1
|
Wan X, Ma J, Bai H, Hu X, Ma Y, Zhao M, Liu J, Duan Z. Drug Advances in NAFLD: Individual and Combination Treatment Strategies of Natural Products and Small-Synthetic-Molecule Drugs. Biomolecules 2025; 15:140. [PMID: 39858534 PMCID: PMC11764138 DOI: 10.3390/biom15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is closely associated with metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome. However, effective treatment strategies for NAFLD are still lacking. In recent years, progress has been made in understanding the pathogenesis of NAFLD, identifying multiple therapeutic targets and providing new directions for drug development. This review summarizes the recent advances in the treatment of NAFLD, focusing on the mechanisms of action of natural products, small-synthetic-molecule drugs, and combination therapy strategies. This review aims to provide new insights and strategies in treating NAFLD.
Collapse
Affiliation(s)
- Xing Wan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
- Institute of Integrated Traditional Chinese and Western Medicine, Dalian Medical University, Dalian 116051, China
| | - Jingyuan Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - He Bai
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Xuyang Hu
- The Second Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China;
| | - Yanna Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - Mingjian Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Jifeng Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Zhijun Duan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| |
Collapse
|
2
|
Soukop J, Kazdová L, Hüttl M, Malínská H, Marková I, Oliyarnyk O, Miklánková D, Gurská S, Rácová Z, Poruba M, Večeřa R. Beneficial Effect of Fenofibrate in Combination with Silymarin on Parameters of Hereditary Hypertriglyceridemia-Induced Disorders in an Animal Model of Metabolic Syndrome. Biomedicines 2025; 13:212. [PMID: 39857794 PMCID: PMC11763318 DOI: 10.3390/biomedicines13010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Hypertriglyceridemia has serious health risks such as cardiovascular disease, type 2 diabetes mellitus, nephropathy, and others. Fenofibrate is an effective hypolipidemic drug, but its benefits for ameliorating disorders associated with hypertriglyceridemia failed to be proven in clinical trials. Methods: To search for possible causes of this situation and possibilities of their favorable influence, we tested the effect of FF monotherapy and the combination of fenofibrate with silymarin on metabolic disorders in a unique model of hereditary hypertriglyceridemic rats (HHTg). Results: Fenofibrate treatment (100 mg/kg BW/day for four weeks) significantly decreased serum levels of triglyceride, (-77%) and free fatty acids (-29%), the hepatic accumulation of triglycerides, and the expression of genes encoding transcription factors involved in lipid metabolism (Srebf2, Nr1h4. Rxrα, and Slco1a1). In contrast, the hypertriglyceridemia-induced ectopic storage of lipids in muscles, the heart, and kidneys reduced glucose utilization in muscles and was not affected. In addition, fenofibrate reduced the activity of the antioxidant system, including Nrf2 expression (-35%) and increased lipoperoxidation in the liver and, to a lesser extent, in the kidneys and heart. Adding silymarin (micronized form, 600 mg/kg BW/day) to fenofibrate therapy increased the synthesis of glycogen in muscles, (+36%) and reduced hyperinsulinemia (-34%). In the liver, it increased the activity of the antioxidant system, including PON-1 activity and Nrf2 expression, and reduced the formation of lipoperoxides. The beneficial effect of combination therapy on the parameters of oxidative stress and lipoperoxidation was also observed, to a lesser extent, in the heart and kidneys. Conclusions: Our results suggest the potential beneficial use of the combination of FF with SLM in the treatment of hypertriglyceridemia-induced metabolic disorders.
Collapse
Affiliation(s)
- Jan Soukop
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77515 Olomouc, Czech Republic; (J.S.)
| | - Ludmila Kazdová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Hana Malínská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Irena Marková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Olena Oliyarnyk
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Denisa Miklánková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77515 Olomouc, Czech Republic
| | - Zuzana Rácová
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77515 Olomouc, Czech Republic; (J.S.)
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77515 Olomouc, Czech Republic; (J.S.)
| | - Rostislav Večeřa
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77515 Olomouc, Czech Republic; (J.S.)
| |
Collapse
|
3
|
Ohshima K, Hara E, Takimoto M, Bai Y, Hirata M, Zeng W, Uomoto S, Todoroki M, Kobayashi M, Kozono T, Kigata T, Shibutani M, Yoshida T. Peroxisome Proliferator Activator α Agonist Clofibrate Induces Pexophagy in Coconut Oil-Based High-Fat Diet-Fed Rats. BIOLOGY 2024; 13:1027. [PMID: 39765694 PMCID: PMC11673738 DOI: 10.3390/biology13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025]
Abstract
Peroxisomes are crucial for fatty acid β-oxidation in steatosis, but the role of pexophagy-the selective autophagy of peroxisomes-remains unclear. This study investigated the effects of the peroxisome proliferator-activated receptor-α (PPARα) agonist clofibrate on pexophagy in a coconut oil-based high-fat diet (HFD)-induced hepatocarcinogenesis model. Rats were divided into four groups: control, clofibrate, HFD, and HFD with clofibrate. The HFD induced steatosis, along with a 2.4-fold increase in pexophagy receptor NBR1-positive granules in hepatocytes. Clofibrate significantly inhibited HFD-induced steatosis, increasing p62-, LAMP2-, and Pex5-positive granules by 7.5-, 7.2-, and 71.4-fold, respectively, while decreasing NBR1 expression. The effects were associated with peroxisome proliferation and pexophagy in ultrastructural observations and increased levels of Lc3, p62, Pex2, Pex14, Acox1, and Scd1 in gene expression analysis. The results suggested that clofibrate effectively reduced steatosis through combined peroxisome proliferation and pexophagy, though it had a marginal impact on hepatocarcinogenesis in coconut oil-based HFD-fed rats. These findings highlight the utility of PPARα agonists in studying mammalian pexophagy.
Collapse
Affiliation(s)
- Kanami Ohshima
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Emika Hara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Mio Takimoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Yidan Bai
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Mai Hirata
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Wen Zeng
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Mai Todoroki
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan
| | - Takuma Kozono
- Smart-Core-Facility Promotion Organization, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan;
| | - Tetsuhito Kigata
- Laboratory of Veterinary Anatomy, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan;
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| |
Collapse
|
4
|
Zimbru EL, Zimbru RI, Ordodi VL, Bojin FM, Crîsnic D, Andor M, Mirica SN, Huțu I, Tănasie G, Haidar L, Nistor D, Velcean L, Păunescu V, Panaitescu C. Rosuvastatin Attenuates Vascular Dysfunction Induced by High-Fructose Diets and Allergic Asthma in Rats. Nutrients 2024; 16:4104. [PMID: 39683498 DOI: 10.3390/nu16234104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND A growing body of evidence links a high-fructose diet (HFrD) to metabolic disturbances, including inflammation, dyslipidemia, insulin resistance and also endothelial dysfunction, yet its role in allergic asthma remains underexplored. Considering that obesity and hypercholesterolemia exacerbate asthma by promoting systemic inflammation, investigating interventions with dual metabolic and anti-inflammatory effects is essential. This study aimed to evaluate the potential modulatory effects of rosuvastatin in ameliorating the effects of HFrD-induced metabolic and vascular dysfunction in the context of allergic asthma. METHODS Forty-eight Sprague-Dawley rats were assigned to eight groups, receiving either a standard or HFrD for 12 weeks. Allergic asthma was induced using an ovalbumin sensitization and challenge protocol, while controls were administered saline. Selected groups were treated with rosuvastatin throughout the entire duration of the experiment. Body weight, abdominal circumference and serum biomarkers were assessed at baseline, 6 and 12 weeks. Endothelial function was assessed by evaluating vascular reactivity in an isolated organ bath. Additionally, histopathological analyses of aortic and pulmonary tissues were conducted to investigate inflammatory responses and morphological changes. RESULTS Rats on HFrDs exhibited significant increases in body weight, abdominal circumference, lipid profiles and blood glucose, which were further aggravated by allergic asthma. Rosuvastatin treatment notably reduced lipid levels, C-reactive protein and immunoglobulin E, while also enhancing vascular reactivity and attenuating aortic and bronchial wall thickening. CONCLUSIONS Our findings suggest that rosuvastatin may serve as an effective therapeutic agent for addressing vascular and inflammatory complications associated with a high fructose intake and allergic asthma.
Collapse
Affiliation(s)
- Elena-Larisa Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Răzvan-Ionuț Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Valentin-Laurențiu Ordodi
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
- Chemistry and Engineering of Organic and Natural Compounds Department, University Politehnica Timisoara, 300006 Timisoara, Romania
| | - Florina-Maria Bojin
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Daniela Crîsnic
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Minodora Andor
- Discipline of Medical Semiotics II, Department V-Internal Medicine-1, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Multidisciplinary Heart Research Center, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Silvia-Nicoleta Mirica
- Faculty of Sport and Physical Education, West University of Timisoara, 4 Vasile Parvan Bd., 300223 Timisoara, Romania
| | - Ioan Huțu
- Horia Cernescu Research Unit, Faculty of Veterinary Medicine, University of Life Sciences "King Michael I of Romania", 300645 Timisoara, Romania
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Daciana Nistor
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Luminița Velcean
- Cardiology Clinic of the Timisoara Municipal Clinical Emergency Hospital, 12 Revolution of 1989 Bd., 300040 Timisoara, Romania
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer-OncoGen, Timis County Emergency Clinical Hospital "Pius Brinzeu", No. 156 Liviu Rebreanu, 300723 Timisoara, Romania
| |
Collapse
|
5
|
Karmacharya A, Kasai S, Mukai Y, Sato S. Maternal Broccoli Powder Intake Ameliorates Insulin Resistance and Inflammation via AMPK/mTOR Pathway in the Livers of High-Fructose-Fed Male Rat Offspring Exposed to Maternal Protein Restriction. Mol Nutr Food Res 2024; 68:e2400472. [PMID: 39420699 DOI: 10.1002/mnfr.202400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Indexed: 10/19/2024]
Abstract
SCOPE Sub-optimal prenatal conditions such as maternal undernutrition during pregnancy and lactation posit high risks of adult metabolic diseases. High fructose intake causes insulin resistance and liver inflammation contributing to metabolic diseases. However, food-based preventive measure for these metabolic diseases in the offspring is under-researched. This study aims to investigate the effect of maternal broccoli powder (BP) intake during lactation on insulin resistance and liver inflammation in high-fructose-diet-fed adult male offspring exposed to maternal protein restriction. METHODS AND RESULTS Pregnant Wistar rats are provided normal protein (NP) or low protein (LP) diets and 0% or 0.74% BP-containing NP diets and 0% or 0.74% BP-containing LP diet during lactation. At weaning, offspring receiving water (W) or 10% fructose solution (Fr) are assigned into six groups: NP/NP/W, NP/NP/Fr, NP/NPBP/Fr, LP/LP/W, LP/LP/Fr, and LP/LPBP/Fr. At week 13, plasma insulin, macrophage infiltration, activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) phosphorylation, and autophagy flux markers are examined. LP/LPBP/Fr shows lower insulin levels and Homeostatic model assessment for insulin resistance (HOMA-IR) values than LP/LP/Fr. Liver macrophage infiltration are decreased in LP/LPBP/Fr. LP/LPBP/Fr exhibits upregulated AMPK phosphorylation, downregulated mTOR phosphorylation, and increased Microtubule-associated protein1A/1B-light chain 3B-II (LC3B-II) levels. CONCLUSION Maternal BP intake during lactation ameliorates insulin resistance and inflammation in the livers of adult offspring on a high-fructose diet from LP mothers.
