1
|
Park JJ, Lee OH, Park JE, Cho J. Comparison of Cryopreservation Media for Mesenchymal Stem Cell Spheroids. Biopreserv Biobank 2024; 22:486-496. [PMID: 38011543 DOI: 10.1089/bio.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Multipotent mesenchymal stromal/stem cell (MSC) spheroids generated in three-dimensional culture are of considerable interest as a novel therapeutic tool for regenerative medicine. However, the lack of reliable methods for storing MSC spheroids represents a significant roadblock to their successful use in the clinic. An ideal storage medium for MSC spheroids should function as both a vehicle for delivery and a cryoprotectant during storage of spheroids for use at a later time. In this study, we compared the outcomes after subjecting MSC spheroids to a freeze/thaw cycle in three Good Manufacturing Practices-grade cryopreservation media, CryoStor10 (CS10), Stem-Cellbanker (SCB), and Recovery Cell Culture Freezing Media (RFM) or conventional freezing medium (CM) (CM, Dulbecco's modified Eagle's medium containing 20% fetal bovine serum and 10% dimethyl sulfoxide) as a control for 2 months. The endpoints tested were viability, morphology, and expression of stem cell markers and other relevant genes. The results of LIVE/DEAD™ assays and annexin V/propidium iodide staining suggested that viability was relatively higher after one freeze/thaw cycle in CS10 or SCB than after freeze/thaw in CM or RFM. Furthermore, the relative "stemness" and expression of MSC markers were similar with or without freeze/thaw in CS10. Scanning electron microscopy also indicated that the surface morphology of MSC spheroids was well preserved after cryopreservation in CS10. Thus, even though it was tested for a short-term period, we suggest that CS10, which has been approved for clinical use by the U.S. Food and Drug Association, is a promising cryopreservation medium that would facilitate the development of MSC spheroids for future clinical use.
Collapse
Affiliation(s)
- Jin Ju Park
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ok-Hee Lee
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jie-Eun Park
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Cabral JV, Smorodinová N, Voukali E, Balogh L, Kučera T, Kolín V, Studený P, Vacík T, Jirsová K. Effect of Cryoprotectants on Long-Term Storage of Oral Mucosal Epithelial Cells: Implications for Stem Cell Preservation and Proliferation Status. Folia Biol (Praha) 2024; 70:209-218. [PMID: 39692575 DOI: 10.14712/fb2024070040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In this study, we tested a method for long-term storage of oral mucosal epithelial cells (OMECs) so that the cells could be expanded in vitro after cryopreservation and used for the treatment of bilateral limbal stem cell deficiency. The ability of suspended primary OMECs to proliferate in vitro after cryopreservation was compared to that of OMEC cultures that had undergone the same process. Both were preserved in standard complex medium (COM) with or without cryoprotective agents (CPAs) (gly-cerol at 5 % or 10 % or dimethyl sulphoxide at 10 %). We found that after cryopreservation, primary OMECs could form a confluent cell sheet only in a few samples after 22 ± 2.9 (mean ± SD) days of cultivation with 72.4 % ± 12.9 % overall viability. Instead, all ex vivo OMEC cultures could re-expand after cryopreservation with a comparable viability of 78.6 ± 13.8 %, like primary OMECs, but with significantly faster growth rate (adj. P < 001), forming a confluent cell sheet at 13.7 ± 3.9 days. Gene expression analyses of the ex vivo expansion of OMEC cultures showed that the stemness, proliferation and differentiation-related gene expression was similar before and after cryopreservation, except for KRT13 expres-sion, which significantly decreased after the second passage (adj. P < 0.05). The addition of CPAs had no effect on these outcomes. In conclusion, the optimal strategy for OMEC preservation is to freeze the cells that have been previously cultured, in order to maintain cell viability and the capacity to create a sizable graft even without CPAs.
Collapse
Affiliation(s)
- Joao Victor Cabral
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Natálie Smorodinová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eleni Voukali
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lukáš Balogh
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vojtěch Kolín
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Pavel Studený
- Department of Ophthalmology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kateřina Jirsová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
3
|
ten Dam MJ, Frederix GW, ten Ham RM, van der Laan LJ, Schneeberger K. Toward Transplantation of Liver Organoids: From Biology and Ethics to Cost-effective Therapy. Transplantation 2023; 107:1706-1717. [PMID: 36757819 PMCID: PMC10358442 DOI: 10.1097/tp.0000000000004520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 02/10/2023]
Abstract
Liver disease is a common cause of morbidity and mortality, and many patients would benefit from liver transplantation. However, because of a shortage of suitable donor livers, even of those patients who are placed on the donor liver waiting list, many do not survive the waiting time for transplantation. Therefore, alternative treatments for end-stage liver disease need to be explored. Recent advances in organoid technology might serve as a solution to overcome the donor liver shortage in the future. In this overview, we highlight the potential of organoid technology for cell therapy and tissue engineering approaches. Both organoid-based approaches could be used as treatment for end-stage liver disease patients. Additionally, organoid-based cell therapy can also be used to repair liver grafts ex vivo to increase the supply of transplantable liver tissue. The potential of both approaches to become clinically available is carefully assessed, including their clinical, ethical, and economic implications. We provide insight into what aspects should be considered further to allow alternatives to donor liver transplantation to be successfully clinically implemented.
Collapse
Affiliation(s)
- Marjolein J.M. ten Dam
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Geert W.J. Frederix
- Department of Public Health, Healthcare Innovation and Evaluation and Medical Humanities, Julius Center, Utrecht University, Utrecht, The Netherlands
| | - Renske M.T. ten Ham
- Department of Public Health, Healthcare Innovation and Evaluation and Medical Humanities, Julius Center, Utrecht University, Utrecht, The Netherlands
| | - Luc J.W. van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Kerstin Schneeberger
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Bluhme E, Henckel E, Jorns C. Potential of neonatal organ donation and outcome after transplantation. Pediatr Transplant 2023; 27:e14486. [PMID: 36792069 DOI: 10.1111/petr.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 02/17/2023]
Abstract
Organ transplantation is limited by access to suitable organs. Infant recipient waitlist mortality is increased due to the scarcity of size-matched organs. Neonatal organ donors have been proposed as an underutilized source of donor organs. However, the literature on the actual prevalence and outcome of neonatal organ donation and transplantation is fragmented and not well analyzed. This literature review aims to summarize the available literature on the potential of neonatal organ donation and to analyze published cases of neonatal organ transplantation. A systematic search of the Medline and Cochrane databases yielded 2964 articles, which were screened for eligibility. In total, 86 articles were considered eligible, of which 34 were included in the literature review: 8 articles describing the potential of neonatal organ donation programs, and 26 articles describing clinical transplantation. Current evidence suggests there is a large pool of potential neonatal organ donors. In contrast, the literature on neonatal organ donor utilization is sparse. However, case series of successful kidney, heart, liver, hepatocyte, and multivisceral transplantation using organs from neonatal donors are summarized. Although good posttransplant organ function was achieved, the use of neonatal organs is associated with increased risk of thrombosis in both kidney and liver transplantation. Neonatal organ donation is a promising alternative for expanding the current donor pool. Experience is limited, but reported patient and graft survival are acceptable and more research on the subject is warranted.
