1
|
Hamad AA, Amer BE, Hawas Y, Mabrouk MA, Meshref M. Masitinib as a neuroprotective agent: a scoping review of preclinical and clinical evidence. Neurol Sci 2024; 45:1861-1873. [PMID: 38105307 PMCID: PMC11021265 DOI: 10.1007/s10072-023-07259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Masitinib, originally developed as a tyrosine kinase inhibitor for cancer treatment, has shown potential neuroprotective effects in various neurological disorders by modulating key pathways implicated in neurodegeneration. This scoping review aimed to summarize the current evidence of masitinib's neuroprotective activities from preclinical to clinical studies. METHODS This scoping review was conducted following the guidelines described by Arksey and O'Malley and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The inclusion criteria covered all original studies reporting on the neuroprotective effects of masitinib, including clinical studies, animal studies, and in vitro studies. RESULTS A total of 16 studies met the inclusion criteria and were included in the review. These comprised five randomized controlled trials (RCTs), one post-hoc analysis study, one case report, and nine animal studies. The RCTs focused on Alzheimer's disease (two studies), multiple sclerosis (two studies), and amyotrophic lateral sclerosis (one study). Across all included studies, masitinib consistently demonstrated neuroprotective properties. However, the majority of RCTs reported concerns regarding the safety profile of masitinib. Preclinical studies revealed the neuroprotective mechanisms of masitinib, which include inhibition of certain kinases interfering with cell proliferation and survival, reduction of neuroinflammation, and exhibition of antioxidant activity. CONCLUSION The current evidence suggests a promising therapeutic benefit of masitinib in neurodegenerative diseases. However, further research is necessary to validate and expand upon these findings, particularly regarding the precise mechanisms through which masitinib exerts its therapeutic effects. Future studies should also focus on addressing the safety concerns associated with masitinib use.
Collapse
Affiliation(s)
| | | | - Yousef Hawas
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Manar Alaa Mabrouk
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Ketabforoush AHME, Chegini R, Barati S, Tahmasebi F, Moghisseh B, Joghataei MT, Faghihi F, Azedi F. Masitinib: The promising actor in the next season of the Amyotrophic Lateral Sclerosis treatment series. Biomed Pharmacother 2023; 160:114378. [PMID: 36774721 DOI: 10.1016/j.biopha.2023.114378] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with high mortality and morbidity rate affecting both upper and lower motor neurons (MN). Muscle force reduction, behavioral change, pseudobulbar affect, and cognitive impairments are the most common clinical manifestations of ALS. The main physiopathology of ALS is still unclear, though several studies have identified that oxidative stress, proteinopathies, glutamate-related excitotoxicity, microglial activation, and neuroinflammation may be involved in the pathogenesis of ALS. From 1995 until October 2022, only Riluzole, Dextromethorphan Hydrobromide (DH) with Quinidine sulfate (Q), Edaravone, and Sodium phenylbutyrate with Taurursodiol (PB/TUDCO) have achieved FDA approval for ALS treatment. Despite the use of these four approved agents, the survival rate and quality of life of ALS patients are still low. Thus, finding novel treatments for ALS patients is an urgent requirement. Masitinib, a tyrosine kinase inhibitor, emphasizes the neuro-inflammatory activity of ALS by targeting macrophages, mast cells, and microglia cells. Masitinib downregulates the proinflammatory cytokines, indirectly reduces inflammation, and induces neuroprotection. Also, it was effective in phase 2/3 and 3 clinical trials (CTs) by increasing overall survival and delaying motor, bulbar, and respiratory function deterioration. This review describes the pathophysiology of ALS, focusing on Masitinib's mechanism of action and explaining why Masitinib could be a promising actor in the treatment of ALS patients. In addition, Masitinib CTs and other competitor drugs in phase 3 CTs have been discussed.