Collapse
Affiliation(s)
- Anishma Karmacharya
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| | - Shiho Kasai
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| | - Yuuka Mukai
- School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa, 238-8522, Japan
| | - Shin Sato
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| |
Collapse
|
6
|
Abdelmoneim D, Eldomany EB, El-Adl M, Farghali A, El-Sayed G, El-Sherbini ES. Possible protective effect of natural flavanone naringenin-reduced graphene oxide nanosheets on nonalcoholic fatty liver disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03495-9. [PMID: 39414698 DOI: 10.1007/s00210-024-03495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024]
Abstract
Utilizing naringenin as a safe, natural compound for reducing graphene oxide and to determine whether Nar-RGO more effectively mitigates the harmful effects of HFFD-induced NAFLD compared to crude naringenin. Using a straightforward experimental setup, we utilize the bioactive flavonoid naringenin (NAR) as the reducing agent to synthesize naringenin-reduced graphene oxide nanosheets (Nar-RGO). Naringenin loading on graphene oxide was validated using electroscopic methods (SEM and TEM) and zeta potential measurements. Utilization of reduced graphene oxide for naringenin encapsulation resulted in a significant improvement in hepatic steatosis, insulin resistance, oxidative stress, and signs of inflammation in HFFD-induced NAFLD compared to crude naringenin. This study demonstrates that Nar-RGO exhibits significantly greater efficacy compared to free naringenin. Therefore, it can be used as a promising medicine in counteracting high-fat-fructose diet (HFFD)-induced NAFLD.
Collapse
Affiliation(s)
- Doaa Abdelmoneim
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Ehab B Eldomany
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohamed El-Adl
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Farghali
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Gehad El-Sayed
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - El Said El-Sherbini
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Lodge M, Dykes R, Kennedy A. Regulation of Fructose Metabolism in Nonalcoholic Fatty Liver Disease. Biomolecules 2024; 14:845. [PMID: 39062559 PMCID: PMC11274671 DOI: 10.3390/biom14070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Elevations in fructose consumption have been reported to contribute significantly to an increased incidence of obesity and metabolic diseases in industrial countries. Mechanistically, a high fructose intake leads to the dysregulation of glucose, triglyceride, and cholesterol metabolism in the liver, and causes elevations in inflammation and drives the progression of nonalcoholic fatty liver disease (NAFLD). A high fructose consumption is considered to be toxic to the body, and there are ongoing measures to develop pharmaceutical therapies targeting fructose metabolism. Although a large amount of work has summarized the effects fructose exposure within the intestine, liver, and kidney, there remains a gap in our knowledge regarding how fructose both indirectly and directly influences immune cell recruitment, activation, and function in metabolic tissues, which are essential to tissue and systemic inflammation. The most recent literature demonstrates that direct fructose exposure regulates oxidative metabolism in macrophages, leading to inflammation. The present review highlights (1) the mechanisms by which fructose metabolism impacts crosstalk between tissues, nonparenchymal cells, microbes, and immune cells; (2) the direct impact of fructose on immune cell metabolism and function; and (3) therapeutic targets of fructose metabolism to treat NAFLD. In addition, the review highlights how fructose disrupts liver tissue homeostasis and identifies new therapeutic targets for treating NAFLD and obesity.
Collapse
Affiliation(s)
| | | | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall Campus, Box 7622, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Jack BU, Ramharack P, Malherbe C, Gabuza K, Joubert E, Pheiffer C. Cyclopia intermedia (Honeybush) Induces Uncoupling Protein 1 and Peroxisome Proliferator-Activated Receptor Alpha Expression in Obese Diabetic Female db/db Mice. Int J Mol Sci 2023; 24:ijms24043868. [PMID: 36835279 PMCID: PMC9964215 DOI: 10.3390/ijms24043868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Previously, we reported that a crude polyphenol-enriched fraction of Cyclopia intermedia (CPEF), a plant consumed as the herbal tea, commonly known as honeybush, reduced lipid content in 3T3-L1 adipocytes and inhibited body weight gain in obese, diabetic female leptin receptor-deficient (db/db) mice. In the current study, the mechanisms underlying decreased body weight gain in db/db mice were further elucidated using western blot analysis and in silico approaches. CPEF induced uncoupling protein 1 (UCP1, 3.4-fold, p < 0.05) and peroxisome proliferator-activated receptor alpha (PPARα, 2.6-fold, p < 0.05) expression in brown adipose tissue. In the liver, CPEF induced PPARα expression (2.2-fold, p < 0.05), which was accompanied by a 31.9% decrease in fat droplets in Hematoxylin and Eosin (H&E)-stained liver sections (p < 0.001). Molecular docking analysis revealed that the CPEF compounds, hesperidin and neoponcirin, had the highest binding affinities for UCP1 and PPARα, respectively. This was validated with stabilising intermolecular interactions within the active sites of UCP1 and PPARα when complexed with these compounds. This study suggests that CPEF may exert its anti-obesity effects by promoting thermogenesis and fatty acid oxidation via inducing UCP1 and PPARα expression, and that hesperidin and neoponcirin may be responsible for these effects. Findings from this study could pave the way for designing target-specific anti-obesity therapeutics from C. intermedia.
Collapse
Affiliation(s)
- Babalwa Unice Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
- Correspondence: ; Tel.: +27-219-380336
| | - Pritika Ramharack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
- Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Christiaan Malherbe
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
| | - Kwazi Gabuza
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
- Department of Food Science, University of Stellenbosch, Stellenbosch 7602, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 7505, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
9
|
Afarin R, Aslani F, Asadizade S, Jaberian Asl B, Mohammadi Gahrooie M, Shakerian E, Ahangarpour A. The Effect of Lipopolysaccharide-Stimulated Adipose-Derived Mesenchymal Stem Cells on NAFLD Treatment in High-Fat Diet-Fed Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e134807. [PMID: 38116551 PMCID: PMC10728850 DOI: 10.5812/ijpr-134807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 12/21/2023]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are 2 common liver diseases that currently lack effective treatment options. Objectives This study aimed to investigate the effect of lipopolysaccharide (LPS)-stimulated adipose-derived stem cells (ADSCs) on NAFLD treatment in an animal model. Methods Male Wistar rats were fed a high-fat diet (HFD) to induce NAFLD for 7 weeks. The rats were then categorized into 3 groups: Mesenchymal stem cell (MSC), MSC + LPS, and fenofibrate (FENO) groups. Liver and body weight were measured, and the expression of genes involved in fatty acid biosynthesis, β-oxidation, and inflammatory responses was assessed. Results Lipopolysaccharide-stimulated ADSCs were more effective in regulating liver and body weight gain and reducing liver triglyceride (TG) levels compared to the other groups. Treatment with LPS-stimulated ADSCs effectively corrected liver enzymes, including alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and lipid factors, including low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) values, better than treatment with both FENO and MSCs. ADSCs + LPS treatment significantly decreased transforming growth factor β (TGF-β) and genes associated with inflammatory responses. Additionally, there was a significant reduction in reactive oxygen species (ROS) levels in the rats treated with ADSCs + LPS. Conclusions Lipopolysaccharide-stimulated ADSCs showed potential in alleviating NAFLD by reducing inflammatory genes and ROS levels in HFD rats, demonstrating better results than treatment with ADSCs and FENO groups alone.
Collapse
Affiliation(s)
- Reza Afarin
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshteh Aslani
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahla Asadizade
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahar Jaberian Asl
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Mohammadi Gahrooie
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Shakerian
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Anggreini P, Kuncoro H, Sumiwi SA, Levita J. Role of the AMPK/SIRT1 pathway in non‑alcoholic fatty liver disease (Review). Mol Med Rep 2022; 27:35. [PMID: 36562343 PMCID: PMC9827347 DOI: 10.3892/mmr.2022.12922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD) is an increasingly prevalent ailment worldwide. Moreover, de novo lipogenesis (DNL) is considered a critical factor in the development of NAFLD; hence, its inhibition is a promising target for the prevention of fatty liver disease. There is evidence to indicate that AMP‑activated protein kinase (AMPK) and sirtuin 1 (SIRT1) may play a crucial role in DNL and are the regulatory proteins in type 2 diabetes mellitus, obesity and cardiovascular disease. Therefore, AMPK and SIRT1 may be promising targets for the treatment of NAFLD. The present review article thus aimed to summarize the findings of clinical studies published during the past decade that suggested the beneficial effects of AMPK and SIRT1, using their specific activators and their combined effects on fatty liver disease.
Collapse
Affiliation(s)
- Putri Anggreini
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java 46363, Indonesia,Laboratory of Pharmaceutical Research and Development, Faculty of Pharmacy, Mulawarman University, Samarinda, East Borneo 75119, Indonesia
| | - Hadi Kuncoro
- Laboratory of Pharmaceutical Research and Development, Faculty of Pharmacy, Mulawarman University, Samarinda, East Borneo 75119, Indonesia,Correspondence to: Dr Hadi Kuncoro, Laboratory of Pharmaceutical Research and Development, Faculty of Pharmacy, Mulawarman University, Muara Muntai Street, Gunung Kelua, Samarinda, East Borneo 75119, Indonesia, E-mail:
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java 46363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java 46363, Indonesia
| |
Collapse
|
11
|
Alemán MN, Sánchez SS, Honoré SM. Daily Intake of Smallanthus sonchifolius (Yacon) Roots Reduces the Progression of Non-alcoholic Fatty Liver in Rats Fed a High Fructose Diet. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:521-528. [PMID: 36048356 DOI: 10.1007/s11130-022-01009-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
High-fructose diet is associated with an increased risk of dyslipidemia, metabolic syndrome, and the development of non-alcoholic fatty liver disease (NAFLD) through chronic inflammation. The present study aimed to elucidate the potential benefit of daily consumption of Smallanthus sonchifolius (yacon) roots, rich in fructooligosaccharides (FOS), on the progression to liver fibrosis, in a rat model of NAFLD induced by a high-fructose diet. Male Wistar rats were fed a standard diet (CD, n = 6) or a standard diet plus 10% fructose solution (FD; n = 18). After 20 weeks, FD rats were randomly separated into the following groups (n = 6, each): FD; FD treated with yacon flour (340 mg FOS/body weight; FD + Y) and FD treated with fenofibrate (30 mg/kg body weight; FD + F), for 16 weeks. Daily intake of yacon flour significantly reduced body weight gain, plasma lipid levels, transaminase activities, and improved systemic insulin response in FD rats. In the liver, yacon treatment decreased fructose-induced steatosis and inflammation, and reduced total collagen deposition (64%). Also, yacon decreased TGF-β1 mRNA expression (78%), followed by decreased nuclear localization of p-Smad2/3 in liver tissue. Yacon significantly reduced the expression of α-smooth muscle actin (α-SMA), Col1α1, and Col3α1 mRNAs (85, 44, and 47%, respectively), inhibiting the activation of resident hepatic stellate cells (HSCs). These results suggested that yacon roots have the potential to ameliorate liver damage caused by long-term consumption of a high-fructose diet, being a promising nutritional strategy in NAFLD management.