Collapse
Affiliation(s)
- Emil Bluhme
- Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden.,Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Henckel
- Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden.,Department of Neonatology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden.,Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Croce S, Cobianchi L, Zoro T, Dal Mas F, Icaro Cornaglia A, Lenta E, Acquafredda G, De Silvestri A, Avanzini MA, Visai L, Brambilla S, Bruni G, Gravina GD, Pietrabissa A, Ansaloni L, Peloso A. Mesenchymal Stromal Cell on Liver Decellularised Extracellular Matrix for Tissue Engineering. Biomedicines 2022; 10:biomedicines10112817. [PMID: 36359336 PMCID: PMC9687774 DOI: 10.3390/biomedicines10112817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Background: In end-stage chronic liver disease, transplantation represents the only curative option. However, the shortage of donors results in the death of many patients. To overcome this gap, it is mandatory to develop new therapeutic options. In the present study, we decellularised pig livers and reseeded them with allogeneic porcine mesenchymal stromal cells (pMSCs) to understand whether extracellular matrix (ECM) can influence and/or promote differentiation into hepatocyte-like cells (HLCs). Methods: After decellularisation with SDS, the integrity of ECM-scaffolds was examined by histological staining, immunofluorescence and scanning electron microscope. DNA quantification was used to assess decellularisation. pMSCs were plated on scaffolds by static seeding and maintained in in vitro culture for 21 days. At 3, 7, 14 and 21 days, seeded ECM scaffolds were evaluated for cellular adhesion and growth. Moreover, the expression of specific hepatic genes was performed by RT-PCR. Results: The applied decellularisation/recellularisation protocol was effective. The number of seeded pMSCs increased over the culture time points. Gene expression analysis of seeded pMSCs displayed a weak induction due to ECM towards HLCs. Conclusions: These results suggest that ECM may address pMSCs to differentiate in hepatocyte-like cells. However, only contact with liver-ECM is not enough to induce complete differentiation.
Collapse
Affiliation(s)
- Stefania Croce
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lorenzo Cobianchi
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Tamara Zoro
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesca Dal Mas
- Department of Management, Ca’ Foscari University of Venice, 30100 Venice, Italy
| | - Antonia Icaro Cornaglia
- Histology & Embryology Unit, Department of Public Health, Experimental Medicine & Forensic, University of Pavia, 27100 Pavia, Italy
| | - Elisa Lenta
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gloria Acquafredda
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Annalisa De Silvestri
- Biometry & Clinical Epidemiology, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Correspondence: (M.A.A.); (A.P.)
| | - Livia Visai
- Center for Health Technologies (CHT), Department of Molecular Medicine, INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy
| | - Szandra Brambilla
- Center for Health Technologies (CHT), Department of Molecular Medicine, INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Giovanna Bruni
- CSGI Department of Physical Chemistry M Rolla, 27100 Pavia, Italy
| | - Giulia Di Gravina
- Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy
| | - Andrea Pietrabissa
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Luca Ansaloni
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Andrea Peloso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Divisions of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Correspondence: (M.A.A.); (A.P.)
| |
Collapse
|
6
|
Cotransplantation With Adipose Tissue-derived Stem Cells Improves Engraftment of Transplanted Hepatocytes. Transplantation 2022; 106:1963-1973. [PMID: 35404871 PMCID: PMC9521584 DOI: 10.1097/tp.0000000000004130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocyte transplantation is expected to be an alternative therapy to liver transplantation; however, poor engraftment is a severe obstacle to be overcome. The adipose tissue-derived stem cells (ADSCs) are known to improve engraftment of transplanted pancreatic islets, which have many similarities to the hepatocytes. Therefore, we examined the effects and underlying mechanisms of ADSC cotransplantation on hepatocyte engraftment. METHODS Hepatocytes and ADSCs were cotransplanted into the renal subcapsular space and livers of syngeneic analbuminemic rats, and the serum albumin level was quantified to evaluate engraftment. Immunohistochemical staining and fluorescent staining to trace transplanted cells in the liver were also performed. To investigate the mechanisms, cocultured supernatants were analyzed by a multiplex assay and inhibition test using neutralizing antibodies for target factors. RESULTS Hepatocyte engraftment at both transplant sites was significantly improved by ADSC cotransplantation ( P < 0.001, P < 0.001). In the renal subcapsular model, close proximity between hepatocytes and ADSCs was necessary to exert this effect. Unexpectedly, ≈50% of transplanted hepatocytes were attached by ADSCs in the liver. In an in vitro study, the hepatocyte function was significantly improved by ADSC coculture supernatant ( P < 0.001). The multiplex assay and inhibition test demonstrated that hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6 may be key factors for the abovementioned effects of ADSCs. CONCLUSIONS The present study revealed that ADSC cotransplantation can improve the engraftment of transplanted hepatocytes. This effect may be based on crucial factors, such as hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6, which are secreted by ADSCs.
Collapse
|
7
|
Ren J, Yu D, Wang J, Xu K, Xu Y, Sun R, An P, Li C, Feng G, Zhang Y, Dai X, Zhao H, Wang Z, Han Z, Zhu H, Ding Y, You X, Liu X, Wu M, Luo L, Li Z, Yang YG, Hu Z, Wei HJ, Ge L, Hai T, Li W. Generation of immunodeficient pig with hereditary tyrosinemia type 1 and their preliminary application for humanized liver. Cell Biosci 2022; 12:26. [PMID: 35255981 PMCID: PMC8900390 DOI: 10.1186/s13578-022-00760-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/08/2022] [Indexed: 01/17/2023] Open
Abstract
Background Mice with humanized livers are important models to study drug toxicology testing, development of hepatitis virus treatments, and hepatocyte transplantation therapy. However, the huge difference between mouse and human in size and anatomy limited the application of humanized mice in investigating human diseases. Therefore, it is urgent to construct humanized livers in pigs to precisely investigate hepatocyte regeneration and human hepatocyte therapy. CRISPR/Cas9 system and somatic cell cloning technology were used to generate two pig models with FAH deficiency and exhibiting severe immunodeficiency (FAH/RAG1 and FAH/RAG1/IL2RG deficiency). Human primary hepatocytes were then successfully transplanted into the FG pig model and constructed two pigs with human liver. Results The constructed FAH/RAG1/IL2RG triple-knockout pig models were characterized by chronic liver injury and severe immunodeficiency. Importantly, the FG pigs transplanted with primary human hepatocytes produced human albumin in a time dependent manner as early as 1 week after transplantation. Furthermore, the colonization of human hepatocytes was confirmed by immunochemistry staining. Conclusions We successfully generated pig models with severe immunodeficiency that could construct human liver tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00760-3.
Collapse
Affiliation(s)
- Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yanan Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renren Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Peipei An
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Chongyang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Hongye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhengzhu Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Zhiqiang Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Haibo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China.,Center of Reproductive Medicine and Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Xiaoyan You
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Xueqin Liu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Lin Luo
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China.,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital, Jilin University, Changchun, 130062, China.
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, 402460, China. .,Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing, 402460, China.
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Li X, Wang Y, Yang H, Dai Y. Liver and Hepatocyte Transplantation: What Can Pigs Contribute? Front Immunol 2022; 12:802692. [PMID: 35095885 PMCID: PMC8795512 DOI: 10.3389/fimmu.2021.802692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022] Open
Abstract
About one-fifth of the population suffers from liver diseases in China, meaning that liver disorders are prominent causative factors relating to the Chinese mortality rate. For patients with end-stage liver diseases such as hepatocellular carcinoma or acute liver diseases with life-threatening liver dysfunction, allogeneic liver transplantation is the only life-saving treatment. Hepatocyte transplantation is a promising alternative for patients with acute liver failure or those considered high risk for major surgery, particularly for the bridge-to-transplant period. However, the lack of donors has become a serious global problem. The clinical application of porcine xenogeneic livers and hepatocytes remains a potential solution to alleviate the donor shortage. Pig grafts of xenotransplantation play roles in providing liver support in recipients, together with the occurrence of rejection, thrombocytopenia, and blood coagulation dysfunction. In this review, we present an overview of the development, potential therapeutic impact, and remaining barriers in the clinical application of pig liver and hepatocyte xenotransplantation to humans and non-human primates. Donor pigs with optimized genetic modification combinations and highly effective immunosuppressive regimens should be further explored to improve the outcomes of xenogeneic liver and hepatocyte transplantation.
