related mortality worldwide. In this study, we have synthesized Enterococcus mediated gold nanoparticles (AuNPs) and investigated their cytotoxic potential against human hepatocellular cancer cell line (HepG2). AuNPs were synthesized using Enterococcus sp. RMAA. HepG2 cells were treated with different concentrations of AuNPs for 24 hours and cytotoxicity was analyzed by MTT ((4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. AuNPs induced reactive oxygen species expression was analyzed by 2',7'-dichlorodihydrofluorescein diacetate staining. Morphological changes related to apoptosis was analyzed by annexin V/propidium iodide staining. Protein expression of proliferating cell nuclear antigen (PCNA) was done by western blotting analysis. Bacterial-mediated AuNPs caused significant cytotoxicity in HepG2 cells. AuNPs treatment also caused the significant expression of ROS and morphological damage related to apoptosis. AuNPs treatments were responsible for the dislocation of cytochrome c from mitochondria to cytosol. The protein expression of PCNA was significantly decreased upon AuNPs treatment. These findings suggest that Enterococcus-mediated AuNPs can inhibit the proliferation of HepG2 cells via intracellular ROS mediated apoptosis, decreased PCNA expressions, and it may have the potential to treat HCC.
Collapse
Affiliation(s)
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Chennai, India
- Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College (SDC), Chennai, India
| | | |
Collapse
|
43
|
Kumari S, Ali A, Roome T, Razzak A, Iqbal A, Jabbar Siddiqui A, Muhammad Zahid Azam S, Shaikh H, El-Seedi HR, Musharraf SG. Metabolomics approach to understand the hepatitis C virus induced hepatocellular carcinoma using LC-ESI-MS/MS. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
44
|
The Long Noncoding RNA LOXL1-AS1 Promotes the Proliferation, Migration, and Invasion in Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2020; 2020:4182092. [PMID: 33381389 PMCID: PMC7759407 DOI: 10.1155/2020/4182092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/07/2020] [Accepted: 12/05/2020] [Indexed: 12/27/2022]
Abstract
Objective To investigate the expression of long noncoding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) in hepatocellular carcinoma tissues and its effect on cell proliferation, migration, and invasion. Methods Quantitative real-time PCR was used to analyze the expression of LOXL1-AS1 RNA in tumor tissues, adjacent normal tissues, and cell lines. MTT assay, colony formation assay, flow cytometry analysis, transwell assays, and lentivirus-mediated RNA interference (RNAi) technology were used to evaluate cell proliferation and migration. Results In the present study, we observed that the expression level of LOXL1-AS1 in hepatocellular carcinoma tissue was significantly higher than that in adjacent nontumor tissues, and its expression in three hepatic carcinoma cell lines was obviously higher than that in a normal cell line. In addition, in the Hep-G2 cell line, LOXL1-AS1 downregulation significantly inhibited cell proliferation in the light of the MTT and colony formation assays in vitro, which was consistent with animal experiment in vivo. What is more, cell migration was also inhibited in vitro in Matrigel Transwell Assay by LOXL1-AS1 knockdown, which might be partly attributed to the reduction of MMP-2 and MMP-9 protein expressions. Finally, cell cycle analysis revealed that knockdown of LOXL1-AS1 induced significantly a G0/G1 phase cell cycle arrest, which might be partly attributed to the downregulation of Cdc2, Cdc25A, and cyclin B1 protein expression. Conclusion In conclusion, we demonstrated that reduced LOXL1-AS1 expression could inhibit hepatocellular carcinoma cell proliferation, migration, and invasion. The application of RNAi targeting LOXL1-AS1 might be a potential treatment strategy in advanced cases.
Collapse
|
45
|
Yang L, Jiang MN, Liu Y, Wu CQ, Liu H. Crosstalk between lncRNA DANCR and miR-125b-5p in HCC cell progression. TUMORI JOURNAL 2020; 107:504-513. [PMID: 33272103 DOI: 10.1177/0300891620977010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective: To investigate the mechanism of long noncoding RNA (lncRNA) DANCR on the progression of hepatocellular carcinoma (HCC) cells. Methods: The expression levels of DANCR and miR-125b-5p were measured in normal hepatocytes (LO2) and HCC cell lines by quantitative reverse transcription polymerase chain reaction. HepG2 and Huh-7 cells were transfected with sh-DANCR, the negative control (sh-NC), miR-125b-5p mimic, or mimic NC or cotransfected with sh-DANCR and miR-125b-5p inhibitor. HCC cell proliferation was assessed through CCK8 and plate colony formation assay. Western blot quantified the expression levels of Bcl-2, Bax, caspase-3, and cleaved-caspase-3. Apoptotic rate was detected as well as migratory and invasive capacities. The implication of the MAPK signal pathway was assessed by detecting the expression levels of p38, ERK1/2, JNK, p-p38, p-ERK1/2, and p-JNK. Interactions between DANCR and miR-125b-5p were detected by dual luciferase reporter assay. Results: In HCC cells, DANCR was highly expressed and miR-125b-5p was decreased. sh-DANCR or miR-125b-5p mimic stimulation reduced HepG2 or Huh-7 cell progression while promoted cell apoptosis evidenced by increased apoptotic rate, elevated levels of Bax and cleaved-caspase-3, and decreased Bcl-2. Moreover, the migration rate and invasiveness of HCC cells were also inhibited by sh-DANCR and miR-125b-5p mimic. Levels of p-p38/p38, p-ERK1/2/ERK1/2, and p-JNK/JNK were suppressed by sh-DANCR and miR-125b-5p mimic. LncRNA DANCR negatively targeted and directly bound to miR-125b-5p. Knockdown of miR-125b-5p could reverse the inhibitory effects of sh-DANCR on HCC cells. Conclusion: In HCC cells, lncRNA DANCR sponges miR-125b-5p and activates MAPK pathway, thus facilitating HCC cell progression.