Collapse
Affiliation(s)
- Mariano Nicolás Alemán
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
- Instituto de Biología "Dr. Francisco D. Barbieri" Facultad de Bioquímica, Química y Farmacia- Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Sara Serafina Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Stella Maris Honoré
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina.
- Instituto de Biología "Dr. Francisco D. Barbieri" Facultad de Bioquímica, Química y Farmacia- Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina.
| |
Collapse
|
12
|
Li P, Zhang R, Wang M, Chen Y, Chen Z, Ke X, Zuo L, Wang J. Baicalein Prevents Fructose-Induced Hepatic Steatosis in Rats: In the Regulation of Fatty Acid De Novo Synthesis, Fatty Acid Elongation and Fatty Acid Oxidation. Front Pharmacol 2022; 13:917329. [PMID: 35847050 PMCID: PMC9280198 DOI: 10.3389/fphar.2022.917329] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), hepatic fibrosis and even hepatocellular carcinoma, is a liver disease worldwide without approved therapeutic drugs. Baicalein (BAL), a flavonoid compound extracted from the Traditional Chinese Medicine (TCM) Scutellariae Radix (Scutellaria baicalensis Georgi.), has been used in TCM clinical practice for thousands of years to treat liver diseases due to its "hepatoprotective effect". However, the underlying liver-protecting mechanisms remain largely unknown. Here, we found that oral administration of BAL significantly decreased excess serum levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) as well as hepatic TG in fructose-fed rats. Attenuation of the increased vacuolization and Oil Red O staining area was evident on hepatic histological examination in BAL-treated rats. Mechanistically, results of RNA-sequencing, western-blot, real-time quantitative PCR (RT-qPCR) and hepatic metabolomics analyses indicated that BAL decreased fructose-induced excessive nuclear expressions of mature sterol regulatory element-binding protein 1c (mSREBP1c) and carbohydrate response element-binding protein (ChREBP), which led to the decline of lipogenic molecules [including fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), elongation of very long chain fatty acids 6 (ELOVL6), acetyl-CoA carboxylase (ACC)], accompanying with the alternation of hepatic fatty acids composition. Meanwhile, BAL enhanced fatty acid oxidation by activating AMPK/PGC1α signaling axis and PPARα signal pathway, which elicited high expression of carnitine palmitoyl transferase 1α (CPT1α) and Acyl-CoA oxidase 1 (ACO1) in livers of fructose-fed rats, respectively. BAL ameliorated fructose-induced hepatic steatosis, which is associated with regulating fatty acid synthesis, elongation and oxidation.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ruoyu Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Meng Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yuwei Chen
- The Pharmacy Department, the Second People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zuo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Liver Protective Effect of Fenofibrate in NASH/NAFLD Animal Models. PPAR Res 2022; 2022:5805398. [PMID: 35754743 PMCID: PMC9232374 DOI: 10.1155/2022/5805398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is initiated by excessive fat buildup in the liver, affecting around 35% of the world population. Various circumstances contribute to the initiation and progression of NAFLD, and it encompasses a wide range of disorders, from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. Although several treatments have been proposed, there is no definitive cure for NAFLD. In recent decades, several medications related to other metabolic disorders have been evaluated in preclinical studies and in clinical trials due to the correlation of NAFLD with other metabolic diseases. Fenofibrate is a fibrate drug approved for dyslipidemia that could be used for modulation of hepatic fat accumulation, targeting peroxisome proliferator-activator receptors, and de novo lipogenesis. This drug offers potential therapeutic efficacy for NAFLD due to its capacity to decrease the accumulation of hepatic lipids, as well as its antioxidant, anti-inflammatory, and antifibrotic properties. To better elucidate the pathophysiological processes underlying NAFLD, as well as to test therapeutic agents/interventions, experimental animal models have been extensively used. In this article, we first reviewed experimental animal models that have been used to evaluate the protective effects of fenofibrate on NAFLD/NASH. Next, we investigated the impact of fenofibrate on the hepatic microcirculation in NAFLD and then summarized the beneficial effects of fenofibrate, as compared to other drugs, for the treatment of NAFLD. Lastly, we discuss possible adverse side effects of fenofibrate on the liver.
Collapse
|
14
|
Chrysin Attenuates Fructose-Induced Nonalcoholic Fatty Liver in Rats via Antioxidant and Anti-Inflammatory Effects: The Role of Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9479456. [PMID: 35720181 PMCID: PMC9200559 DOI: 10.1155/2022/9479456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Aim Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, and if untreated, it may propagate into end-stage liver disease. The classical arm of the renin-angiotensin system (RAS) has a fundamental role in triggering oxidative stress and inflammation, which play potential roles in the pathogenesis of NAFLD. However, the nonclassical alternative axis of RAS, angiotensin- (Ang-) converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor, opposes the actions of the classical arm, mitigates the metabolic dysfunction, and improves hepatic lipid metabolism rendering it a promising protective target against NAFLD. The current study is aimed at investigating the impact of chrysin, a well-known antioxidant flavonoid, on this defensive RAS axis in NAFLD. Methods Rats were randomly distributed and treated daily for eight weeks as follows: the normal control, chrysin control (50 mg/kg, p.o), NAFLD group (received 20% fructose in drinking water), and treated groups (25 and 50 mg/kg chrysin given orally and concomitantly with fructose). Diminazene aceturate (DIZE) (15 mg/kg, s.c.) was used as a reference ACE2 activator. Key Findings. High fructose induced significant weight gain, hepatocyte degeneration with fat accumulation, and inflammatory cell infiltration (as examined by H&E staining). This was accompanied by a substantial increase in liver enzymes, glucose, circulating and hepatic triglycerides, lipid peroxides, inflammatory cytokines, and Ang II (the main component of classical RAS). At the same time, protein levels of ACE2, Ang (1-7), and Mas receptors were markedly reduced. Chrysin (25 and 50 mg/kg) significantly ameliorated these abnormalities, with a prominent effect of the dose of 50 mg/kg over DIZE and the lower dose in improving ACE2, Ang (1-7), and Mas. Significance. Chrysin is a promising efficient protective remedy against NAFLD; mechanisms include the activation of ACE2/Ang (1-7)/Mas axis.
Collapse
|
15
|
Mahmoudi A, Jamialahmadi T, Johnston TP, Sahebkar A. Impact of fenofibrate on NAFLD/NASH: A genetic perspective. Drug Discov Today 2022; 27:2363-2372. [PMID: 35569762 DOI: 10.1016/j.drudis.2022.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), caused by an accumulation of fat deposits in hepatocytes, prevalently affects at least one-third of the world's population. The progression of this disorder can potentially include a spectrum of consecutive stages, specifically: steatosis, steatohepatitis and cirrhosis. Fenofibrate exhibits potential therapeutic efficacy for NAFLD owing to several properties, which include antioxidant, apoptotic, anti-inflammatory and antifibrotic activity. In the present review, we discuss the direct or indirect impact of fenofibrate on genes involved at various stages in the progression of NAFLD. Moreover, we have reviewed studies that compare fenofibrate with other drugs in treating NAFLD, as well as recent clinical trials, in an attempt to identify reliable scientific and clinical evidence concerning the therapeutic effects and benefits of fenofibrate on NAFLD. Teaser.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Chen YW, Diamante G, Ding J, Nghiem TX, Yang J, Ha SM, Cohn P, Arneson D, Blencowe M, Garcia J, Zaghari N, Patel P, Yang X. PharmOmics: A species- and tissue-specific drug signature database and gene-network-based drug repositioning tool. iScience 2022; 25:104052. [PMID: 35345455 PMCID: PMC8957031 DOI: 10.1016/j.isci.2022.104052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
Drug development has been hampered by a high failure rate in clinical trials due to our incomplete understanding of drug functions across organs and species. Therefore, elucidating species- and tissue-specific drug functions can provide insights into therapeutic efficacy, potential adverse effects, and interspecies differences necessary for effective translational medicine. Here, we present PharmOmics, a drug knowledgebase and analytical tool that is hosted on an interactive web server. Using tissue- and species-specific transcriptome data from human, mouse, and rat curated from different databases, we implemented a gene-network-based approach for drug repositioning. We demonstrate the potential of PharmOmics to retrieve known therapeutic drugs and identify drugs with tissue toxicity using in silico performance assessment. We further validated predicted drugs for nonalcoholic fatty liver disease in mice. By combining tissue- and species-specific in vivo drug signatures with gene networks, PharmOmics serves as a complementary tool to support drug characterization and network-based medicine. Development of PharmOmics, a platform for drug repositioning and toxicity prediction Contains >18000 species/tissue-specific gene signatures for 941 drugs and chemicals Benchmarked and validated network-based drug repositioning and toxicity prediction PharmOmics is freely accessible via an online web server to facilitate user access
Collapse
Affiliation(s)
- Yen-Wei Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular, & Integrative Physiology, Los Angeles, Los Angeles, CA 90095, USA
| | - Thien Xuan Nghiem
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jessica Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sung-Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Cohn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular, & Integrative Physiology, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer Garcia
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nima Zaghari
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul Patel
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Molecular, Cellular, & Integrative Physiology, Los Angeles, Los Angeles, CA 90095, USA
- Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author
| |
Collapse
|
17
|
Dam TV, Toft NI, Grøntved L. Cell-Type Resolved Insights into the Cis-Regulatory Genome of NAFLD. Cells 2022; 11:870. [PMID: 35269495 PMCID: PMC8909044 DOI: 10.3390/cells11050870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing rapidly, and unmet treatment can result in the development of hepatitis, fibrosis, and liver failure. There are difficulties involved in diagnosing NAFLD early and for this reason there are challenges involved in its treatment. Furthermore, no drugs are currently approved to alleviate complications, a fact which highlights the need for further insight into disease mechanisms. NAFLD pathogenesis is associated with complex cellular changes, including hepatocyte steatosis, immune cell infiltration, endothelial dysfunction, hepatic stellate cell activation, and epithelial ductular reaction. Many of these cellular changes are controlled by dramatic changes in gene expression orchestrated by the cis-regulatory genome and associated transcription factors. Thus, to understand disease mechanisms, we need extensive insights into the gene regulatory mechanisms associated with tissue remodeling. Mapping cis-regulatory regions genome-wide is a step towards this objective and several current and emerging technologies allow detection of accessible chromatin and specific histone modifications in enriched cell populations of the liver, as well as in single cells. Here, we discuss recent insights into the cis-regulatory genome in NAFLD both at the organ-level and in specific cell populations of the liver. Moreover, we highlight emerging technologies that enable single-cell resolved analysis of the cis-regulatory genome of the liver.