Collapse
Affiliation(s)
- Xiaoxue Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Ectopic expansion and vascularization of engineered hepatic tissue based on heparinized acellular liver matrix and mesenchymal stromal cell spheroids. Acta Biomater 2022; 137:79-91. [PMID: 34678485 DOI: 10.1016/j.actbio.2021.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023]
Abstract
Engineered liver organogenesis is not yet a viable therapeutic option, but ectopic liver histogenesis may be possible. Accumulating evidence has suggested that cell-cell interactions and cell-matrix interactions play an important role in determining the properties of engineered hepatic tissue in vitro and in vivo. In the current study, we utilized heparinized decellularized liver scaffolds and bone marrow mesenchymal stromal cell spheroids to fabricate engineered hepatic tissue, which was subsequently implanted into the omentum of Sprague-Dawley rats with or without liver injury. The survival, liver-specific functions, differentiation level and regenerative potential of the implanted hepatocyte-like cells in this ectopic liver system were evaluated, together with the vascularization status and therapeutic potential of the engineered hepatic tissue. We demonstrated that these hepatic grafts could survive and possess hepatocyte specific function in this ectopic liver system but could also efficiently anastomose with host vascular networks. Furthermore, we found that hepatocyte-like cells within grafts expanded more than 9-fold over the course of 4 weeks in immunocompetent rats with injured livers. Immunostaining revealed that these hepatocyte-like cells could self-organize into cord-like structures in vivo. In addition, these hepatic grafts exhibited therapeutic potential in liver injury induced by CCl4. To our knowledge, this is the first report demonstrating the generation of long-term vascularized hepatic parenchyma at ectopic sites based on decellularized liver scaffolds and stem cells. These results provide an economic and feasible method for engineering hepatic tissue from construction to transplantation. This methodology may be applicable in clinical medicine, especially metabolic liver diseases. STATEMENT OF SIGNIFICANCE: In this manuscript, we presented an optimized method for the hepatic engineered tissue (HET) from construction to transplantation. The core of this method is utilizing the combination of heparinized decellularized liver scaffolds and stem cell spheroids, which could provide necessary cell-cell and cell-extracellular matrix interactions for HET in vitro and in vivo. We proved that these hepatic grafts could possess hepatocyte specific function and exhibit strong proliferative activity in ectopic liver system, but also able to anastomose with the host vascular networks efficiently and be compatible with the host immune system. This methodology may be possible one day to apply in clinical medicine, especially metabolic liver diseases.
Collapse
|
10
|
Pluta KD, Ciezkowska M, Wisniewska M, Wencel A, Pijanowska DG. Cell-based clinical and experimental methods for assisting the function of impaired livers – Present and future of liver support systems. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Preclinical Application of Reduced Manipulated Processing Strategy to Collect Transplantable Hepatocytes: A Pilot and Feasibility Study. J Pers Med 2021; 11:jpm11050326. [PMID: 33919203 PMCID: PMC8143084 DOI: 10.3390/jpm11050326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 01/31/2023] Open
Abstract
Background: The complex isolation and purification process of hepatocytes for transplantation is labor intensive and with great contamination risk. Here, as a pilot and feasibility study, we examined in vitro and in vivo hepatocyte isolation feasibility and cell function of Cell Saver® Elite®, an intraoperative blood-cell-recovery system. Methods: Rat and pig liver cells were collected using this system and then cultured in vitro, and their hepatocyte-specific enzymes were characterized. We then transplanted the hepatocytes in an established acute liver–injured (retrorsine+D-galactosamine-treated) rat model for engraftment. Recipient rats were sacrificed 1, 2, and 4 weeks after transplantation, followed by donor-cell identification and histological, serologic, and immunohistopathological examination. To demonstrate this Cell Saver® strategy is workable in the first place, traditional (classical) strategy, in our study, behaved as certainty during the cell manufacturing process for monitoring quality assurance throughout the course, from the start of cell isolation to post-transplantation. Results: We noted that in situ collagenase perfusion was followed by filtration, centrifugation, and collection in the Cell Saver® until the process ended. Most (>85%) isolated cells were hepatocytes (>80% viability) freshly demonstrating hepatocyte nuclear factor 4α and carbamoyl-phosphate synthase 1 (a key enzyme in the urea cycle), and proliferating through intercellular contact in culture, with expression of albumin and CYP3A4. After hepatocyte transplantation in dipeptidyl peptidase IV (−/−) rat liver, wild-type donor hepatocytes engrafted and repopulated progressively in 4 weeks with liver functional improvement. Proliferating donor hepatocyte–native biliary ductular cell interaction was identified. Post-transplantation global liver functional recovery after Cell Saver and traditional methods was comparable. Conclusions: Cell Saver® requires reduced manual manipulation for isolating transplantable hepatocytes.
Collapse
|
12
|
Rosell-Valle C, Antúnez C, Campos F, Gallot N, García-Arranz M, García-Olmo D, Gutierrez R, Hernán R, Herrera C, Jiménez R, Leyva-Fernández L, Maldonado-Sanchez R, Muñoz-Fernández R, Nogueras S, Ortiz L, Piudo I, Ranchal I, Rodríguez-Acosta A, Segovia C, Fernández-Muñoz B. Evaluation of the effectiveness of a new cryopreservation system based on a two-compartment vial for the cryopreservation of cell therapy products. Cytotherapy 2021; 23:740-753. [PMID: 33714705 DOI: 10.1016/j.jcyt.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND AIMS Successful cell cryopreservation and banking remain a major challenge for the manufacture of cell therapy products, particularly in relation to providing a hermetic, sterile cryovial that ensures optimal viability and stability post-thaw while minimizing exposure to toxic cryoprotective agents, typically dimethyl sulfoxide (Me2SO). METHODS In the present study, the authors evaluated the effectiveness and functionality of Limbo technology (Cellulis S.L., Santoña, Spain). This system provides a hermetic vial with two compartments (one for adding cells with the cryoprotective agent solution and the other for the diluent solution) and an automated defrosting device. Limbo technology (Cellulis S.L.) allows reduction of the final amount of Me2SO, sidestepping washing and dilution steps and favoring standardization. The study was performed in several Good Manufacturing Practice laboratories manufacturing diverse cell therapy products (human mesenchymal stromal cells, hematopoietic progenitor cells, leukapheresis products, fibroblasts and induced pluripotent stem cells). Laboratories compared Limbo technology (Cellulis S.L.) with their standard cryopreservation procedure, analyzing cell recovery, viability, phenotype and functionality. RESULTS Limbo technology (Cellulis S.L.) maintained the viability and functionality of most of the cell products and preserved sterility while reducing the final concentration of Me2SO. CONCLUSIONS Results showed that use of Limbo technology (Cellulis S.L.) offers an overall safe alternative for cell banking and direct infusion of cryopreserved cell products into patients.
