1
|
Seufferlein T, Mayerle J, Boeck S, Brunner T, Ettrich TJ, Grenacher L, Gress TM, Hackert T, Heinemann V, Kestler A, Sinn M, Tannapfel A, Wedding U, Uhl W. S3-Leitlinie Exokrines Pankreaskarzinom – Version 3.1. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e874-e995. [PMID: 39389103 DOI: 10.1055/a-2338-3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
| | | | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz, Austria
| | | | | | - Thomas Mathias Gress
- Gastroenterologie und Endokrinologie Universitätsklinikum Gießen und Marburg, Germany
| | - Thilo Hackert
- Klinik und Poliklinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Germany
| | - Volker Heinemann
- Medizinische Klinik und Poliklinik III, Klinikum der Universität München-Campus Grosshadern, München, Germany
| | | | - Marianne Sinn
- Medizinische Klinik und Poliklinik II Onkologie und Hämatologie, Universitätsklinikum Hamburg-Eppendorf, Germany
| | | | | | - Waldemar Uhl
- Allgemein- und Viszeralchirurgie, St Josef-Hospital, Bochum, Germany
| |
Collapse
|
2
|
Mohamed Allam D, Kasem H, Hegazy A, Mahmoud SF. Role of CTLA4 and pSTAT3 Immunostaining in Prognosis and Treatment of the Colorectal Carcinoma. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:89-102. [PMID: 38864078 PMCID: PMC11164302 DOI: 10.30699/ijp.2024.2009619.3158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/07/2023] [Indexed: 06/13/2024]
Abstract
Background & Objective Colorectal carcinoma (CRC) is the third leading cause of cancer-caused death worldwide and constitutes about 6.48% of all malignancies in Egypt. Studying the molecular profile of CRC is essential for developing targeted therapies. STAT3 and CTLA4 expression are considered as molecular abnormalities involved in the CRC progression and chemo-resistance. Therefore, they could be used as potential therapeutic targets. This study aimed to evaluate pSTAT3 and CTLA4 expression levels and their possible roles as prognostic and predictive biomarkers in CRC using immunohistochemistry (IHC). Methods This retrospective study included 113 CRC patients. Tissue microarrays were constructed, followed by pSTAT3 and CTLA4 antibodies immunostaining. Their expression was assessed and compared with the clinicopathological parameters and survival data. Results Both pSTAT3 and CTLA4 overexpression were significantly associated with poor prognostic parameters, such as the presence of distant metastasis (P=0.02 & 0.03), high grade (P<0.001 & 0.03), high mitotic count (P<0.001 & 0.03), high tumor budding group (P=0.008 & 0.04), infiltrating tumor border (P<0.001 & 0.007) respectively, and advanced pathological stage with pSTAT3 (P=0.02). A significant association was found between overexpression of both markers and short overall survival. Correlations between the H-score of pSTAT3 and CTLA4 in CRC showed a significant positive correlation (P<0.001). Conclusion STAT3 and CTLA4 positivity may be linked to the development and progression of the CRC, and they may provide potential prognostic indicators and therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Dina Mohamed Allam
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Hend Kasem
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Amira Hegazy
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Egypt
| | - Shereen F Mahmoud
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| |
Collapse
|
3
|
Grobbelaar C, Kgomo M, Mabeta P. Angiogenesis and Pancreatic Cancer: Novel Approaches to Overcome Treatment Resistance. Curr Cancer Drug Targets 2024; 24:1116-1127. [PMID: 38299403 DOI: 10.2174/0115680096284588240105051402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Pancreatic cancer (PCa) is acknowledged as a significant contributor to global cancer- related mortality and is widely recognized as one of the most challenging malignant diseases to treat. Pancreatic ductal adenocarcinoma (PDAC), which is the most common type of PCa, is highly aggressive and is mostly incurable. The poor prognosis of this neoplasm is exacerbated by the prevalence of angiogenic molecules, which contribute to stromal stiffness and immune escape. PDAC overexpresses various proangiogenic proteins, including vascular endothelial growth factor (VEGF)-A, and the levels of these molecules correlate with poor prognosis and treatment resistance. Moreover, VEGF-targeting anti-angiogenesis treatments are associated with the onset of resistance due to the development of hypoxia, which in turn induces the production of angiogenic molecules. Furthermore, excessive angiogenesis is one of the hallmarks of the second most common form of PCa, namely, pancreatic neuroendocrine tumor (PNET). In this review, the role of angiogenesis regulators in promoting disease progression in PCa, and the impact of these molecules on resistance to gemcitabine and various therapies against PCa are discussed. Finally, the use of anti-angiogenic agents in combination with chemotherapy and other targeted therapeutic molecules is discussed as a novel solution to overcome current treatment limitations in PCa.