Collapse
Affiliation(s)
| | | | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark; (T.V.D.); (N.I.T.)
| |
Collapse
|
18
|
Galal A, El-Bakly WM, El-Kilany SS, Ali AA, El-Demerdash E. Fenofibrate ameliorates olanzapine's side effects without altering its central effect: emphasis on FGF-21-adiponectin axis. Behav Pharmacol 2021; 32:615-629. [PMID: 34637209 DOI: 10.1097/fbp.0000000000000656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present work was designed to investigate whether fenofibrate could ameliorate olanzapine deleterious effect on insulin resistance via its effect on fibroblast growth factor-21 (FGF-21)-adiponectin axis without affecting olanzapine antipsychotic effect in postweaning socially isolated reared female rats. Treatment with olanzapine (6 mg/kg, intraperitoneally) or fenofibrate (100 mg/kg, orally) have been started 5 weeks after isolation, then behavioral tests, hippocampal content of neurotransmitters, and brain-derived neurotrophic factor (BDNF) were assessed. Moreover, insulin resistance, lipid profile, FGF-21, adiponectin, inflammatory, and oxidative stress markers of adipose tissue were assessed. Treatment of isolated-reared animals with olanzapine, or fenofibrate significantly ameliorated the behavioral and biochemical changes induced by postweaning social isolation. Co-treatment showed additive effects in improving hippocampal BDNF level. Besides, fenofibrate reduced the elevation in weight gain, adiposity index, insulin resistance, lipid profile, and FGF-21 level induced by olanzapine treatment. Also, fenofibrate increased adiponectin level which was reduced upon olanzapine treatment. Moreover, fenofibrate improved both adipose tissue oxidative stress and inflammatory markers elevation as a result of olanzapine treatment. Fenofibrate could ameliorate olanzapine-induced insulin resistance without affecting its central effect in isolated reared rats via its action on FGF-21-adiponectin axis.
Collapse
Affiliation(s)
- Aya Galal
- Cardiac Surgery Hospital, Ain Shams University
| | | | - Sara S El-Kilany
- Department of Anatomy, Faculty of Medicine, Ain Shams University
| | - Azza A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar university (Girls Branch)
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
19
|
Foresight regarding drug candidates acting on the succinate-GPR91 signalling pathway for non-alcoholic steatohepatitis (NASH) treatment. Biomed Pharmacother 2021; 144:112298. [PMID: 34649219 DOI: 10.1016/j.biopha.2021.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and it is a liver manifestation of metabolic syndrome, with a histological spectrum from simple steatosis to non-alcoholic steatohepatitis (NASH). NASH can evolve into progressive liver fibrosis and eventually lead to liver cirrhosis. The pathological mechanism of NASH is multifactorial, involving a series of metabolic disorders and changes that trigger low-level inflammation in the liver and other organs. In the pathogenesis of NASH, the signal transduction pathway involving succinate and the succinate receptor (G-protein-coupled receptor 91, GPR91) regulates inflammatory cell activation and liver fibrosis. This review describes the mechanism of the succinate-GPR91 signalling pathway in NASH and summarizes the drugs that act on this pathway, with the aim of providing a new approach to NASH treatment.
Collapse
|
20
|
Carvalho LCF, Dias BV, Gomes SV, Carneiro CM, Costa DC. Temporal effect of fructose supplementation at different concentrations on hepatic metabolism of Wistar rats. NUTR HOSP 2021; 38:1089-1100. [PMID: 34176275 DOI: 10.20960/nh.03691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION Introduction: in the last few years important changes have occurred in nutritional patterns. There has been an increase in the consumption of simple carbohydrates such as fructose, which has been associated with numerous metabolic disorders, including hepatic steatosis. Materials and methods: we sought to evaluate the impact of fructose consumption, as diluted in water at different concentrations, for two time periods, on the metabolic parameters of Wistar rats using ANOVA. Results: our data indicate that both time and fructose concentration promote variations in animal body mass, and in food, water, and caloric intake. The time variable influenced the modulation of biochemical parameters such as serum concentrations of glucose and total cholesterol. Both fructose concentration and time of exposure influenced the concentrations of serum triglycerides, creatinine, AST, TNF, and IL-6. When evaluating redox status and oxidative damage markers, we observed that fructose concentration and exposure time had an effect on total glutathione levels, which decreased with an increase in concentration and time. For superoxide dismutase, we evaluated the effects of time and interaction. A significant interaction was observed for TBARS. For carbonylated proteins, exposure time was a fundamental factor in generating an effect. Conclusions: we demonstrated that fructose modulates the parameters of triglycerides and total liver cholesterol, and that time influences the number of hepatocytes. Our data suggest that fructose concentration, exposure time, and an interaction between these two parameters have a significant effect on the metabolic parameters responsible for the development of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Luana Cristina Faria Carvalho
- Metabolic Biochemistry Laboratory. Department of Biological Sciences (DECBI). Instituto de Ciências Exatas e Biológicas (ICEB). Universidade Federal de Ouro Preto
| | - Bruna Vidal Dias
- Metabolic Biochemistry Laboratory. Department of Biological Sciences (DECBI). Instituto de Ciências Exatas e Biológicas (ICEB). Universidade Federal de Ouro Preto
| | - Sttefany Viana Gomes
- Metabolic Biochemistry Laboratory. Department of Biological Sciences (DECBI). Instituto de Ciências Exatas e Biológicas (ICEB). Universidade Federal de Ouro Preto
| | - Cláudia Martins Carneiro
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Instituto de Ciências Exatas e Biológicas (ICEB). Universidade Federal de Ouro Preto. Campus Universitário Morro do Cruzeiro
| | - Daniela Caldeira Costa
- Metabolic Biochemistry Laboratory. Department of Biological Sciences (DECBI). Instituto de Ciências Exatas e Biológicas (ICEB). Universidade Federal de Ouro Preto
| |
Collapse
|
21
|
Yang Z, Roth K, Agarwal M, Liu W, Petriello MC. The transcription factors CREBH, PPARa, and FOXO1 as critical hepatic mediators of diet-induced metabolic dysregulation. J Nutr Biochem 2021; 95:108633. [PMID: 33789150 PMCID: PMC8355060 DOI: 10.1016/j.jnutbio.2021.108633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/31/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
The liver is a critical mediator of lipid and/or glucose homeostasis and is a primary organ involved in dynamic changes during feeding and fasting. Additionally, hepatic-centric pathways are prone to dysregulation during pathophysiological states including metabolic syndrome (MetS) and non-alcoholic fatty liver disease. Omics platforms and GWAS have elucidated genes related to increased risk of developing MetS and related disorders, but mutations in these metabolism-related genes are rare and cannot fully explain the increasing prevalence of MetS-related pathologies worldwide. Complex interactions between diet, lifestyle, environmental factors, and genetic predisposition jointly determine inter-individual variability of disease risk. Given the complexity of these interactions, researchers have focused on master regulators of metabolic responses incorporating and mediating the impact of multiple environmental cues. Transcription factors are DNA binding, terminal executors of signaling pathways that modulate the cellular responses to complex metabolic stimuli and are related to the control of hepatic lipid and glucose homeostasis. Among numerous hepatic transcription factors involved in regulating metabolism, three emerge as key players in transducing nutrient sensing, which are dysregulated in MetS-related perturbations in both clinical and preclinical studies: cAMP Responsive Element Binding Protein 3 Like 3 (CREB3L3), Peroxisome Proliferator Activated Receptor Alpha (PPAR), and Forkhead Box O1 (FOXO1). Additionally, these three transcription factors appear to be amenable to dietary and/or nutrient-based therapies, being potential targets of nutritional therapy. In this review we aim to describe the activation, regulation, and impact of these transcription factors in the context of metabolic homeostasis. We also summarize their perspectives in MetS and nutritional therapies.
Collapse
Affiliation(s)
- Zhao Yang
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA
| | - Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
22
|
Léniz A, Martínez-Maqueda D, Fernández-Quintela A, Pérez-Jiménez J, Portillo MP. Potential Relationship between the Changes in Circulating microRNAs and the Improvement in Glycaemic Control Induced by Grape Pomace Supplementation. Foods 2021; 10:foods10092059. [PMID: 34574169 PMCID: PMC8470177 DOI: 10.3390/foods10092059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/01/2022] Open
Abstract
MicroRNAs (miRNAs) represent important tools in medicine and nutrition as new biomarkers, and can act as mediators of nutritional and pharmacological interventions. The aim of the present study was to analyse the effect of grape pomace supplementation on the expression of seven selected miRNAs and their potential relationship with the observed positive effect on glycaemic control, in order to shed light on the mechanism underlying the beneficial effect of this dietary intervention. For this purpose, plasma samples were obtained from 49 subjects with metabolic syndrome. After supplementation with grape pomace (6 weeks), these subjects were categorised as responders (n = 23) or non-responders (n = 26) according to the changes in their fasting insulin rate. MiRNA expression at baseline and at the end of the supplementation was analysed by RT-PCR, and the MiRecords Database was used to identify potential target genes for the studied miRNAs. The increase observed in miR-23a in the whole cohort was present in both subgroups of participants. The increase in miR-181a was significant among non-responders but not responders. The decrease in miR-30c and miR-222 was found in the responders, but not in the non-responders. No changes were observed in miR-10a, miR-151a, miR-181a, and miR-let-7a expressions. After analysing these results, a potential involvement of the reduced expression of miR-30c and miR-222, two microRNAs associated with insulin resistance and diabetes, in the improvement of glycaemic control produced by grape pomace administration, can be proposed. Further research is needed to confirm the involvement of glycolytic enzymes, PI3K, AMPK, and IRS-1 in the effect of grape pomace, as suggested by the changes induced in microRNAs.
Collapse
Affiliation(s)
- Asier Léniz
- Araba Integrated Health Care Organization, Basque Health Service (Osakidetza), 01006 Vitoria-Gasteiz, Spain;
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01008 Vitoria-Gasteiz, Spain
| | - Daniel Martínez-Maqueda
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain; (D.M.-M.); (J.P.-J.)
- Department of Agrifood Research, Madrid Institute for Rural, Agricultural and Food Research and Development (IMIDRA), A-2 Km. 38.2, 28805 Alcalá de Henares, Spain
| | - Alfredo Fernández-Quintela
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01008 Vitoria-Gasteiz, Spain
- Correspondence: ; Tel.: +34-945-013-066; Fax: +34-945-013-014
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain; (D.M.-M.); (J.P.-J.)
| | - María P. Portillo
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28222 Madrid, Spain
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01008 Vitoria-Gasteiz, Spain
| |
Collapse
|
23
|
Serrano A, Ribot J, Palou A, Bonet ML. Long-term programming of skeletal muscle and liver lipid and energy metabolism by resveratrol supplementation to suckling mice. J Nutr Biochem 2021; 95:108770. [PMID: 34000411 DOI: 10.1016/j.jnutbio.2021.108770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/04/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Metabolic programming by dietary chemicals consumed in early life stages is receiving increasing attention. We here studied long-term effects of mild resveratrol (RSV) supplementation during lactation on muscular and hepatic lipid metabolism in adulthood. Newborn male mice received RSV or vehicle from day 2-20 of age, were weaned onto a chow diet on day 21, and were assigned to either a high-fat diet (HFD) or a normal-fat diet on day 90 of age for 10 weeks. RSV-treated mice showed in adulthood protection against HFD-induced triacylglycerol accumulation in skeletal muscle, enhanced muscular capacities for fat oxidation and mitochondria activity, signs of enhanced sirtuin 1 and AMP-dependent protein kinase signaling in muscle, and increased fat oxidation capacities and a decreased capacity for lipogenesis in liver compared with controls. Thus, RSV supplementation in early postnatal life may help preventing later diet-related disorders linked to ectopic lipid accumulation in muscle and liver tissues.