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain.
| | - Cristina Antúnez
- Unidad de Expansión y Terapia Celular. Centro de Transfusión, Tejidos y Células, Málaga, Spain
| | - Fernando Campos
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | | | | | | | - Rosario Gutierrez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Concha Herrera
- Unidad de Terapia Celular, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Rosario Jiménez
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laura Leyva-Fernández
- Unidad de Producción Celular, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | | | - Sonia Nogueras
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Lourdes Ortiz
- Unidad de Terapia Celular, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Inmaculada Piudo
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | - Isidora Ranchal
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain
| | | | - Cristina Segovia
- Unidad de Expansión y Terapia Celular. Centro de Transfusión, Tejidos y Células, Málaga, Spain
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación Celular, Red Andaluza Para el Diseño y Traslación de Terapias Avanzadas, Sevilla, Spain.
| |
Collapse
|
13
|
Hafiz EOA, Bulutoglu B, Mansy SS, Chen Y, Abu-Taleb H, Soliman SAM, El-Hindawi AAF, Yarmush ML, Uygun BE. Development of liver microtissues with functional biliary ductular network. Biotechnol Bioeng 2021; 118:17-29. [PMID: 32856740 PMCID: PMC7775340 DOI: 10.1002/bit.27546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Liver tissue engineering aims to create transplantable liver grafts that can serve as substitutes for donor's livers. One major challenge in creating a fully functional liver tissue has been to recreate the biliary drainage in an engineered liver construct through integration of bile canaliculi (BC) with the biliary ductular network that would enable the clearance of bile from the hepatocytes to the host duodenum. In this study, we show the formation of such a hepatic microtissue by coculturing rat primary hepatocytes with cholangiocytes and stromal cells. Our results indicate that within the spheroids, hepatocytes maintained viability and function for up to 7 days. Viable hepatocytes became polarized by forming BC with the presence of tight junctions. Morphologically, hepatocytes formed the core of the spheroids, while cholangiocytes resided at the periphery forming a monolayer microcysts and tubular structures extending outward. The spheroids were subsequently cultured in clusters to create a higher order ductular network resembling hepatic lobule. The cholangiocytes formed functional biliary ductular channels in between hepatic spheroids that were able to collect, transport, and secrete bile. Our results constitute the first step to recreate hepatic building blocks with biliary drainage for repopulating the whole liver scaffolds to be used as transplantable liver grafts.
Collapse
Affiliation(s)
- Ehab O. A. Hafiz
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children in Boston, Boston, Massachusetts, USA
- Electron Microscopy Research Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Beyza Bulutoglu
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children in Boston, Boston, Massachusetts, USA
| | - Soheir S. Mansy
- Electron Microscopy Research Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Yibin Chen
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children in Boston, Boston, Massachusetts, USA
| | - Hoda Abu-Taleb
- Immunology and Therapeutic Evaluation Department, TBRI, Giza, Egypt
| | - Somia A. M. Soliman
- Pathology Department, Kasr Al Ainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ali A. F. El-Hindawi
- Pathology Department, Kasr Al Ainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children in Boston, Boston, Massachusetts, USA
| | - Basak E. Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children in Boston, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Meneghel J, Kilbride P, Morris GJ. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review. Front Med (Lausanne) 2020; 7:592242. [PMID: 33324662 PMCID: PMC7727450 DOI: 10.3389/fmed.2020.592242] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cryopreservation is a key enabling technology in regenerative medicine that provides stable and secure extended cell storage for primary tissue isolates and constructs and prepared cell preparations. The essential detail of the process as it can be applied to cell-based therapies is set out in this review, covering tissue and cell isolation, cryoprotection, cooling and freezing, frozen storage and transport, thawing, and recovery. The aim is to provide clinical scientists with an overview of the benefits and difficulties associated with cryopreservation to assist them with problem resolution in their routine work, or to enable them to consider future involvement in cryopreservative procedures. It is also intended to facilitate networking between clinicians and cryo-researchers to review difficulties and problems to advance protocol optimization and innovative design.
Collapse
Affiliation(s)
- Julie Meneghel
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | - Peter Kilbride
- Asymptote, Cytiva, Danaher Corporation, Cambridge, United Kingdom
| | | |
Collapse
|
15
|
Repair of acute liver damage with immune evasive hESC derived hepato-blasts. Stem Cell Res 2020; 49:102010. [PMID: 33011360 DOI: 10.1016/j.scr.2020.102010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/23/2020] [Accepted: 09/21/2020] [Indexed: 01/20/2023] Open
Abstract
Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differentiate into hepatic cells, including expandable hepato-blasts (HBs) and hepatocyte-like cells (HLCs) in vitro. Therefore, hESC-derived HBs have the potential to become a renewable cell source for cell therapy of serious liver damage. However, one of the key challenges for such cell therapy is the allogeneic immune rejection of hESC-derived HBs. To overcome this challenge, we developed a strategy to protect the hESC-derived HBs from allogeneic immune rejection by ectopically expressing immune suppressive molecules CTLA4-Ig and PD-L1, denoted CP HBs. Like HBs derived from normal hESCs, CP HBs are capable of repairing liver damage in animal models. Using humanized mice (Hu-mice) reconstituted with human immune system, we showed that CP HBs are protected from allogeneic immune system and can survive long-term in Hu-mice. These data support the feasibility to develop CP HBs into a cell therapy to treat serious liver damage.
Collapse
|
16
|
Deng L, Tang SG. Effect of ultraviolet irradiation on immunogenicity and biological activity of primary adult human hepatocytes. Shijie Huaren Xiaohua Zazhi 2020; 28:683-690. [DOI: 10.11569/wcjd.v28.i15.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The immune rejection of the recipient is the main factor affecting the therapeutic effect of hepatocyte transplantation, and ultraviolet can cause immunosuppression. Appropriate intensity of ultraviolet irradiation can not only reduce the immunogenicity of hepatocytes, but also avoid excessive damage to hepatocytes caused by ultraviolet irradiation, so as to better preserve the stability of hepatocytes and cell synthesis function.
AIM To investigate the effect of ultraviolet radiation on the immunogenicity and biological activity of primary adult human hepatocytes.
METHODS Hepatocytes were isolated from benign adult liver tissues by collagenase perfusion and divided into a control group (0 J/m2) and four experimental groups with different UV irradiation intensities (200, 350, 550, and 750 J/m2). Trypan blue and CCK-8 were used to detect the cell viability. Mitochondrial membrane potential changes were detected with JC-1 dye. The proliferation of recipient T cells was determined by mixed lymphocyte hepatocyte culture (MLHC). The levels of albumin and lactate dehydrogenase in culture supernatant were tested.
RESULTS The viable rate of newly isolated hepatocytes was more than 90%. CCK-8 detection revealed that the viability of hepatocytes in the 200 J/m2 group was the highest, which had no significant difference compared with that of the control group, but was significantly higher than that of other experimental groups. In the presence of JC-1 dye, the hepatocytes in the control group and the 200 J/m2 group mainly exhibited red fluorescence, and brown (350 J/m2), yellow green (550 J/m2), and green (750 J/m2) changes were noted with the increase of irradiation intensity. The OD value of the 200 J/m2 group was the highest, which had no significant difference compared with that of the control group, indicating that the membrane potential of hepatocytes was stable and the cell activity was the best; with the increase of irradiation intensity, the membrane potential of hepatocytes decreased significantly. The MLHC test showed that the 200 J/m2-irradiated hepatocytes had a significantly reduced lymphocyte proliferative ability compared with the control group, while that in the 350, 550, and 750 J/m2 irradiation groups was increased. Biochemical test showed that the level of albumin was the highest in the 200 J/m2 group, which had no difference compared with that of the control group. On the third day of culture, the secretory and synthetic functions of hepatocytes were in the best state.
CONCLUSION Ultraviolet radiation at an intensity of 200 J/m2 can reduce the ability of adult primary hepatocytes to cause T cell proliferation, while the vitality and synthesis function of hepatocytes are well preserved.