Collapse
Affiliation(s)
- Craig Grobbelaar
- Department of Physiology, University of Pretoria, CNR Lynnwood Road and Roper Street, Hatfield, 0028, South Africa
| | - Mpho Kgomo
- Department of Internal Medicine, Faculty of Health Sciences, University of Pretoria, 9 Bophelo Road, Arcadia, CNR Lynnwood Road and Roper Street, Hatfield, 0028, South Africa
| | - Peace Mabeta
- Department of Physiology, University of Pretoria, CNR Lynnwood Road and Roper Street, Hatfield, 0028South Africa
| |
Collapse
|
4
|
Zhang J, Zhang S, Dörflein I, Ren X, Pfeffer S, Britzen-Laurent N, Grützmann R, Duan X, Pilarsky C. Impact of CRISPR/Cas9-Mediated CD73 Knockout in Pancreatic Cancer. Cancers (Basel) 2023; 15:4842. [PMID: 37835536 PMCID: PMC10572021 DOI: 10.3390/cancers15194842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic cancer is among the cancers with the highest mortality rates. Most of the patients are found to have advanced cancer, losing the chance of surgical treatment, and there is an urgent need to find new treatment methods. Targeted therapy for specific genes that play a key role in cancer is now an important means to improve the survival rate of patients. We determined that CD73 is highly expressed in pancreatic cancer by flow cytometry and qRT-PCR assays combined with bioinformatics techniques. Application of CRISPR/Cas9 technology to knockout CD73 in human and murine cell lines, respectively, revealed that CD73 inactivation inhibited cell growth and migration and induced G1 cell cycle arrest. We also found that CD73 deletion inhibited the ERK/STAT3 pathway and activated the E-cadherin pathway. In addition, a CRISPR/Cas9 protein kinase library screen was performed and identified Pbk, Fastk, Cdk19, Adck5, Trim28, and Pfkp as possible genes regulating CD73.
Collapse
Affiliation(s)
- Jinping Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.Z.); (S.Z.); (I.D.); (X.R.); (S.P.); (N.B.-L.); (R.G.)
- Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068, China;
- Second Department of General Surgery, Third Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710068, China
| | - Shuman Zhang
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.Z.); (S.Z.); (I.D.); (X.R.); (S.P.); (N.B.-L.); (R.G.)
| | - Isabella Dörflein
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.Z.); (S.Z.); (I.D.); (X.R.); (S.P.); (N.B.-L.); (R.G.)
| | - Xiaofan Ren
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.Z.); (S.Z.); (I.D.); (X.R.); (S.P.); (N.B.-L.); (R.G.)
| | - Susanne Pfeffer
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.Z.); (S.Z.); (I.D.); (X.R.); (S.P.); (N.B.-L.); (R.G.)
| | - Nathalie Britzen-Laurent
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.Z.); (S.Z.); (I.D.); (X.R.); (S.P.); (N.B.-L.); (R.G.)
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.Z.); (S.Z.); (I.D.); (X.R.); (S.P.); (N.B.-L.); (R.G.)
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068, China;
- Second Department of General Surgery, Third Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710068, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.Z.); (S.Z.); (I.D.); (X.R.); (S.P.); (N.B.-L.); (R.G.)
| |
Collapse
|
5
|
Qi W, Liu Q, Fu W, Shi J, Shi M, Duan S, Li Z, Song S, Wang J, Liu Y. BHLHE40, a potential immune therapy target, regulated by FGD5-AS1/miR-15a-5p in pancreatic cancer. Sci Rep 2023; 13:16400. [PMID: 37773521 PMCID: PMC10541890 DOI: 10.1038/s41598-023-43577-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
Pancreatic cancer, as one of the neoplasms with the highest degree of malignancy, has become a main disease of concerns in recent years. BHLHE40, a critical transcription factor for remodeling of the tumor immune microenvironment, has been described to be substantially increased in a variety of tumor-associated immune cells. Nevertheless, the pro-cancer biological functions and underlying molecular mechanisms of BHLHE40 for pancreatic cancer and its unique microenvironment are unclear. Hereby, we investigated the pro-oncogenic role of BHLHE40 in the pancreatic cancer microenvironment by bioinformatics analysis and cell biology experiments and determined that the expression of BHLHE40 was obviously elevated in pancreatic cancer tissues than in adjacent normal tissues. In parallel, Kaplan-Meier survival analysis unveiled that lower expression of BHLHE40 was strongly associated with better prognosis of patients. Receiver operating characteristic (ROC) curve analysis confirmed the accuracy of the BHLHE40-related prediction model. Subsequent, spearman correlation analysis observed that higher expression of BHLHE40 might be involved in immunosuppression of pancreatic cancer. Silencing of BHLHE40 could inhibit proliferation, invasion, and apoptosis of pancreatic cancer in vitro and in vivo, implying that BHLHE40 is expected to be a potential therapeutic target for pancreatic cancer. In addition, we explored and validated the FGD5-AS1/miR-15a-5p axis as a potential upstream regulatory mode for high expression of BHLHE40 in pancreatic cancer. In summary, our data showed that ceRNA involved in the regulation of BHLHE40 contributes to the promotion of immunosuppressive response in pancreatic and is expected to be a diagnostic marker and potential immunotherapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenjun Fu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiaming Shi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhe Li