Collapse
Affiliation(s)
- Alba Serrano
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Joan Ribot
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain.
| | - Andreu Palou
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - M Luisa Bonet
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| |
Collapse
|
24
|
Nonclassical Axis of the Renin-Angiotensin System and Neprilysin: Key Mediators That Underlie the Cardioprotective Effect of PPAR-Alpha Activation during Myocardial Ischemia in a Metabolic Syndrome Model. PPAR Res 2020; 2020:8894525. [PMID: 33354204 PMCID: PMC7737465 DOI: 10.1155/2020/8894525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
The activation of the renin-angiotensin system (RAS) participates in the development of metabolic syndrome (MetS) and in heart failure. PPAR-alpha activation by fenofibrate reverts some of the effects caused by these pathologies. Recently, nonclassical RAS components have been implicated in the pathogenesis of hypertension and myocardial dysfunction; however, their cardiac functions are still controversial. We evaluated if the nonclassical RAS signaling pathways, directed by angiotensin III and angiotensin-(1-7), are involved in the cardioprotective effect of fenofibrate during ischemia in MetS rats. Control (CT) and MetS rats were divided into the following groups: (a) sham, (b) vehicle-treated myocardial infarction (MI-V), and (c) fenofibrate-treated myocardial infarction (MI-F). Angiotensin III and angiotensin IV levels and insulin increased the aminopeptidase (IRAP) expression and decreased the angiotensin-converting enzyme 2 (ACE2) expression in the hearts from MetS rats. Ischemia activated the angiotensin-converting enzyme (ACE)/angiotensin II/angiotensin receptor 1 (AT1R) and angiotensin III/angiotensin IV/angiotensin receptor 4 (AT4R)-IRAP axes. Fenofibrate treatment prevented the damage due to ischemia in MetS rats by favoring the angiotensin-(1-7)/angiotensin receptor 2 (AT2R) axis and inhibiting the angiotensin III/angiotensin IV/AT4R-IRAP signaling pathway. Additionally, fenofibrate downregulated neprilysin expression and increased bradykinin production. These effects of PPAR-alpha activation were accompanied by a reduction in the size of the myocardial infarct and in the activity of serum creatine kinase. Thus, the regulation of the nonclassical axis of RAS forms part of a novel protective effect of fenofibrate in myocardial ischemia.
Collapse
|
25
|
Patience Ojo O, Perez-Corredor PA, Gutierrez-Vargas JA, Busayo Akinola O, Cardona-Gómez GP. Lasting metabolic effect of a high-fructose diet on global cerebral ischemia. Nutr Neurosci 2020; 25:1159-1172. [PMID: 33164710 DOI: 10.1080/1028415x.2020.1841482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Obesity is a public health problem that is associated with cerebrovascular diseases, such as ischemic stroke. The coexistence of obesity with cerebral ischemia has been suggested to be considerably detrimental to the neurological system. Objective: Hence, in this study, we evaluated the long-term effects of a 20% high fructose diet (HFD) and global cerebral ischemia on neurological, cognitive and emotional performance in three-month-old male Wistar rats. Results: Our results demonstrated that fructose intake led to increases in body weight and blood glucose, as well as reduced insulin sensitivity. The co-morbidity of fructose intake and cerebral ischemia resulted to hyperlipidemia, as well as increases in liver and adipocyte damage, which worsened neurological performance and resulted in alterations in learning and emotional skills at two weeks post-ischemia. No significant biochemical changes in autophagy and plasticity markers at the late stage of ischemia were observed. Conclusion: These results suggested that obesity causes a lasting effect on metabolic disorders that can contribute to increased neurological impairment after cerebral ischemia.
Collapse
Affiliation(s)
- Oluwatomilayo Patience Ojo
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia.,Division of Neuroendocrinology, Department of Anatomy, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Nigeria
| | - Paula Andrea Perez-Corredor
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia
| | - Johanna Andrea Gutierrez-Vargas
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia.,Grupo de Investigación en Saluddel Adulto Mayor (GISAM), Corporación Universitaria Remington, Medellín, Colombia
| | - Oluwole Busayo Akinola
- Division of Neuroendocrinology, Department of Anatomy, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Nigeria
| | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia
| |
Collapse
|
26
|
Abdelhamid YA, Elyamany MF, Al-Shorbagy MY, Badary OA. Effects of TNF-α antagonist infliximab on fructose-induced metabolic syndrome in rats. Hum Exp Toxicol 2020; 40:801-811. [PMID: 33118400 DOI: 10.1177/0960327120969960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Public health issues have been raised regarding fructose toxicity and its serious metabolic disorders. Deleterious effects of high fructose intake on insulin sensitivity, body weight, lipid homeostasis have been identified. The new millennium has witnessed the emergence of a modern epidemic, the metabolic syndrome (MS), in approximately 25% of the world's adult population. The current study aimed to investigate the effect of the TNF-α antagonist infliximab on fructose-induced MS in rats. Rats were administered fructose (10%) in drinking water for 12 weeks to induce the experimental MS model. infliximab (5 mg/kg) was injected once weekly intraperitoneally starting on the 13th week for 4 weeks. Increase in body weight, blood glucose level, serum triglycerides (TGs), adiponectin level and blood pressure were present in MS rats. They also prompted increases in serum of leptin, TNF-α, and malondialdehyde (MDA) levels. Treatment with infliximab did not affect body weight, hyperglycemia or hypertension, but decreased serum TGs and increased serum HDL-c levels. Infliximab also decreased adiponectin levels. Surprisingly, infliximab increased MDA above its value in the MS group. These results reflect the fact that infliximab affects the manifestations of MS in rats. Though infliximab reduced TGs, increased HDL-c levels, reversed adiponectin resistance occurred by fructose, the drug failed to combat MS-mediated hyperglycemia, hypertension, and elevated MDA above the insult.
Collapse
Affiliation(s)
| | - Mohammed F Elyamany
- Pharmacology & Toxicology Department, 110154Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Muhammad Y Al-Shorbagy
- Pharmacology & Toxicology Department, 110154Faculty of Pharmacy, Cairo University, Giza, Egypt.,Pharmacology & Toxicology Department, School of Pharmacy, Newgiza University, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, British University in Egypt, Cairo, Egypt
| |
Collapse
|
27
|
Pre-incubation with human umbilical cord derived mesenchymal stem cells-exosomes prevents cisplatin-induced renal tubular epithelial cell injury. Aging (Albany NY) 2020; 12:18008-18018. [PMID: 32965241 PMCID: PMC7585125 DOI: 10.18632/aging.103545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/04/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE The administration of cisplatin is limited due to its nephrotoxicity, and prevention of this nephrotoxicity of cisplatin is difficult. Mesenchymal stem cell (MSC)-derived exosomes have been implicated as a novel therapeutic approach for tissue injury. RESULTS In vitro, the NRK cells pre-incubated with HUMSC-exosomes increased the Cp-inhibited cell viability, proliferation activity, and the cell proportion in G1-phase and inhibited Cp-induced cell apoptosis. Furthermore, the expression levels of apoptotic marker proteins Bim, Bad, Bax, cleaved caspase-3, and cleaved caspase-9 induced by Cp in the NRK cells were decreased by pre-incubating with HUMSC-exosomes. CONCLUSION Our findings indicated that the exosomes from HUMSCs can effectively increase the survival rate and inhibit cell apoptosis of NRK cells. Therefore, pre-treatment of HUMSC-exosomes may be a new method to improve the therapeutic effect of cisplatin. PATIENTS AND METHODS Exosomes were isolated from human umbilical cord derived mesenchymal stem cells (HUMSCs). Co-culture of normal rat renal tubular epithelial cells (NRK) and the absorption of exogenous exosomes by NRK cells were examined in vitro. Then the NRK cells were incubated with exosomes from HUMSCs and cisplatin (Cp). Cells were harvested for MTT assay, cloning formation, flow cytometry, and Western blot.
Collapse
|
28
|
Esteves GP, Manca CS, Veida-Silva HP, Ovidio PP, Holland H, Matsuo FS, Osako MK, Jordao AA. A fish oil-rich diet leads to lower adiposity and serum triglycerides but increases liver lipid peroxidation in fructose-fed rats. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Consumption of refined carbohydrates has risen in recent years alongside chronic diseases such as type 2 diabetes mellitus, dyslipidemia, obesity, and non-alcoholic fatty liver disease (NAFLD). Fructose is a monosaccharide made widely available in industrialized products, capable of inducing excessive weight gain and liver steatosis in animal models, while omega-3 fatty acids, present in foods such as fatty fish and fish oil, have shown to inhibit genes related to lipogenesis and decrease cardiovascular risk. Therefore, our objective was to evaluate the impact of a high-fructose diet on weight gain, biochemical and oxidative stress parameters, and liver histology and investigate fish oil’s potential protective role. Thirty male Wistar rats were divided into 3 groups: regular chow diet (CT), regular chow diet plus 20% fructose in drinking water (Fr), and a diet containing 10% fish oil plus 20% fructose in drinking water (FOFr). After 12 weeks, tissues of interest were collected for biochemical and histological analyses.
Results
Although fructose consumption did not lead to increased hepatic fat, it caused a significant increase in weight gain, white adipose tissue, and serum triglycerides in the Fr group, while fish oil promoted normalized serum triglycerides and even reduced adiposity in the FOFr group. Additionally, the inclusion of fish oil in the FOFr diet led to increased liver lipid peroxidation in the form of increased hepatic MDA.
Conclusions
It is concluded that fish oil can prevent important metabolic alterations caused by fructose consumption, but its dosage must be taken into account to prevent oxidative stress and potential liver damage.
Collapse
|
29
|
Zubrzycki A, Wrońska A, Kotulak-Chrząszcz A, Wierzbicki PM, Kmieć Z. Fenofibrate impairs liver function and structure more pronounced in old than young rats. Arch Gerontol Geriatr 2020; 91:104244. [PMID: 32927318 DOI: 10.1016/j.archger.2020.104244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Since old animals are known to accumulate lipids in some organs, we compared effects of fenofibrate (FN) on systemic lipid metabolism, activity of liver marker enzymes and structure in young and old rats. MATERIAL AND METHODS Young and old rats were fed chow supplemented with 0.1 % or 0.5 % FN. After 30 days, intraperitoneal glucose tolerance test (IPGTT) was performed, and blood and liver samples were collected. RESULTS In young rats, 0.1 % FN, but not 0.5 % FN, decreased serum Chol by 74 %, and did not affect TG levels at either doses. In old rats, 0.5 % FN, but not 0.1 % FN, decreased Chol and TG level by 56 % and 49 %, respectively. In young rats, 0.1 % and 0.5 % FN increased serum activity of ALP by 227 % and 260 %, respectively, and did not affect AST and ALT activities. In old rats, only 0.5 % FN increased serum ALP activity by 150 %, respectively. In old rats, neither dose of FN affected serum AST activity, and only 0.5 % FN increased serum ALT activity by 200 %. The histological examination of liver structure revealed that both doses of FN impaired lobular architecture, expansion of bile canaliculi, and degeneration of parenchymal cells with the presence of cells containing fat droplets; administration of FN increased area occupied by collagen fibers. CONCLUSIONS Although 0.5 % FN decreased serum Chol concentration, it increased serum ALP activity and impaired liver structure in both in both age groups of rats. Thus, FN treatment should be under the control of liver function, especially in older patients.