Collapse
Affiliation(s)
- Ling Yang
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi-Na Jiang
- Internal Medicine, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yang Liu
- Immunization Programme Division, Hengyang Municipal Center for Disease Control and Prevention, Hengyang, Hunan, China
| | - Chao-Qun Wu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Liu
- Organ Transplantation Center, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
46
|
Fei ZY, Wang WS, Li SF, Zi JJ, Yang L, Liu T, Ao S, Liu QQ, Cui QH, Yu M, Xiong W. High expression of the TEFM gene predicts poor prognosis in hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:1291-1304. [PMID: 33457002 PMCID: PMC7807266 DOI: 10.21037/jgo-20-120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mitochondrial transcription elongation factor (TEFM) is an essential molecule that regulates the replication-transcription switch of mitochondrial DNA. TEFM modulates both transcription elongation and RNA processing in mitochondria. The purpose of the present study was to determine the association of TEFM with tumor progression and prognosis in hepatocellular carcinoma (HCC) patients. METHODS The different protein expression level of TEFM among HCC cell lines was detected by Western blotting. The gene expression profiling interactive analysis (GEPIA) was used to dynamically analyze the mRNA expression of TEFM gene in different stages of HCC. The protein and mRNA expression levels of TEFM were detected by immunohistochemistry, Western blotting and qRT-PCR. The mRNA-SeqV2 expression of TEFM and clinical information of HCC patients were downloaded from the TCGA database by using R3.6.3 software. Next, the relationships between the expression level of TEFM and clinicopathological characteristics and the prognostic value of TEFM were analyzed. A Cox regression model was used for multivariate analysis of the factors that affected the prognosis of HCC. Finally, the association between the expression levels of TEFM and other mitochondrial regulatory genes and HCC biomarker genes was analyzed by GEPIA. RESULTS TEFM is upregulated in HCC cell lines compared to noncancerous liver cell line. TEFM protein and mRNA expression levels in HCC tissues were significantly upregulated compared with those in noncancerous liver tissues. In addition, the mRNA expression level of TEFM was significantly correlated with sex, serum AFP level, and vascular invasion (P<0.05). Further analysis showed that high expression level of TEFM was unfavorable in terms of the prognosis of patients with HCC. Cox multivariate regression analysis showed that patient age, vascular invasion, and TEFM expression were independent factors affecting the prognosis of HCC patients (P<0.05). The expression level of the TEFM gene was significantly positively correlated with the expression of multiple mitochondrial regulatory genes and biomarker genes of HCC (P<0.01, R>0). CONCLUSIONS Our findings reveal that TEFM may play an important role in the progression of HCC. More importantly, the elevated expression of TEFM may potentially predict poor overall survival (OS) and disease-free survival (DFS) in patients with HCC.
Collapse
Affiliation(s)
- Zai-Yi Fei
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Wei-Si Wang
- College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory for Clinical Biochemistry of High Education in Yunnan Province, Dali University, Dali, China
| | - Su-Fen Li
- College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory for Clinical Biochemistry of High Education in Yunnan Province, Dali University, Dali, China
| | - Jia-Ji Zi
- College of Basic Medical Sciences, Dali University, Dali, China
| | - Li Yang
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Ting Liu
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Song Ao
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Qian-Qian Liu
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Qing-Hua Cui
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Min Yu
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Wei Xiong
- College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory for Clinical Biochemistry of High Education in Yunnan Province, Dali University, Dali, China
| |
Collapse
|
47
|
Zhang X, Yan Z, Wang L, Zhang S, Gao M. STAT1-induced upregulation of lncRNA RHPN1-AS1 predicts a poor prognosis of hepatocellular carcinoma and contributes to tumor progression via the miR-485/CDCA5 axis. J Cell Biochem 2020; 121:4741-4755. [PMID: 32065447 DOI: 10.1002/jcb.29689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/04/2020] [Indexed: 12/31/2022]
Abstract
Long noncoding RNAs (lncRNAs) act as a critical regulator in tumor progression, but few lncRNAs have been functionally characterized in hepatocellular carcinoma (HCC). Using The Cancer Genome Atlas datasets and bioinformatic technology, we screened and identified a novel HCC-related lncRNA, RHPN1 antisense RNA 1 (RHPN1-AS1). We found that the levels of RHPN1-AS1 were distinctly upregulated in both HCC tissues and cell lines. RHPN1-AS1 was activated by the transcription factor STAT1. Clinical investigations suggested that higher levels of RHPN1-AS1 were distinctly correlated with histologic grade, advanced tumor, node, metastasis stage, and poorer clinical prognosis. Multivariate assays identified high RHPN1-AS1 expression as an unfavorable prognostic biomarker for patients with HCC. Functional study revealed that knockdown of RHPN1-AS1 was able to suppress cells proliferation and metastasis, and promote cell apoptosis. Further mechanistic investigation suggested that RHPN1-AS1 could promote CDCA5 expressions by functioning as a competing endogenous RNA for miR-485. This interaction resulted in consequentially suppression of HCC cells proliferation, migration, and invasion. Our findings for the first time illustrate how RHPN1-AS1 displayed its tumor-promotive roles in HCC and may offer a new biomarker and a potential therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Xiaozhan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenzhen Yan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shijie Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