Collapse
Affiliation(s)
- Lan Deng
- Department of Infectious Diseases, Peoples' Hospital of Hunan Province/First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Shi-Gang Tang
- Department of Infectious Diseases, Peoples' Hospital of Hunan Province/First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| |
Collapse
|
17
|
Amini M, Niemi E, Hisdal J, Kalvøy H, Tronstad C, Scholz H, Rosales A, Martinsen ØG. Monitoring the quality of frozen-thawed venous segments using bioimpedance spectroscopy. Physiol Meas 2020; 41:044008. [PMID: 32235072 DOI: 10.1088/1361-6579/ab85b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Storage at temperatures as low as -80 °C and below (cryopreservation) is considered a method for long-term preservation of cells and tissues, and especially blood vessel segments, which are to be used for clinical operations such as transplantation. However, the freezing and thawing processes themselves can induce injuries to the cells and tissue by damaging the structure and consequently functionality of the cryopreserved tissue. In addition, the level of damage is dependent on the rate of cooling and warming used during the freezing-thawing process. Current methods for monitoring the viability and integrity of cells and tissues after going through the freezing-thawing cycle are usually invasive and destructive to the cells and tissues. Therefore, employing monitoring methods which are not destructive to the cryopreserved tissues, such as bioimpedance measurement techniques, is necessary. In this study we aimed to design a bioimpedance measurement setup to detect changes in venous segments after freezing-thawing cycles in a noninvasive manner. APPROACH A bioimpedance spectroscopy measurement technique with a two-electrode setup was employed to monitor ovine jugular vein segments after each cycle during a process of seven freezing-thawing cycles. MAIN RESULTS The results demonstrated changes in the impedance spectra of the measured venous segments after each freezing-thawing cycle. SIGNIFICANCE This indicates that bioimpedance spectroscopy has the potential to be developed into a novel method for non-invasive and non-destructive monitoring of the viability of complex tissue after cryopreservation.
Collapse
Affiliation(s)
- M Amini
- Department of Physics, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nguyen MP, Jain V, Iansante V, Mitry RR, Filippi C, Dhawan A. Clinical application of hepatocyte transplantation: current status, applicability, limitations, and future outlook. Expert Rev Gastroenterol Hepatol 2020; 14:185-196. [PMID: 32098516 DOI: 10.1080/17474124.2020.1733975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Hepatocyte transplantation (HT) is a promising alternative to liver transplantation for the treatment of liver-based metabolic diseases and acute liver failure (ALF). However, shortage of good-quality liver tissues, early cell loss post-infusion, reduced cell engraftment and function restricts clinical application.Areas covered: A comprehensive literature search was performed to cover pre-clinical and clinical HT studies. The review discusses the latest developments to address HT limitations: cell sources from marginal/suboptimal donors to neonatal livers, differentiating pluripotent stem cells into hepatocyte-like cells, in vitro expansion, prevention of immune response to transplanted cells by encapsulation or using innate immunity-inhibiting agents, and enhancing engraftment through partial hepatectomy or irradiation.Expert opinion: To date, published data are highly encouraging specially the alginate-encapsulated hepatocyte treatment of children with ALF. Hepatocyte functions can be further improved through co-culturing with mesenchymal stromal cells. Moreover, ex-vivo genetic correction will enable the use of autologous cells in future personalized medicine.
Collapse
Affiliation(s)
- Minh Phuong Nguyen
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Vandana Jain
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Valeria Iansante
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Ragai R Mitry
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Celine Filippi
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Dhawan Lab. at the Mowat Labs, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| |
Collapse
|
19
|
Cernigliaro V, Peluso R, Zedda B, Silengo L, Tolosano E, Pellicano R, Altruda F, Fagoonee S. Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases. Cells 2020; 9:E386. [PMID: 32046114 PMCID: PMC7072646 DOI: 10.3390/cells9020386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver diseases represent a major global health issue, and currently, liver transplantation is the only viable alternative to reduce mortality rates in patients with end-stage liver diseases. However, scarcity of donor organs and risk of recidivism requiring a re-transplantation remain major obstacles. Hence, much hope has turned towards cell-based therapy. Hepatocyte-like cells obtained from embryonic stem cells or adult stem cells bearing multipotent or pluripotent characteristics, as well as cell-based systems, such as organoids, bio-artificial liver devices, bioscaffolds and organ printing are indeed promising. New approaches based on extracellular vesicles are also being investigated as cell substitutes. Extracellular vesicles, through the transfer of bioactive molecules, can modulate liver regeneration and restore hepatic function. This review provides an update on the current state-of-art cell-based and cell-free strategies as alternatives to liver transplantation for patients with end-stage liver diseases.
Collapse
Affiliation(s)
- Viviana Cernigliaro
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Rossella Peluso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Beatrice Zedda
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | | | - Fiorella Altruda
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
20
|
Seetharam A. Intensive Care Management of Acute Liver Failure: Considerations While Awaiting Liver Transplantation. J Clin Transl Hepatol 2019; 7:384-391. [PMID: 31915608 PMCID: PMC6943205 DOI: 10.14218/jcth.2019.00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022] Open
Abstract
Acute liver failure is a unique clinical phenomenon characterized by abrupt deterioration in liver function and altered mentation. The development of high-grade encephalopathy and multisystem organ dysfunction herald poor prognosis. Etiologic-specific treatments and supportive measures are routinely employed; however, liver transplantation remains the only chance for cure in those who do not spontaneously recover. The utility of artificial and bioartificial assist therapies as supportive care-to allow time for hepatic recovery or as a bridge to liver transplantation-has been examined but studies have been small, with mixed results. Given the severity of derangements, intensive critical care is needed to successfully bridge patients to transplant, and evaluation of candidates occurs rapidly in parallel with serial reassessments of operative fitness. Psychosocial assessment is often suboptimal and relative contraindications to transplant, such as ventilator-dependence may be overlooked. While often employed to guide evaluation, no single prognostic model discriminates those who will spontaneously recover and those who will require transplant. The purpose of this review will be to summarize approaches in critical care, prognostic modeling, and medical evaluation of the acute liver failure transplant candidate.
Collapse
Affiliation(s)
- Anil Seetharam
- Correspondence to: Anil Seetharam, Banner Transplant and Advanced Liver Disease, University of Arizona College of Medicine, 441 N. 12th Street, 2nd Floor, Phoenix, AZ 85006, USA. Tel: +1-602-521-5800; Fax: +1-602-521-5337, E-mail:
| |
Collapse
|
21
|
Sharma A, Bischof JC, Finger EB. Liver Cryopreservation for Regenerative Medicine Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00131-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Ashmore-Harris C, Blackford SJ, Grimsdell B, Kurtys E, Glatz MC, Rashid TS, Fruhwirth GO. Reporter gene-engineering of human induced pluripotent stem cells during differentiation renders in vivo traceable hepatocyte-like cells accessible. Stem Cell Res 2019; 41:101599. [PMID: 31707210 PMCID: PMC6905152 DOI: 10.1016/j.scr.2019.101599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/15/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Primary hepatocyte transplantation (HTx) is a safe cell therapy for patients with liver disease, but wider application is circumvented by poor cell engraftment due to limitations in hepatocyte quality and transplantation strategies. Hepatocyte-like cells (HLCs) derived from human induced pluripotent stem cells (hiPSC) are considered a promising alternative but also require optimisation of transplantation and are often transplanted prior to full maturation. Whole-body in vivo imaging would be highly beneficial to assess engraftment non-invasively and monitor the transplanted cells in the short and long-term. Here we report a lentiviral transduction approach designed to engineer hiPSC-derived HLCs during differentiation. This strategy resulted in the successful production of sodium iodide symporter (NIS)-expressing HLCs that were functionally characterised, transplanted into mice, and subsequently imaged using radionuclide tomography.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Guy's Hospital, KCL, London SE1 9RT, UK
| | - Samuel Ji Blackford
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Guy's Hospital, KCL, London SE1 9RT, UK
| | - Benjamin Grimsdell
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK; Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Shepherd's House, King's College London, SE1 1UL, UK
| | - Ewelina Kurtys
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK
| | - Marlies C Glatz
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK
| | - Tamir S Rashid
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Guy's Hospital, KCL, London SE1 9RT, UK; Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London (KCL), London, SE1 7EH, UK.
| |
Collapse
|
23
|
Verstegen MMA, Spee B, van der Laan LJW. Bioengineering Liver Transplantation. Bioengineering (Basel) 2019; 6:E96. [PMID: 31623066 PMCID: PMC6955917 DOI: 10.3390/bioengineering6040096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
Since the first in-man liver transplantation was performed by Starzl et al [...].