Collapse
Affiliation(s)
- Adrian Zubrzycki
- Department of Histology, Medical University of Gdansk, Gdansk, Poland.
| | - Agata Wrońska
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
30
|
Abdelmoneim D, El-Adl M, El-Sayed G, El-Sherbini ES. Protective effect of fenofibrate against high-fat-high-fructose diet induced non-obese NAFLD in rats. Fundam Clin Pharmacol 2020; 35:379-388. [PMID: 32757283 DOI: 10.1111/fcp.12597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
The present study evaluated the protective effects of fenofibrate on liver function, oxidant-antioxidant balance, and insulin resistance (IR) in rats fed high-fat-high-fructose diet (HFFD). Twenty-four male Sprague-Dawley rats (110-130 gm) were allocated into four equal groups (n = 6). Rats in group I were fed a normal diet for 4 weeks. Rats in group II were fed a normal diet with fenofibrate at 50 mg/kg/day orally for four weeks. Rats in group III were fed a normal diet mixed with 25% palm oil and given 60% fructose solution orally for 4 weeks. Rats in group IV were fed a normal diet mixed with 25% palm oil, 60% oral fructose solution, and fenofibrate at 50 mg/kg/day orally for four weeks. After experimental induction, serum and liver tissue samples were collected to determine lipid profiles, glycemic status, antioxidant status, oxidative and stress markers, and histopathology of liver tissues. The results of the present study revealed that fenofibrate prevents the occurrence of fatty liver, enhancing glycemic status, decreasing oxidative stress, and improving antioxidant status. It can be concluded that fenofibrate has a lipotropic and antidiabetic role.
Collapse
Affiliation(s)
- Doaa Abdelmoneim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, P.O. 35516, Mansoura, Egypt
| | - Mohamed El-Adl
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, P.O. 35516, Mansoura, Egypt
| | - Gehad El-Sayed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, P.O. 35516, Mansoura, Egypt
| | - El Said El-Sherbini
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, P.O. 35516, Mansoura, Egypt
| |
Collapse
|
31
|
Ashrafizadeh M, Najafi M, Orouei S, Zabolian A, Saleki H, Azami N, Sharifi N, Hushmandi K, Zarrabi A, Ahn KS. Resveratrol Modulates Transforming Growth Factor-Beta (TGF-β) Signaling Pathway for Disease Therapy: A New Insight into Its Pharmacological Activities. Biomedicines 2020; 8:E261. [PMID: 32752069 PMCID: PMC7460084 DOI: 10.3390/biomedicines8080261] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (Res) is a well-known natural product that can exhibit important pharmacological activities such as antioxidant, anti-diabetes, anti-tumor, and anti-inflammatory. An evaluation of its therapeutic effects demonstrates that this naturally occurring bioactive compound can target different molecular pathways to exert its pharmacological actions. Transforming growth factor-beta (TGF-β) is an important molecular pathway that is capable of regulating different cellular mechanisms such as proliferation, migration, and angiogenesis. TGF-β has been reported to be involved in the development of disorders such as diabetes, cancer, inflammatory disorders, fibrosis, cardiovascular disorders, etc. In the present review, the relationship between Res and TGF-β has been investigated. It was noticed that Res can inhibit TGF-β to suppress the proliferation and migration of cancer cells. In addition, Res can improve fibrosis by reducing inflammation via promoting TGF-β down-regulation. Res has been reported to be also beneficial in the amelioration of diabetic complications via targeting the TGF-β signaling pathway. These topics are discussed in detail in this review to shed light on the protective effects of Res mediated via the modulation of TGF-β signaling.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Sima Orouei
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negin Sharifi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
32
|
Abd El-Haleim EA. Molecular Study on the Potential Protective Effects of Bee Venom against Fructose-Induced Nonalcoholic Steatohepatitis in Rats. Pharmacology 2020; 105:692-704. [PMID: 32640454 DOI: 10.1159/000508511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is a causative relation between the increased hepatic steatohepatitis prevalence and sweeteners intake, fructose in particular. Despite an increasing understanding of the mechanisms of nonalcoholic steatohepatitis (NASH) pathogenesis, there are no drugs approved for it. OBJECTIVES Evaluate the effect of bee venom (BV) treatment on the fructose-induced NASH in rats and demonstrate its possible molecular mechanisms. METHODS NASH was induced in rats by 10% fructose in drinking water for 8 weeks. BV was administered (0.1 mg/kg, i.p.) 3 times per week during the last 2 weeks of the experiment. Sera were used for the determination of lipids, cholesterol, glucose, insulin, and liver enzymes. Hepatic gene expressions of farnesoid X receptor (FXR)α and the liver X receptor (LXR) were determined. Hepatic sterol regulatory element-binding protein (SREBP)1/2, oxidative stress, and inflammation parameters were measured. Liver parts were used for histopathological examination. Small intestine was removed for the determination of tight junction proteins. RESULTS Fructose caused overt histological damage in the liver, and this was associated with parallel changes in all parameters measured. BV effectively prevented these changes, presumably through amelioration of hepatic SREBP1/2, LXR, and FXRα expression as well as intestinal tight junction proteins. CONCLUSION These findings support the therapeutic usefulness of BV, a remedy with a favorable safety profile, in the prevention of fructose-induced NASH.
Collapse
|
33
|
Eberhart T, Schönenberger MJ, Walter KM, Charles KN, Faust PL, Kovacs WJ. Peroxisome-Deficiency and HIF-2α Signaling Are Negative Regulators of Ketohexokinase Expression. Front Cell Dev Biol 2020; 8:566. [PMID: 32733884 PMCID: PMC7360681 DOI: 10.3389/fcell.2020.00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Ketohexokinase (KHK) is the first and rate-limiting enzyme of fructose metabolism. Expression of the two alternatively spliced KHK isoforms, KHK-A and KHK-C, is tissue-specific and KHK-C is predominantly expressed in liver, kidney and intestine and responsible for the fructose-catabolizing function. While KHK isoform choice has been linked to the development of disorders such as obesity, diabetes, cardiovascular disease and cancer, little is known about the regulation of total KHK expression. In the present study, we investigated how hypoxic signaling influences fructose metabolism in the liver. Hypoxia or von Hippel-Lindau (VHL) tumor suppressor loss leads to the stabilization of hypoxia-inducible factors alpha (HIF-1α and HIF-2α) and the activation of their signaling to mediate adaptive responses. By studying liver-specific Vhl, Vhl/Hif1a, and Vhl/Epas1 knockout mice, we found that KHK expression is suppressed by HIF-2α (encoded by Epas1) but not by HIF-1α signaling on mRNA and protein levels. Reduced KHK levels were accompanied by downregulation of aldolase B (ALDOB) in the livers of Vhl and Vhl/Hif1a knockout mice, further indicating inhibited fructose metabolism. HIF-1α and HIF-2α have both overlapping and distinct target genes but are differentially regulated depending on the cell type and physiologic or pathologic conditions. HIF-2α activation augments peroxisome degradation in mammalian cells by pexophagy and thereby changes lipid composition reminiscent of peroxisomal disorders. We further demonstrated that fructose metabolism is negatively regulated by peroxisome-deficiency in a Pex2 knockout Zellweger mouse model, which lacks functional peroxisomes and is characterized by widespread metabolic dysfunction. Repression of fructolytic genes in Pex2 knockout mice appeared to be independent of PPARα signaling and nutritional status. Interestingly, our results demonstrate that both HIF-2α and peroxisome-deficiency result in downregulation of Khk independent of splicing as both isoforms, Khka as well as Khkc, are significantly downregulated. Hence, our study offers new and unexpected insights into the general regulation of KHK, and therefore fructolysis. We revealed a novel regulatory function of HIF-2α, suggesting that HIF-1α and HIF-2α have tissue-specific opposing roles in the regulation of Khk expression, isoform choice and fructolysis. In addition, we discovered a previously unknown function of peroxisomes in the regulation of fructose metabolism.
Collapse
Affiliation(s)
- Tanja Eberhart
- Institute of Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| | | | | | - Khanichi N. Charles
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Phyllis L. Faust
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Werner J. Kovacs
- Institute of Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
34
|
Kang T, Sun WL, Lu XF, Wang XL, Jiang L. MiR-28-5p mediates the anti-proliferative and pro-apoptotic effects of curcumin on human diffuse large B-cell lymphoma cells. J Int Med Res 2020; 48:300060520943792. [PMID: 32721183 PMCID: PMC7388109 DOI: 10.1177/0300060520943792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate the anti-proliferative and pro-apoptotic effects of curcumin on diffuse large B-cell lymphoma (DLBCL) cells and explore the mechanism. METHODS OCI-LY7 cells were treated with curcumin (2.5, 5, 10, 20, and 40 μM) for 24, 48, or 72 hours. Cell viability and apoptosis were determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyl tetrazolium bromide assay and TdT-mediated dUTP nick-end labeling staining, respectively. MiR-28-5p expression was detected via qRT-PCR. The binding site of miR-28-5p was predicted using online databases and verified using the dual-luciferase reporter assay. MiR-28-5p overexpression and inhibition were achieved via transfection with an miR-28-5p mimic and inhibitor, respectively. RESULTS Curcumin decreased the viability of OCI-LY7 cells in a concentration- and time-dependent manner, and these effects were attenuated by miR-28-5p inhibition. MiR-28-5p expression was upregulated by curcumin. Curcumin increased the numbers of apoptotic cells and upregulated cleaved caspase-3 expression, and these effects were attenuated by miR-28-5p inhibition. The dual-luciferase reporter assay confirmed that miR-28-5p directly targets the 3'-untranslated region of BECN1. Curcumin downregulated BECN1 and microtubule-associated protein 1 light chain 3 beta-II/I expression and upregulated p62 expression. CONCLUSIONS Our results described the curcumin exerted anti-proliferative and pro-apoptotic effects on OCI-LY7 cells through a mechanism potentially involving miR-28-5p.
Collapse
Affiliation(s)
- Tian Kang
- Department of Pediatrics, People’s Hospital of Shijiazhuang
City, Shijiazhuang, China
| | - Wei-Li Sun
- Department of Rehabilitation, The Second Hospital of Hebei
Medical University, Shijiazhuang, China
| | - Xiao-Fei Lu
- Department of Pediatrics, The Fourth Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Xin-Liang Wang
- Department of Pediatrics, The Second Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Lian Jiang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical
University, Shijiazhuang, China
| |
Collapse
|
35
|
Ibrahim KG, Chivandi E, Nkomozepi P, Matumba MG, Mukwevho E, Erlwanger KH. The long-term protective effects of neonatal administration of curcumin against nonalcoholic steatohepatitis in high-fructose-fed adolescent rats. Physiol Rep 2020; 7:e14032. [PMID: 30912307 PMCID: PMC6692695 DOI: 10.14814/phy2.14032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
There is an increased prevalence of nonalcoholic steatohepatitis (NASH) in adolescents. The suckling period is developmentally plastic, affecting later health outcomes. We investigated whether neonatal administration of curcumin would provide protection against the development of NASH later in adolescence in rats fed a high-fructose diet. From postnatal day (PN) 6 to PN 21, the pups (N = 128) were allocated to four groups and orally gavaged daily with either 0.5% dimethyl sulfoxide solution (vehicle control), curcumin (500 mg·kg-1 ), fructose (20%, w/v) or curcumin and fructose combined. All the pups were weaned and half the rats in each group had tap water, whereas the other received fructose (20%) as their drinking fluid ad libitum for 6 weeks. The rats' liver NASH scores, lipid content, and RNA gene expression ratios of AMPKα and TNFα were determined. Hepatic lipid content was similar across the treatment groups in the males (P > 0.05, ANOVA). In the females, the hepatic lipid content in the treatment groups ranged from 2.7 to 4.3%. The livers of male and female rats that had fructose either as neonates and/or postweaning had significantly marked inflammation (P = 0.0112, Kruskal-Wallis) and fibrosis (P < 0.0001, ANOVA) which were attenuated by curcumin. The hepatic gene expression ratios for AMPKα in both sexes were significantly downregulated (P < 0.0001, ANOVA), whereas the expression ratios of TNFα were significantly upregulated (P < 0.0001) in rats fed a high-fructose diet pre and/or postweaning compared to the other groups. Neonatal curcumin administration is a potential natural pharmacological candidate for the prevention of NASH.