48
|
Wu H, Xie D, Yang Y, Yang Q, Shi X, Yang R. Ultrasound-Targeted Microbubble Destruction-Mediated miR-206 Overexpression Promotes Apoptosis and Inhibits Metastasis of Hepatocellular Carcinoma Cells Via Targeting PPIB. Technol Cancer Res Treat 2020; 19:1533033820959355. [PMID: 33111654 PMCID: PMC7607806 DOI: 10.1177/1533033820959355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Ultrasound-targeted microbubble destruction (UTMD) has been found to be an effective method for delivering microRNAs (miRNAs, miRs). The current study is aimed at discovering the potential anti-cancer effects of UTMD-mediated miR-206 on HCC. Methods: In our study, the expressions of miR-206 and peptidyl-prolyl cis-trans isomerase B (PPIB) in HCC tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). PPIB expressions in HCC and adjacent normal tissues were analyzed by gene expression profiling interactive analysis (GEPIA). MiR-206 mimic and mimic control were transfected into HCC cells using UTMD. Potential binding sites between miR-206 and PPIB were predicted and confirmed by TargetScan and dual-luciferase reporter assay, respectively. Cell migration, invasion, and apoptosis were detected by wound healing assay, Transwell, and flow cytometry, respectively. The expressions of apoptosis-related proteins (Bax, Bcl-2), Epithelial-to-mesenchymal (EMT) markers (E-cadherin, N-cadherin and Snail) and PPIB were measured by Western blot. Results: MiR-206 expression was downregulated while PPIB expression was upregulated in HCC, and PPIB was recognized as a target gene of miR-206 in HCC tissues. UTMD-mediated miR-206 inhibited HCC cell migration and invasion while promoting apoptosis via regulating the expressions of proteins related to apoptosis, migration, and invasion by targeting PPIB. Conclusion: Our results suggested that the delivery of UTMD-mediated miR-206 could be a potential therapeutic method for HCC treatment, given its effects on inhibiting cell migration and invasion and promoting cell apoptosis.
Collapse
Affiliation(s)
- Huating Wu
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Dawei Xie
- Department of General Surgery, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Yingxia Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Qing Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Xiajun Shi
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Rong Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| |
Collapse
|
49
|
Wang H, Liu J. Exploration of Sorafenib Influences on Gene Expression of Hepatocellular Carcinoma. Front Genet 2020; 11:577000. [PMID: 33133165 PMCID: PMC7578401 DOI: 10.3389/fgene.2020.577000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
|
50
|
Zheng S, Guo Y, Dai L, Liang Z, Yang Q, Yi S. Long intergenic noncoding RNA01134 accelerates hepatocellular carcinoma progression by sponging microRNA-4784 and downregulating structure specific recognition protein 1. Bioengineered 2020; 11:1016-1026. [PMID: 32970959 PMCID: PMC8291876 DOI: 10.1080/21655979.2020.1818508] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) has been suggested to foster the carcinogenesis of hepatocellular carcinoma (HCC). To date, the role of long intergenic noncoding RNA01134 (LINC01134) in HCC have never been researched yet. Herein, we found that LINC01134 was highly expressed in HCC tissues in comparison with the matched normal liver tissues and increased LINC01134 expression correlated with shorter overall survival of patients with HCC. Additionally, we demonstrated LINC01134 downregulation significantly suppressed the proliferation ability and colony formation capacity of HCC cells. Furthermore, we revealed that LINC01134 functioned as a competitive endogenous RNA (ceRNA) for miR-4784 to upregulate structure-specific recognition protein 1 (SSRP1) in HCC cells. Meanwhile, miR-4784 inhibitor or restoration of SSRP1 could markedly attenuate the inhibitory effect of LINC01134 downregulation on HCC cells. Taken together, LINC01134 may promote the carcinogenesis of HCC at least partly via the miR-4784/SSRP1 axis. Therefore, LINC01134/miR-4784/SSRP1 axis should be developed as the promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Shiyang Zheng
- Department of thyroid and breast surgery, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China.,Department of breast surgery, The Third Affiliated Hospital of Guangzhou medical college , Guangzhou, China
| | - Yan Guo
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Lizhen Dai
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Ziming Liang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Qing Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| |
Collapse
|