Collapse
Affiliation(s)
- Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands.
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Clinical hepatocyte transplantation. GASTROENTEROLOGIA Y HEPATOLOGIA 2019; 42:202-208. [DOI: 10.1016/j.gastrohep.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022]
|
25
|
Ko S, Shin D. Chemical Screening Using a Zebrafish Model for Liver Progenitor Cell-Driven Liver Regeneration. Methods Mol Biol 2019; 1905:83-90. [PMID: 30536092 DOI: 10.1007/978-1-4939-8961-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Following massive hepatocyte ablation in zebrafish, biliary epithelial cells can extensively give rise to hepatocytes through liver progenitor cells (LPCs). The zebrafish liver injury model is an important system to elucidate the molecular mechanisms underlying LPC-driven liver regeneration. Here, we describe a chemical screening method using the zebrafish model for identifying small molecules that can modulate LPC-driven liver regeneration.
Collapse
Affiliation(s)
- Sungjin Ko
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
N-acetylcysteine protects hepatocytes from hypoxia-related cell injury. Clin Exp Hepatol 2018; 4:260-266. [PMID: 30603674 PMCID: PMC6311746 DOI: 10.5114/ceh.2018.80128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Aim of the study Hepatocyte transplantation has been discussed as an alternative to liver transplantation in selected cases of acute and chronic liver failure and metabolic diseases. Immediately after infusion of hepatocytes, hypoxia-related cell injury is inevitable. N-acetylcysteine (NAC) has been suggested to attenuate hypoxic damage. This study’s objective was to evaluate NAC’s protective effect in a model of hypoxia-related hepatocyte injury. Material and methods HepG2 cells were used as a model for hepatocytes and were cultured under standardized hypoxia or normoxia for 24 hours with or without NAC. Growth kinetics were monitored using trypan blue staining. The activation of apoptotic pathways was measured using quantitative real-time PCR for Bcl-2/Bax and p53. The proportions of vital, apoptotic and necrotic cells were verified by fluorescence activated cell sorting using annexin V-labelling. The expression of hypoxia inducible factor 1 (HIF-1) was measured indirectly using its downstream target vascular endothelial growth factor A (VEGF-A). Results After NAC, cell proliferation increased under both hypoxia and normoxia by 528% and 320% (p < 0.05), while VEGF-A expression decreased under normoxia by 67% and 37% (p < 0.05). Compared to cells treated without NAC under hypoxia, the Bcl-2/Bax ratio increased significantly in cells treated with NAC. This finding was confirmed by an increased number of vital cells in FACS analysis. Conclusions NAC protects hepatocytes from hypoxic injury and ultimately activates anti-apoptotic pathways.
Collapse
|
27
|
Brown SA, Axenfeld E, Stonesifer EG, Hutson W, Hanish S, Raufman JP, Urrunaga NH. Current and prospective therapies for acute liver failure. Dis Mon 2018; 64:493-522. [DOI: 10.1016/j.disamonth.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Sirrs S, Hannah-Shmouni F, Nantel S, Neuberger J, Yoshida EM. Transplantation as disease modifying therapy in adults with inherited metabolic disorders. J Inherit Metab Dis 2018; 41:885-896. [PMID: 29392586 DOI: 10.1007/s10545-018-0141-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Abstract
Transplantation is an established disease modifying therapy in selected children with certain inherited metabolic diseases (IMDs). Transplantation of hematopoietic stem cells or solid organs can be used to partially correct the underlying metabolic defect, address life threatening disease manifestations (such as neutropenia) or correct organ failure caused by the disease process. Much less information is available on the use of transplantation in adults with IMDs. Transplantation is indicated for the same IMDs in adults as in children. Despite similar disease specific indications, the actual spectrum of diseases for which transplantation is used differs between these age groups and this is partly related to the natural history of disease. There are diseases (such as urea cycle defects and X-linked adrenoleukodystrophy) for which transplantation is recommended for selected symptomatic patients as a treatment strategy in both adults and children. In those diseases, the frequency with which transplantation is used in adults is lower than in children and this may be related in part to a reduced awareness of transplantation as a treatment strategy amongst adult clinicians as well as limited donor availability and allocation policies which may disadvantage adult patients with IMDs. Risks of transplantation and disease-specific prognostic factors influencing outcomes also differ with age. We review the use of transplantation as a disease modifying strategy in adults focusing on how this differs from use in children to highlight areas for future research.
Collapse
Affiliation(s)
- Sandra Sirrs
- Divisions of Endocrinology, University of British Columbia, Vancouver, BC, Canada.
- , Vancouver, Canada.
| | - Fady Hannah-Shmouni
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stephen Nantel
- Divisions of Hematology, University of British Columbia, Vancouver, BC, Canada
- Leukemia and Bone Marrow Transplant Program, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Eric M Yoshida
- Divisions of Gastroenterology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Abstract
The King’s prognostic criteria for patients with acute liver failure (ALF) introduced in 1989 have been used worldwide. This distinguished for the first time cases with ‘hyper-acute’ course (characteristically paracetamol overdose) where there is a better chance of recovery with medical supportive care alone from those etiologies with a less acute course and paradoxically lower chances of ‘spontaneous’ recovery. Ongoing use showed the limited sensitivity of the criteria to constitute a significant practical limitation. Subsequent models including the MELD score and composite ones with markers of necrosis, an apoptotic liver cell death, proposed to improve sensitivity did not have the required high specificity. Two recent models utilizing new availability of web- and app-based computing delivering outcome predication through sophisticated algorithms are described. The first is a dynamic model described for paracetamol-induced ALF based upon admission findings and sequential variables over the first 2 days. The new model of the US Acute Liver Failure group was devised to cover all etiologies of ALF for predicting ‘transplant-free’ survival and accurately predicated spontaneous survival in two-thirds of cases. Improved survival results with medical management, particularly in hyper-acute cases, now approach those obtained with successful liver transplant and have raised the question of transplant benefit. Also considered in the review are new non-transplant approaches to treatment including the use of plasma exchange and based on successful results in acute-on-chronic liver failure, agents to modulate and improve hepatic regeneration.