Collapse
Affiliation(s)
- Kasimu G Ibrahim
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Mashudu G Matumba
- Department of Biochemistry, Faculty of Natural Sciences & Agriculture, North-West University, Mmabatho, Mafikeng, South Africa
| | - Emmanuel Mukwevho
- Department of Biochemistry, Faculty of Natural Sciences & Agriculture, North-West University, Mmabatho, Mafikeng, South Africa
| | - Kennedy H Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
36
|
Yang Y, Zhao Y, Li W, Wu Y, Wang X, Wang Y, Liu T, Ye T, Xie Y, Cheng Z, He J, Bai P, Zhang Y, Ouyang L. Emerging targets and potential therapeutic agents in non-alcoholic fatty liver disease treatment. Eur J Med Chem 2020; 197:112311. [PMID: 32339855 DOI: 10.1016/j.ejmech.2020.112311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is the most common chronic liver disease in the world, which is characterized by liver fat accumulation unrelated to excessive drinking. Indeed, it attracts growing attention and becomes a global health problem. Due to the complexity of the NAFLD pathogenic mechanism, no related drugs were approved by Food and Drug Administration (FDA) till now. However, it is encouraging that a series of candidate drugs have entered the clinical trial stage with expectation to treat NAFLD. In this review, we summarized the main pathways and pathogenic mechanisms of NAFLD, as well as introduced the main potential therapeutic targets and the corresponding compounds involved in metabolism, inflammation and fibrosis. Furthermore, we also discuss the progress of these compounds, such as drug design and optimization, the choice of pharmacological properties and druglikeness, and the analysis of structure-activity relationship. This review offers a medium on future drug design and development, to be beneficial to relevant studies.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yu Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenzhen Li
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuyao Wu
- West China School of Public Health/No.4 West China Teaching Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yijie Wang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Tingmei Liu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun He
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| |
Collapse
|
37
|
Pemafibrate, a selective PPARα modulator, and fenofibrate suppress microglial activation through distinct PPARα and SIRT1-dependent pathways. Biochem Biophys Res Commun 2020; 524:385-391. [DOI: 10.1016/j.bbrc.2020.01.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
|
38
|
Milton-Laskibar I, Aguirre L, Gómez-Zorita S, Rolo AP, Portillo MP. The influence of dietary conditions in the effects of resveratrol on hepatic steatosis. Food Funct 2020; 11:9432-9444. [DOI: 10.1039/d0fo01943g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the major cause for the development of chronic liver alterations.
Collapse
Affiliation(s)
- I. Milton-Laskibar
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| | - L. Aguirre
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| | - S. Gómez-Zorita
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| | - A. P. Rolo
- Department of Life Sciences
- Faculty of Sciences and Technology
- University of Coimbra
- Coimbra
- Portugal
| | - M. P. Portillo
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| |
Collapse
|
39
|
Radwan RR, Hasan HF. Pioglitazone ameliorates hepatic damage in irradiated rats via regulating anti-inflammatory and antifibrogenic signalling pathways. Free Radic Res 2019; 53:748-757. [PMID: 31146611 DOI: 10.1080/10715762.2019.1624742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatic irradiation during radiotherapy is associated with liver damage. The current study was designed to investigate the possible modulatory effects of pioglitazone against γ irradiation-induced hepatic damage in rats. Animals were exposed to a single dose of 6 Gy and received pioglitazone (10 mg/kg/day) orally for 4 weeks starting on the same day of irradiation. Results showed that irradiation increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as serum triglyceride (TG) and total cholesterol (TC) levels. Furthermore, it elevated inflammatory mediators; tumour necrosis factor alpha (TNF-α), interleukin-6 (IL-6); nuclear factor kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) in hepatic tissues. Moreover, it increased levels of serum fibrotic markers; hyaluronic acid (HA), laminin (LN), and type III procollagen (PCIII). Additionally, hepatic fibrotic markers; transforming growth factor-β1 (TGF-β1) and hydroxyproline (HP) levels were elevated. Histological analysis of H&E and MT staining of liver sections exhibited cellular infiltration and fibrous deposition in irradiated rats. It was observed that pioglitazone modulated the described deviations. In conclusion, pioglitazone could serve as a promising therapeutic tool for attenuating radiation-induced liver injury in patients with radiotherapy which might be attributed to its anti-inflammatory and antifibrotic activities.
Collapse
Affiliation(s)
- Rasha R Radwan
- a Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Nasr City , Egypt
| | - Hesham F Hasan
- b Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
40
|
Telmisartan and/or chlorogenic acid attenuates fructose-induced non-alcoholic fatty liver disease in rats: Implications of cross-talk between angiotensin, the sphingosine kinase/sphingoine-1-phosphate pathway, and TLR4 receptors. Biochem Pharmacol 2019; 164:252-262. [PMID: 31004566 DOI: 10.1016/j.bcp.2019.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
Abstract
Renin-angiotensin-aldosterone system (RAS) has been implicated in non-alcoholic fatty liver disease (NAFLD); the most common cause of chronic liver diseases. There is accumulating evidence that altered TLR4 and Sphingosine kinase 1(SphK1)/sphingosine1phosphate (S1P) signaling pathways are key players in the pathogenesis of NAFLD. Cross talk of the sphingosine signaling pathway, toll-4 (TLR4) receptors, and angiotensin II was reported in various tissues. Therefore, the aim of this study was to define the contribution of these two pathways to the hepatoprotective effects of telmisartan and/or chlorogenic acid (CGA) in NAFLD. CGA is a strong antioxidant that was previously reported to inhibit angiotensin converting enzyme. Male Wistar rats were treated with either high-fructose, with or without telmisartan, CGA, telmisartan + CGA for 8 weeks. Untreated NAFL rats showed characteristics of NAFLD, as evidenced by significant increase in the body weight, insulin resistance, and serum hepatotoxicity markers (Alanine and Aspartate transaminases) and lipids as compared to the negative control group, in addition to characteristic histopathological alterations. Treatment with either telmisartan and/or CGA improved aforementioned parameters, in addition to upregulation of antioxidant enzymes (Superoxide dismutase and Glutathione peroxidase). Effect of inhibiting RAS on both sphingosine pathway and TLR4 was evident by the suppressing effect of telmisartan and/or CGA on high fructose-induced upregulation of hepatic SPK1 and S1P, in addition to concomitant up-regulation of Sphingosine-1-Phosphate receptor (S1PR)3 protein level and increased expression of S1PR1 and TLR4. As TLR4 and SPK/S1P signaling pathways play important roles in the progression of liver inflammation, the effect on sphingosine pathway and TLR4 was associated with decreased concentrations of inflammatory markers, enzyme kB kinase (IKK), nuclear factor-kB and tumor necrosis factor-α as compared to untreated NAFL group. In conclusion, the present data strongly suggests the cross-talk between angiotensin, the Sphingosine SPK/S1P Axis and TLR4 Receptors, and their role in the pathogenesis of fructose-induced NAFLD, and the protection afforded by drugs inhibiting RAS.
Collapse
|
41
|
Miranda CA, Schönholzer TE, Klöppel E, Sinzato YK, Volpato GT, Damasceno DC, Campos KE. Repercussions of low fructose-drinking water in male rats. AN ACAD BRAS CIENC 2019; 91:e20170705. [PMID: 30785495 DOI: 10.1590/0001-3765201920170705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Fructose consumption has increased worldwide, and it has been associated with the development of metabolic diseases such as insulin resistance (IR) and steatosis. The aim was to evaluate if lower fructose concentrations may cause pancreatic structural abnormalities, leading to a glucose intolerance without steatosis in male rats. Young male rats orally received 7% fructose solution for 12 weeks. Body weight, food, water, and energy intake were measured. An oral glucose tolerance test (OGTT) was performed. After final experimental period, all rats were anaesthetized and killed. Blood samples were collected for biochemical analyses and organs (liver and pancreas) were processed for morphological analyses. Fructose consumption was not associated with lipid accumulation in liver. However, fructose administration was associated with an increased area under curve from OGTT and an increased percentage of insulin-positive cells, high beta cell mass and reduced pancreatic islet area. Fructose supplementation (7%) did not cause steatosis, but it led to abnormal morphology and function of pancreatic islet cells, contributing for glucose intolerance development. Our findings demonstrate that even low fructose concentrations may cause deleterious effects in animals.
Collapse
Affiliation(s)
- Carolina A Miranda
- Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso/UFMT, Avenida Valdon Varjão, 6390, 78600-000 Barra do Garças, MT, Brazil
| | - Tatiele E Schönholzer
- Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso/UFMT, Avenida Valdon Varjão, 6390, 78600-000 Barra do Garças, MT, Brazil
| | - Eduardo Klöppel
- Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso/UFMT, Avenida Valdon Varjão, 6390, 78600-000 Barra do Garças, MT, Brazil
| | - Yuri K Sinzato
- Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Junior, s/n, 18618-970 Botucatu, SP, Brazil
| | - Gustavo T Volpato
- Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso/UFMT, Avenida Valdon Varjão, 6390, 78600-000 Barra do Garças, MT, Brazil.,Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Junior, s/n, 18618-970 Botucatu, SP, Brazil
| | - Débora C Damasceno
- Laboratório de Pesquisa Experimental de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista/UNESP, Distrito de Rubião Junior, s/n, 18618-970 Botucatu, SP, Brazil
| | - Kleber E Campos
- Laboratório de Fisiologia de Sistemas e Toxicologia Reprodutiva, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso/UFMT, Avenida Valdon Varjão, 6390, 78600-000 Barra do Garças, MT, Brazil
| |
Collapse
|
42
|
Paeoniflorin Ameliorates Fructose-Induced Insulin Resistance and Hepatic Steatosis by Activating LKB1/AMPK and AKT Pathways. Nutrients 2018; 10:nu10081024. [PMID: 30081580 PMCID: PMC6116094 DOI: 10.3390/nu10081024] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to evaluate the effects of paeoniflorin on insulin resistance and hepatic steatosis induced by fructose. Male Sprague-Dawley rats were fed 20% fructose drink for eight weeks. The insulin sensitivity, serum lipid profiles, and hepatic lipids contents were measured. The results showed that paeoniflorin significantly decreased serum insulin and glucagon levels, improved insulin sensitivity and serum lipids profiles, and alleviated hepatic steatosis in fructose-fed rats. Moreover, paeoniflorin enhanced the phosphorylation level of AMP-activated protein kinase (AMPK) and protein kinase B (PKB/AKT) and inhibited the phosphorylation of acetyl coenzyme A carboxylase (ACC)1 in liver. Paeoniflorin also increased the hepatic carnitine palmitoyltransferase (CPT)-1 mRNA and protein expression and decreased the mRNA expression of sterol regulatory element-binding protein (SREBP)1c, stearyl coenzyme A decarboxylase (SCD)-1 and fatty acid synthetase (FAS). Furthermore, we found that paeoniflorin significantly increased the heptatic protein expression of tumor suppressor serine/threonine kinase (LKB)1 but not Ca2+/CaM-dependent protein kinase kinase (CaMKK)β. These results suggest that the protective effects of paeoniflorin might be involved in the activation of LKB1/AMPK and insulin signaling, which resulted in the inhibition of lipogenesis, as well as the activation of β-oxidation and glycogenesis, thus ameliorated the insulin resistance and hepatic steatosis. The present study may provide evidence for the beneficial effects of paeoniflorin in the treatment of insulin resistance and non-alcoholic fatty liver.