Collapse
Affiliation(s)
| | - Rojin Chegini
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bardia Moghisseh
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Latham BD, Oskin DS, Crouch RD, Vergne MJ, Jackson KD. Cytochromes P450 2C8 and 3A Catalyze the Metabolic Activation of the Tyrosine Kinase Inhibitor Masitinib. Chem Res Toxicol 2022; 35:1467-1481. [PMID: 36048877 DOI: 10.1021/acs.chemrestox.2c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Masitinib is a small molecule tyrosine kinase inhibitor under investigation for the treatment of amyotrophic lateral sclerosis, mastocytosis, and COVID-19. Hepatotoxicity has been reported in some patients while taking masitinib. The liver injury is thought to involve hepatic metabolism of masitinib by cytochrome P450 (P450) enzymes to form chemically reactive, potentially toxic metabolites. The goal of the current investigation was to determine the P450 enzymes involved in the metabolic activation of masitinib in vitro. In initial studies, masitinib (30 μM) was incubated with pooled human liver microsomes in the presence of NADPH and potassium cyanide to trap reactive iminium ion metabolites as cyano adducts. Masitinib metabolites and cyano adducts were analyzed using reversed-phase liquid chromatography-tandem mass spectrometry. The primary active metabolite, N-desmethyl masitinib (M485), and several oxygenated metabolites were detected along with four reactive metabolite cyano adducts (MCN510, MCN524, MCN526, and MCN538). To determine which P450 enzymes were involved in metabolite formation, reaction phenotyping experiments were conducted by incubation of masitinib (2 μM) with a panel of recombinant human P450 enzymes and by incubation of masitinib with human liver microsomes in the presence of P450-selective chemical inhibitors. In addition, enzyme kinetic assays were conducted to determine the relative kinetic parameters (apparent Km and Vmax) of masitinib metabolism and cyano adduct formation. Integrated analysis of the results from these experiments indicates that masitinib metabolic activation is catalyzed primarily by P450 3A4 and 2C8, with minor contributions from P450 3A5 and 2D6. These findings provide further insight into the pathways involved in the generation of reactive, potentially toxic metabolites of masitinib. Future studies are needed to evaluate the impact of masitinib metabolism on the toxicity of the drug in vivo.
Collapse
Affiliation(s)
- Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - D Spencer Oskin
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Rachel D Crouch
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Matthew J Vergne
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Mora JS, Genge A, Chio A, Estol CJ, Chaverri D, Hernández M, Marín S, Mascias J, Rodriguez GE, Povedano M, Paipa A, Dominguez R, Gamez J, Salvado M, Lunetta C, Ballario C, Riva N, Mandrioli J, Moussy A, Kinet JP, Auclair C, Dubreuil P, Arnold V, Mansfield CD, Hermine O. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:5-14. [PMID: 31280619 DOI: 10.1080/21678421.2019.1632346] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
Objective: To assess masitinib in the treatment of ALS. Methods: Double-blind study, randomly assigning 394 patients (1:1:1) to receive riluzole (100 mg/d) plus placebo or masitinib at 4.5 or 3.0 mg/kg/d. Following a blinded transition from phase 2 to phase 2/3, a prospectively defined two-tiered design was implemented based on ALSFRS-R progression rate from disease-onset to baseline (ΔFS). This approach selects a more homogeneous primary efficacy population ("Normal Progressors", ΔFS < 1.1 points/month) while concurrently permitting secondary assessment of the broader population. Primary endpoint was decline in ALSFRS-R at week-48 (ΔALSFRS-R), with the high-dose "Normal Progressor" cohort being the prospectively declared primary efficacy population. Missing data were imputed via last observation carried forward (LOCF) methodology with sensitivity analyses performed to test robustness. Results: For the primary efficacy population, masitinib (n = 99) showed significant benefit over placebo (n = 102) with a ΔALSFRS-R between-group difference (ΔLSM) of 3.4 (95% CI 0.65-6.13; p = 0.016), corresponding to a 27% slowing in rate of functional decline (LOCF methodology). Sensitivity analyses were all convergent, including the conservative multiple imputation technique of FCS-REGPMM with a ΔLSM of 3.4 (95% CI 0.53-6.33; p = 0.020). Secondary endpoints (ALSAQ-40, FVC, and time-to-event analysis) were also significant. Conversely, no significant treatment-effect according to ΔALSFRS-R was seen for the broader "Normal and Fast Progressor" masitinib 4.5 mg/kg/d cohort, or either of the low-dose (masitinib 3.0 mg/kg/d) cohorts. Rates of treatment-emergent adverse events (AEs) (regardless of causality or post-onset ΔFS) were 88% with masitinib 4.5 mg/kg/d, 85% with 3.0 mg/kg/d, and 79% with placebo. Likewise, rates of serious AE were 31, 23, and 18%, respectively. No distinct event contributed to the higher rate observed for masitinib and no deaths were related to masitinib. Conclusions: Results show that masitinib at 4.5 mg/kg/d can benefit patients with ALS. A confirmatory phase 3 study will be initiated to substantiate these data.