Collapse
|
30
|
Anderson TN, Zarrinpar A. Hepatocyte transplantation: past efforts, current technology, and future expansion of therapeutic potential. J Surg Res 2018; 226:48-55. [PMID: 29661288 DOI: 10.1016/j.jss.2018.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/16/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
Hepatic cell transplantation (HCT) continues to garner interest as an alternative to orthotopic liver transplantation and the attendant donor shortage. When compared with solid organ transplantation, advantages of cell transplantation include the potential to treat more patients with a considerably less invasive procedure, the ability to utilize organs otherwise unsuitable for transplant, and leaving the native organ in situ with the potential for regeneration. While studies date back to the early 1960s, advancement of clinical application has been slow due in part to limitations of suitable tissue supplies and reproducible robust techniques. Compared with orthotopic liver transplantation, there are fewer absolute contraindications for donor selection. And, current techniques used to harvest, isolate, store, and even transfuse cells vary little between institutions. Significant variation is seen due to a lack of consensus with maintenance therapy. Although the ideal recipient has not been clearly identified, the most significant results have been demonstrated with correction of congenital metabolic liver disorders, with a few trials examining its utility in cirrhotics and more recently acute liver failure. The most exciting new topic of discussion examines techniques to improve engraftment, with many such as ischemic preconditioning and nonselective partial embolization (microbead therapy), while not yet used in HCT study, showing promise in solid organ research. Advancements in HCT, although slow in progress, have great potential in the ability to alleviate the burden faced in solid organ transplantation and possibly become a long-term viable option, beyond that of a bridge or salvage therapy.
Collapse
Affiliation(s)
- Tiffany N Anderson
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
31
|
Iansante V, Mitry RR, Filippi C, Fitzpatrick E, Dhawan A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr Res 2018; 83:232-240. [PMID: 29149103 DOI: 10.1038/pr.2017.284] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
Abstract
Liver transplantation is the accepted treatment for patients with acute liver failure and liver-based metabolic disorders. However, donor organ shortage and lifelong need for immunosuppression are the main limitations to liver transplantation. In addition, loss of the native liver as a target organ for future gene therapy for metabolic disorders limits the futuristic treatment options, resulting in the need for alternative therapeutic strategies. A potential alternative to liver transplantation is allogeneic hepatocyte transplantation. Over the last two decades, hepatocyte transplantation has made the transition from bench to bedside. Standardized techniques have been established for isolation, culture, and cryopreservation of human hepatocytes. Clinical hepatocyte transplantation safety and short-term efficacy have been proven; however, some major hurdles-mainly concerning shortage of donor organs, low cell engraftment, and lack of a long-lasting effect-need to be overcome to widen its clinical applications. Current research is aimed at addressing these problems, with the ultimate goal of increasing hepatocyte transplantation efficacy in clinical applications.
Collapse
Affiliation(s)
- V Iansante
- DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - R R Mitry
- DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - C Filippi
- DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - E Fitzpatrick
- DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - A Dhawan
- DhawanLab, Paediatric Liver GI and Nutrition Center and MowatLabs, Institute of Liver Studies, King's College London, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| |
Collapse
|
32
|
Cryopreservation of rat hepatocytes with disaccharides for cell therapy. Cryobiology 2017; 78:15-21. [DOI: 10.1016/j.cryobiol.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/30/2017] [Accepted: 07/29/2017] [Indexed: 11/18/2022]
|
33
|
Tan AKY, Loh KM, Ang LT. Evaluating the regenerative potential and functionality of human liver cells in mice. Differentiation 2017; 98:25-34. [PMID: 29078082 DOI: 10.1016/j.diff.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023]
Abstract
Liver diseases afflict millions of patients worldwide. Currently, the only long-term treatment for liver failure is the transplantation of a new liver. However, intravenously transplanting a suspension of human hepatocytes might be a less-invasive approach to partially reconstitute lost liver functions in human patients as evinced by promising outcomes in clinical trials. The purpose of this essay is to emphasize outstanding questions that continue to surround hepatocyte transplantation. While adult primary human hepatocytes are the gold standard for transplantation, hepatocytes are heterogeneous. Whether all hepatocytes engraft equally and what specifically defines an "engraftable" hepatocyte capable of long-term liver reconstitution remains unclear. To this end, mouse models of liver injury enable the evaluation of human hepatocytes and their behavior upon transplantation into a complex injured liver environment. While mouse models may not be fully representative of the injured human liver and human hepatocytes tend to engraft mice less efficiently than mouse hepatocytes, valuable lessons have nonetheless been learned from transplanting human hepatocytes into mouse models. With an eye to the future, it will be crucial to eventually detail the optimal biological source (whether in vivo- or in vitro-derived) and presumptive heterogeneity of human hepatocytes and to understand the mechanisms through which they engraft and regenerate liver tissue in vivo.
Collapse
Affiliation(s)
- Antson Kiat Yee Tan
- Stem Cell&Developmental Biology Group, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and the Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Stem Cell&Developmental Biology Group, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore.
| |
Collapse
|
34
|
Emerging advancements in liver regeneration and organogenesis as tools for liver replacement. Curr Opin Organ Transplant 2017; 21:581-587. [PMID: 27755169 DOI: 10.1097/mot.0000000000000365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Although the liver possesses a unique, innate ability to regenerate through mass compensation, transplantation remains the only therapy when damage outpaces regeneration, or liver metabolic capacity is irreversibly impacted. Recent insight from developmental biology has greatly influenced the advancement of alternative options to transplantation in these settings. RECENT FINDINGS Factors known to direct liver cell specification, expansion, and differentiation have been used to generate hepatocyte-like cells from stem and somatic cells for developing cell therapies. Additionally, interactions between hepatic epithelial and nonepithelial cells key to establishing hepatic architecture have been used in tissue engineering approaches to advance self-organizing hepatic organoids and bioartificial liver devices. Simultaneously, recent clinically applicable advances in human hepatocyte transplantation and promotion of innate hepatic regeneration have been limited. SUMMARY Although mature hepatocytes have the potential to bridge to, or replace whole organ transplantation, limits in the ability to obtain healthy cells, stabilize in-vitro expansion, cryopreserve, and alleviate rejection, still exist. Alternative sources for generating hepatocytes hold promise for cell therapy and tissue engineering. These may allow generation of autologous or universal donor cells that eliminate the need for immunosuppression; however, limits exist regarding hepatocyte maturity and efficacy at liver repopulation, as well as applicability to human chronic liver disease.
Collapse
|
35
|
Brandhorst D, Brandhorst H, Johnson PRV. Enzyme Development for Human Islet Isolation: Five Decades of Progress or Stagnation? Rev Diabet Stud 2017. [PMID: 28632819 DOI: 10.1900/rds.2017.14.22] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In comparison to procedures used for the separation of individual cell types from other organs, the process of human pancreatic islet isolation aims to digest the pancreatic exocrine matrix completely without dispersing the individual cells within the endocrine cell cluster. This objective is unique within the field of tissue separation, and outlines the challenge of islet isolation to balance two opposing priorities. Although significant progress has been made in the characterization and production of enzyme blends for islet isolation, there are still numerous areas which require improvement. The ultimate goal of enzyme production, namely the routine production of a consistent and standardized enzyme blend, has still not been realized. This seems to be mainly the result of a lack of detailed knowledge regarding the structure of the pancreatic extracellular matrix and the synergistic interplay between collagenase and different supplementary proteases during the degradation of the extracellular matrix. Furthermore, the activation of intrinsic proteolytic enzymes produced by the pancreatic acinar cells, also impacts on the chance of a successful outcome of human islet isolation. This overview discusses the challenges of pancreatic enzymatic digestion during human islet isolation, and outlines the developments in this field over the past 5 decades.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, United Kingdom
| | - Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, United Kingdom
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, United Kingdom
| |
Collapse
|
36
|
Wendon, J, Cordoba J, Dhawan A, Larsen FS, Manns M, Samuel D, Simpson KJ, Yaron I, Bernardi M. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J Hepatol 2017; 66:1047-1081. [PMID: 28417882 DOI: 10.1016/j.jhep.2016.12.003] [Citation(s) in RCA: 542] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
The term acute liver failure (ALF) is frequently applied as a generic expression to describe patients presenting with or developing an acute episode of liver dysfunction. In the context of hepatological practice, however, ALF refers to a highly specific and rare syndrome, characterised by an acute abnormality of liver blood tests in an individual without underlying chronic liver disease. The disease process is associated with development of a coagulopathy of liver aetiology, and clinically apparent altered level of consciousness due to hepatic encephalopathy. Several important measures are immediately necessary when the patient presents for medical attention. These, as well as additional clinical procedures will be the subject of these clinical practice guidelines.