Collapse
|
43
|
Silva AKS, Peixoto CA. Role of peroxisome proliferator-activated receptors in non-alcoholic fatty liver disease inflammation. Cell Mol Life Sci 2018; 75:2951-2961. [PMID: 29789866 PMCID: PMC11105365 DOI: 10.1007/s00018-018-2838-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
Abstract
Overweight and obesity have been identified as the most important risk factors for many diseases, including cardiovascular disease, type 2 diabetes and lipid disorders, such as non-alcoholic fatty liver disease (NAFLD). The metabolic changes associated with obesity are grouped to define metabolic syndrome, which is one of the main causes of morbidity and mortality in industrialized countries. NAFLD is considered to be the hepatic manifestation of metabolic syndrome and is one of the most prevalent liver diseases worldwide. Inflammation plays an important role in the development of numerous liver diseases, contributing to the progression to more severe stages, such as non-alcoholic steatohepatitis and hepatocellular carcinoma. Peroxisome proliferator-activated receptors (PPARs) are binder-activated nuclear receptors that are involved in the transcriptional regulation of lipid metabolism, energy balance, inflammation and atherosclerosis. Three isotypes are known: PPAR-α, PPARδ/β and PPAR-γ. These isotypes play different roles in diverse tissues and cells, including the inflammatory process. In this review, we discuss current knowledge on the role PPARs in the hepatic inflammatory process involved in NAFLD as well as new pharmacological strategies that target PPARs.
Collapse
Affiliation(s)
- Amanda Karolina Soares Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
- Biological Sciences of the Federal University of Pernambuco, Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Avenida Professor Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.
- Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
Perakakis N, Ghaly W, Peradze N, Boutari C, Batirel S, Douglas VP, Mantzoros CS. Research advances in metabolism 2017. Metabolism 2018; 83:280-289. [PMID: 29378200 DOI: 10.1016/j.metabol.2018.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wael Ghaly
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Physiology, Fayoum University, Fayoum, Egypt
| | - Natia Peradze
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chrysoula Boutari
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Saime Batirel
- Department of Medical Biochemistry, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey; Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Vivian Paraskevi Douglas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
45
|
Alshammari GM, Balakrishnan A, Chinnasamy T. Butein protects the nonalcoholic fatty liver through mitochondrial reactive oxygen species attenuation in rats. Biofactors 2018; 44:289-298. [PMID: 29672963 DOI: 10.1002/biof.1428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022]
Abstract
One of the worldwide metabolic health dilemma is nonalcoholic fatty liver diseases (NAFLD). Researchers are searching effective drug to manage NAFLD patients. One of the best way to manage the metabolic imperfection is through natural principal isolated from different sources. Butein, a natural compound known to have numerous pharmacological application. In the current study we assessed the therapeutic effect of butein administration on liver function tests, oxidative stress, antioxidants, lipid abnormalities, serum inflammatory cytokines, and mitochondrial reactive oxygen species levels, in rats with methionine-choline deficient (MCD) diet induced NAFLD. Male Wistar rats were treated with MCD diet with/without butein (200 mg/kg body wt. orally) for 6 weeks. The protective effect of butein, were evident from decreased transaminase activities, restoration of albumin, globulin, albumin/globulin ratio, and oxidants in serum (P < 0.01), further it improved liver antioxidant status (P < 0.01). Butein significantly lowered lipid profile parameters (P < 0.01), suppressed inflammatory cytokines (P < 0.01), and improved liver histology. Further to understand the possible mechanism behind the hepatoprotective and lipid lowering effect of butein, the activities of heme oxygenase (HO1), myeloperoxidase (MPO), and mitochondrial reactive oxygen species (ROS) were measured. We found that butein supplementation significantly decreased the activity of HO1 (P < 0.001), and increased the activity of MPO (P < 0.001). Furthermore butein attenuated mitochondrial ROS produced in NAFLD condition. Present study shows that butein supplementation restore liver function by altering liver oxidative stress, inflammatory markers, vital defensive enzyme activities, and mitochondrial ROS. In summary, butein has remarkable potential to develop effective hepato-protective drug. © 2018 BioFactors, 44(3):289-298, 2018.
Collapse
Affiliation(s)
- Ghedeir M Alshammari
- Adipocytes and Metabolic Disorders Lab, Food Science and Nutrition Department, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aristatile Balakrishnan
- Adipocytes and Metabolic Disorders Lab, Food Science and Nutrition Department, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Thirunavukkarasu Chinnasamy
- Adipocytes and Metabolic Disorders Lab, Food Science and Nutrition Department, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
46
|
Milton-Laskibar I, Aguirre L, Etxeberria U, Milagro FI, Martínez JA, Portillo MP. Involvement of autophagy in the beneficial effects of resveratrol in hepatic steatosis treatment. A comparison with energy restriction. Food Funct 2018; 9:4207-4215. [DOI: 10.1039/c8fo00930a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Involvement of autophagy in the liver delipidating effects of resveratrol and energy restriction.
Collapse
Affiliation(s)
- I. Milton-Laskibar
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute
- Vitoria
- Spain
| | - L. Aguirre
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute
- Vitoria
- Spain
| | - U. Etxeberria
- Department of Nutrition
- Food Sciences and Physiology
- Centre for Nutrition Research
- University of Navarra
- Pamplona
| | - F. I. Milagro
- Department of Nutrition
- Food Sciences and Physiology
- Centre for Nutrition Research
- University of Navarra
- Pamplona
| | - J. A. Martínez
- Department of Nutrition
- Food Sciences and Physiology
- Centre for Nutrition Research
- University of Navarra
- Pamplona
| | - María P. Portillo
- Nutrition and Obesity Group
- Department of Nutrition and Food Science
- University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute
- Vitoria
- Spain
| |
Collapse
|
47
|
Gellrich L, Merk D. Therapeutic Potential of Peroxisome Proliferator-Activated Receptor Modulation in Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
48
|
Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats. PLoS One 2017; 12:e0183541. [PMID: 28817690 PMCID: PMC5560739 DOI: 10.1371/journal.pone.0183541] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/07/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Studies have demonstrated that resveratrol (a natural polyphenol) and caloric restriction activate Sirtuin-1 (SIRT1) and induce autophagy. Furthermore, autophagy is induced by the SIRT1-FoxO signaling pathway and was recently shown to be a critical protective mechanism against non-alcoholic fatty liver disease (NAFLD) development. We aimed to compare the effects of resveratrol and caloric restriction on hepatic lipid metabolism and elucidate the mechanism by which resveratrol supplementation and caloric restriction alleviate hepatosteatosis by examining the molecular interplay between SIRT1 and autophagy. METHODS AND RESULTS Eight-week-old male Wistar rats (40) were divided into four groups: the STD group, which was fed a standard chow diet; the HFD group, which was fed a high-fat diet; HFD-RES group, which was fed a high-fat diet plus resveratrol (200 mg/kg.bw); and the HFD-CR group, which was fed a high-fat diet in portions containing 70% of the mean intake of the HFD group rats. The groups were maintained for 18 weeks. Metabolic parameters, Oil Red O and hematoxylin-eosin staining of the liver, and the mRNA and protein expression of SIRT1, autophagy markers and endoplasmic reticulum(ER) stress-associated genes in the liver were assessed after the 18-week treatment. We found that resveratrol (200 mg/kg bw) and caloric restriction (30%) partially prevented hepatic steatosis and hepatocyte ballooning, increased the expression of SIRT1 and autophagy markers while decreasing ER stress markers in the liver and alleviated lipid metabolism disorder. Moreover, caloric restriction provided superior protection against HFD-induced hepatic fatty accumulation compared with resveratrol and the effects were associated with decreased total energy intake and body weight. CONCLUSION We conclude that the SIRT1-autophagy pathway and decreased ER stress are universally required for the protective effects of moderate caloric restriction (30%) and resveratrol (a pharmacological SIRT1 activator) supplementation against HFD-induced hepatic steatosis.
Collapse
|
49
|
Ma Z, Zhang Y, Li Q, Xu M, Bai J, Wu S. Resveratrol improves alcoholic fatty liver disease by downregulating HIF-1α expression and mitochondrial ROS production. PLoS One 2017; 12:e0183426. [PMID: 28817659 PMCID: PMC5560649 DOI: 10.1371/journal.pone.0183426] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/03/2017] [Indexed: 01/14/2023] Open
Abstract
Oxidative stress has been demonstrated to be involved in the etiology of alcoholic fatty liver disease (AFLD). Previous studies had demonstrated that resveratrol (RES) could reduce oxidative stress by different mechanisms. However, the effect of RES on alcohol-induced fatty liver remains unclear. In the present study, a total of 48 male SD rats were divided into three groups: Control, AFLD, and RES groups. Rats were administered with either nothing or 65% vol/vol alcohol (5 ml/kg/day in the first three days, and then 10 ml/kg/day in the following days) with or without RES supplementation (250 mg/kg/day) for 4 weeks. Blood and liver tissue samples were collected and subjected to biochemical assays, histological examination, Western blot, and mitochondrial radical oxygen species (ROS) assays. In RES group, significant decreases in serum ALT and AST concentrations, fat deposition, triglyceride (TG) content, HIF-1α protein expression as well as mitochondrial ROS production in liver were observed when compared with AFLD group (all p <0.05). These results indicated that RES could alleviate the liver injury induced by alcohol and prevent the progression of AFLD. Down regulation of HIF-1α protein expression and mitochondrial ROS production in liver might be, at least part of, the underlying mechanisms.
Collapse
Affiliation(s)
- Zhenhua Ma
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Yangmin Zhang
- Department of Blood Transfusion, Xi’an Central Hospital, Xi'an, Shaanxi, P.R. China
| | - Qingchun Li
- The Third Hepatic Disease Ward, The Affiliated Xi'an Eighth Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Meng Xu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Jigang Bai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Shengli Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
- * E-mail:
| |
Collapse
|
50
|
Weiskirchen S, Weiskirchen R. Resveratrol: Is It Really Good for Liver Health? HEPATITIS MONTHLY 2017; 17. [DOI: 10.5812/hepatmon.12074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|