Collapse
Affiliation(s)
| | - Angela Genge
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Adriano Chio
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Conrado J Estol
- Neurological Center for Treatment and Rehabilitation, Buenos Aires, Argentina
| | - Delia Chaverri
- Department of Neurology, ALS Unit, Hospital Carlos III, Madrid, Spain
| | - Maria Hernández
- Department of Neurology, ALS Unit, Hospital Carlos III, Madrid, Spain
| | - Saúl Marín
- Department of Neurology, ALS Unit, Hospital Carlos III, Madrid, Spain
| | - Javier Mascias
- Department of Neurology, ALS Unit, Hospital Carlos III, Madrid, Spain
| | - Gabriel E Rodriguez
- Neurology Department, Neuron Motor Disease Clinic, Hospital JM Ramos, Buenos Aires, Argentina
| | - Monica Povedano
- Neurology Department, Bellvitge Hospital-IDIBELL, Barcelona, Spain
| | - Andrés Paipa
- Neurology Department, Bellvitge Hospital-IDIBELL, Barcelona, Spain
| | - Raul Dominguez
- Neurology Department, Bellvitge Hospital-IDIBELL, Barcelona, Spain
| | - Josep Gamez
- Neurology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Maria Salvado
- Neurology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | - Nilo Riva
- Department of Neurology-INSPE, San Raffaele Scientific Institute, Milan, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | | | - Jean-Pierre Kinet
- AB Science, Paris, France
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christian Auclair
- AB Science, Paris, France
- Department of Biology, Université Paris Sud Université Paris-Saclay CNRS UMR 8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Patrice Dubreuil
- AB Science, Paris, France
- INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Centre de Référence des Mastocytoses, Equipe Labelisée Ligue Nationale Contre le Cancer, Aix-Marseille University, Marseille, France; and
| | | | | | - Olivier Hermine
- AB Science, Paris, France
- Imagine Institute, INSERM UMR 1163 and CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hemathological Disorders and Therapeutic Implication, Hôpital Necker, Paris, France
| |
Collapse
|
5
|
Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med 2018; 62:75-88. [DOI: 10.1016/j.mam.2017.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
6
|
Abstract
Drug-induced liver injury (DILI) is constantly changing as new drugs are approved and as new herbals and dietary supplements (HDS) reach the market. The pathologist plays a key role in the evaluation of DILI by classifying and interpreting the histologic findings considering patients' medical history and drug exposure. The liver biopsy findings may suggest alternative explanations of the injury and additional testing that should be performed to exclude non-DILI causes. Recent reports of iatrogenic liver injury are reviewed with attention to immunomodulatory and antineoplastic agents as well as reports of injury associated with HDS use.