Collapse
|
37
|
Machaidze Z, Yeh H, Wei L, Schuetz C, Carvello M, Sgroi A, Smith RN, Schuurman HJ, Sachs DH, Morel P, Markmann JF, Bühler LH. Testing of microencapsulated porcine hepatocytes in a new model of fulminant liver failure in baboons. Xenotransplantation 2017; 24. [PMID: 28261903 DOI: 10.1111/xen.12297] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/30/2016] [Accepted: 02/05/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is no standard therapy for acute liver failure. Hepatocyte transplantation has been proposed for temporary liver function support, while the injured liver regenerates or while waiting for transplantation. We have previously shown such efficacy for microencapsulated porcine hepatocytes in mice with fulminant liver failure. We aimed to establish a large animal model for fulminant liver failure to assess the efficacy of microencapsulated porcine hepatocytes in temporary liver function support. METHODS The model was developed in baboons; for testing microencapsulated hepatocytes, the best condition was 75% hepatectomy and 60 min warm ischemia time. Fulminant liver failure was characterized by steep increases in liver biochemical parameters, severe steatosis, and massive hepatocyte necrosis during the first 10 days. Hepatocytes from miniature swine were microencapsulated in alginate-poly-l-lysine microspheres, and transplanted intraperitoneally immediately after hepatectomy and warm ischemia (80-120 mL packed hepatocytes in 200-350 mL microspheres, about 30%-50% of the baboon's native liver volume). RESULTS In the control group, three of five animals were sacrificed after 6-10 days because of fulminant liver failure, and two of five animals recovered normal liver function and survived until elective euthanasia (28 days). In the treatment group of four animals, one animal developed liver failure but survived to 21 days, and three animals recovered completely with normal liver function. CONCLUSIONS The results indicate that microencapsulated porcine hepatocytes provide temporary liver function support in baboons with fulminant liver failure. These data support development of this cell therapy product toward clinical trials in patients with acute liver failure.
Collapse
Affiliation(s)
- Zurab Machaidze
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lingling Wei
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Schuetz
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michele Carvello
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonino Sgroi
- Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Rex N Smith
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Henk-Jan Schuurman
- Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - David H Sachs
- Transplant Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philippe Morel
- Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - James F Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Léo H Bühler
- Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, Choi CW, Lee SR, Han J. Cryopreservation and its clinical applications. Integr Med Res 2017; 6:12-18. [PMID: 28462139 PMCID: PMC5395684 DOI: 10.1016/j.imr.2016.12.001] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
Cryopreservation is a process that preserves organelles, cells, tissues, or any other biological constructs by cooling the samples to very low temperatures. The responses of living cells to ice formation are of theoretical interest and practical relevance. Stem cells and other viable tissues, which have great potential for use in basic research as well as for many medical applications, cannot be stored with simple cooling or freezing for a long time because ice crystal formation, osmotic shock, and membrane damage during freezing and thawing will cause cell death. The successful cryopreservation of cells and tissues has been gradually increasing in recent years, with the use of cryoprotective agents and temperature control equipment. Continuous understanding of the physical and chemical properties that occur in the freezing and thawing cycle will be necessary for the successful cryopreservation of cells or tissues and their clinical applications. In this review, we briefly address representative cryopreservation processes, such as slow freezing and vitrification, and the available cryoprotective agents. In addition, some adverse effects of cryopreservation are mentioned.
Collapse
Affiliation(s)
| | | | - Ji Hyun Yang
- College of Medicine, Inje University, Busan, Korea
| | | | | | - Ui Seo Park
- College of Medicine, Inje University, Busan, Korea
| | | | - Sung Ryul Lee
- Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Korea
| |
Collapse
|
39
|
Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise Review: Liver Regenerative Medicine: From Hepatocyte Transplantation to Bioartificial Livers and Bioengineered Grafts. Stem Cells 2017; 35:42-50. [PMID: 27641427 PMCID: PMC5529050 DOI: 10.1002/stem.2500] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/27/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Donor organ shortage is the main limitation to liver transplantation as a treatment for end-stage liver disease and acute liver failure. Liver regenerative medicine may in the future offer an alternative form of therapy for these diseases, be it through cell transplantation, bioartificial liver (BAL) devices, or bioengineered whole organ liver transplantation. All three strategies have shown promising results in the past decade. However, before they are incorporated into widespread clinical practice, the ideal cell type for each treatment modality must be found, and an adequate amount of metabolically active, functional cells must be able to be produced. Research is ongoing in hepatocyte expansion techniques, use of xenogeneic cells, and differentiation of stem cell-derived hepatocyte-like cells (HLCs). HLCs are a few steps away from clinical application, but may be very useful in individualized drug development and toxicity testing, as well as disease modeling. Finally, safety concerns including tumorigenicity and xenozoonosis must also be addressed before cell transplantation, BAL devices, and bioengineered livers occupy their clinical niche. This review aims to highlight the most recent advances and provide an updated view of the current state of affairs in the field of liver regenerative medicine. Stem Cells 2017;35:42-50.
Collapse
Affiliation(s)
- Clara T Nicolas
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymond D Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Harvey S Chen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Manuela Lopera Higuita
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yujia Wang
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott L Nyberg
- William J Von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
40
|
Isolation of GMP Grade Human Hepatocytes from Remnant Liver Tissue of Living Donor Liver Transplantation. Methods Mol Biol 2017; 1506:231-245. [PMID: 27830557 DOI: 10.1007/978-1-4939-6506-9_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
For the purpose of clinical research of hepatocyte transplantation, procedures for isolation, cryopreservation, thawing, and functional assessment of hepatocytes are described. Although demands for human hepatocytes are increasing in not only cell therapy but also drug development, it is highly difficult to obtain good lots of hepatocytes from human liver tissue. This chapter describes essential issues such as alleviation of warm ischemia, prevention of shear stress, optimization of cryopreservation, and functional assessment, along with securement of quality. All procedures described here are compliant with good manufacturing procedure (GMP) in cell processing facility, approved by the act on measures to ensure safety of regenerative medicine and ethical regulations in Japan.
Collapse
|
41
|
Hassanein W, Uluer MC, Langford J, Woodall JD, Cimeno A, Dhru U, Werdesheim A, Harrison J, Rivera-Pratt C, Klepfer S, Khalifeh A, Buckingham B, Brazio PS, Parsell D, Klassen C, Drachenberg C, Barth RN, LaMattina JC. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold. Organogenesis 2016; 13:16-27. [PMID: 28029279 DOI: 10.1080/15476278.2016.1276146] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.
Collapse
Affiliation(s)
- Wessam Hassanein
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Mehmet C Uluer
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - John Langford
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Jhade D Woodall
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Arielle Cimeno
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Urmil Dhru
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Avraham Werdesheim
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Joshua Harrison
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Carlos Rivera-Pratt
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Stephen Klepfer
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Ali Khalifeh
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Bryan Buckingham
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Philip S Brazio
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Dawn Parsell
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Charlie Klassen
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - Cinthia Drachenberg
- b University of Maryland School of Medicine , Department of Pathology , Baltimore , MD , USA
| | - Rolf N Barth
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| | - John C LaMattina
- a University of Maryland School of Medicine, Department of Surgery , Division of Transplantation , Baltimore , MD , USA
| |
Collapse
|