Collapse
Affiliation(s)
- David E Kleiner
- Laboratory of Pathology, National Cancer Institute, 10 Center Drive, Building 10, Room 2S235, MSC1500, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Therapeutic Strategies Under Development Targeting Inflammatory Mechanisms in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2017; 55:2789-2813. [DOI: 10.1007/s12035-017-0532-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
8
|
Lewandowski SA, Fredriksson L, Lawrence DA, Eriksson U. Pharmacological targeting of the PDGF-CC signaling pathway for blood-brain barrier restoration in neurological disorders. Pharmacol Ther 2016; 167:108-119. [PMID: 27524729 PMCID: PMC5341142 DOI: 10.1016/j.pharmthera.2016.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
Abstract
Neurological disorders account for a majority of non-malignant disability in humans and are often associated with dysfunction of the blood-brain barrier (BBB). Recent evidence shows that despite apparent variation in the origin of neural damage, the central nervous system has a common injury response mechanism involving platelet-derived growth factor (PDGF)-CC activation in the neurovascular unit and subsequent dysfunction of BBB integrity. Inhibition of PDGF-CC signaling with imatinib in mice has been shown to prevent BBB dysfunction and have neuroprotective effects in acute damage conditions, including traumatic brain injury, seizures or stroke, as well as in neurodegenerative diseases that develop over time, including multiple sclerosis and amyotrophic lateral sclerosis. Stroke and traumatic injuries are major risk factors for age-associated neurodegenerative disorders and we speculate that restoring BBB properties through PDGF-CC inhibition might provide a common therapeutic opportunity for treatment of both acute and progressive neuropathology in humans. In this review we will summarize what is known about the role of PDGF-CC in neurovascular signaling events and the variety of seemingly different neuropathologies it is involved in. We will also discuss the pharmacological means of therapeutic interventions for anti-PDGF-CC therapy and ongoing clinical trials. In summary: inhibition of PDGF-CC signaling can be protective for immediate injury and decrease the long-term neurodegenerative consequences.
Collapse
Affiliation(s)
- Sebastian A Lewandowski
- Tissue Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles v. 2, 17177, Stockholm, Sweden.
| | - Linda Fredriksson
- Vascular Biology Groups, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles v. 2, 17177, Stockholm, Sweden; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0644, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0644, USA
| | - Ulf Eriksson
- Tissue Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles v. 2, 17177, Stockholm, Sweden.
| |
Collapse
|
9
|
Blasco H, Patin F, Andres CR, Corcia P, Gordon PH. Amyotrophic Lateral Sclerosis, 2016: existing therapies and the ongoing search for neuroprotection. Expert Opin Pharmacother 2016; 17:1669-82. [PMID: 27356036 DOI: 10.1080/14656566.2016.1202919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS), one in a family of age-related neurodegenerative disorders, is marked by predominantly cryptogenic causes, partially elucidated pathophysiology, and elusive treatments. The challenges of ALS are illustrated by two decades of negative drug trials. AREAS COVERED In this article, we lay out the current understanding of disease genesis and physiology in relation to drug development in ALS, stressing important accomplishments and gaps in knowledge. We briefly consider clinical ALS, the ongoing search for biomarkers, and the latest in trial design, highlighting major recent and ongoing clinical trials; and we discuss, in a concluding section on future directions, the prion-protein hypothesis of neurodegeneration and what steps can be taken to end the drought that has characterized drug discovery in ALS. EXPERT OPINION Age-related neurodegenerative disorders are fast becoming major public health problems for the world's aging populations. Several agents offer promise in the near-term, but drug development is hampered by an interrelated cycle of obstacles surrounding etiological, physiological, and biomarkers discovery. It is time for the type of government-funded, public-supported offensive on neurodegenerative disease that has been effective in other fields.
Collapse
Affiliation(s)
- H Blasco
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - F Patin
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - C R Andres
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,c Laboratoire de Biochimie et Biologie Moléculaire , CHRU de Tours , Tours , France
| | - P Corcia
- a Inserm U930, Equipe "neurogénétique et neurométabolomique" , Tours , France.,b Université François-Rabelais, Faculté de Médecine , Tours , France.,d Centre SLA, Service de Neurologie , CHRU Bretonneau , Tours , France
| | - P H Gordon
- e Northern Navajo Medical Center , Neurology Unit , Shiprock , NM , USA
| |
Collapse
|
10
|
Affiliation(s)
- Mehdi Brahmi
- Department of medical Oncology, Centre Leon Berard, Lyon, France
| | | |
Collapse
|