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Shaohua Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Woeste MR, Shrestha R, Geller AE, Li S, Montoya-Durango D, Ding C, Hu X, Li H, Puckett A, Mitchell RA, Hayat T, Tan M, Li Y, McMasters KM, Martin RCG, Yan J. Irreversible electroporation augments β-glucan induced trained innate immunity for the treatment of pancreatic ductal adenocarcinoma. J Immunother Cancer 2023; 11:e006221. [PMID: 37072351 PMCID: PMC10124260 DOI: 10.1136/jitc-2022-006221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a challenging diagnosis that is yet to benefit from the advancements in immuno-oncologic treatments. Irreversible electroporation (IRE), a non-thermal method of tumor ablation, is used in treatment of select patients with locally-advanced unresectable PC and has potentiated the effect of certain immunotherapies. Yeast-derived particulate β-glucan induces trained innate immunity and successfully reduces murine PC tumor burden. This study tests the hypothesis that IRE may augment β-glucan induced trained immunity in the treatment of PC. METHODS β-Glucan-trained pancreatic myeloid cells were evaluated ex vivo for trained responses and antitumor function after exposure to ablated and unablated tumor-conditioned media. β-Glucan and IRE combination therapy was tested in an orthotopic murine PC model in wild-type and Rag-/- mice. Tumor immune phenotypes were assessed by flow cytometry. Effect of oral β-glucan in the murine pancreas was evaluated and used in combination with IRE to treat PC. The peripheral blood of patients with PC taking oral β-glucan after IRE was evaluated by mass cytometry. RESULTS IRE-ablated tumor cells elicited a potent trained response ex vivo and augmented antitumor functionality. In vivo, β-glucan in combination with IRE reduced local and distant tumor burden prolonging survival in a murine orthotopic PC model. This combination augmented immune cell infiltration to the PC tumor microenvironment and potentiated the trained response from tumor-infiltrating myeloid cells. The antitumor effect of this dual therapy occurred independent of the adaptive immune response. Further, orally administered β-glucan was identified as an alternative route to induce trained immunity in the murine pancreas and prolonged PC survival in combination with IRE. β-Glucan in vitro treatment also induced trained immunity in peripheral blood monocytes obtained from patients with treatment-naïve PC. Finally, orally administered β-glucan was found to significantly alter the innate cell landscape within the peripheral blood of five patients with stage III locally-advanced PC who had undergone IRE. CONCLUSIONS These data highlight a relevant and novel application of trained immunity within the setting of surgical ablation that may stand to benefit patients with PC.
Collapse
Affiliation(s)
- Matthew R Woeste
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Anne E Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shu Li
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Diego Montoya-Durango
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Chuanlin Ding
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaoling Hu
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Hong Li
- Functional Immunomics Core, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Aaron Puckett
- Functional Immunomics Core, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert A Mitchell
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Traci Hayat
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Min Tan
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yan Li
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Kelly M McMasters
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert C G Martin
- Division of Surgical Oncology, The Hiram C. Polk Jr., MD Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jun Yan
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Immunotherapy, The Hiram C. Polk Jr., MD Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Liu H, Davila Gonzalez D, Viswanath DI, Vander Pol RS, Saunders SZ, Di Trani N, Xu Y, Zheng J, Chen S, Chua CYX, Grattoni A. Sustained Intratumoral Administration of Agonist CD40 Antibody Overcomes Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206873. [PMID: 36658712 PMCID: PMC10037694 DOI: 10.1002/advs.202206873] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 06/12/2023]
Abstract
Agonist CD40 monoclonal antibodies (mAb) is a promising immunotherapeutic agent for cold-to-hot tumor immune microenvironment (TIME) conversion. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer known as an immune desert, and therefore urgently needs more effective treatment. Conventional systemic treatment fails to effectively penetrate the characteristic dense tumor stroma. Here, it is shown that sustained low-dose intratumoral delivery of CD40 mAb via the nanofluidic drug-eluting seed (NDES) can modulate the TIME to reduce tumor burden in murine models. NDES achieves tumor reduction at a fourfold lower dosage than systemic treatment while avoiding treatment-related adverse events. Further, abscopal responses are shown where intratumoral treatment yields growth inhibition in distant untreated tumors. Overall, the NDES is presented as a viable approach to penetrate the PDAC immune barrier in a minimally invasive and effective manner, for the overarching goal of transforming treatment.
Collapse
Affiliation(s)
- Hsuan‐Chen Liu
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Daniel Davila Gonzalez
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Dixita Ishani Viswanath
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- Texas A&M University College of Medicine2121 W Holcombe BlvdHoustonTX77003USA
| | - Robin Shae Vander Pol
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Shani Zakiya Saunders
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Nicola Di Trani
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Yitian Xu
- Center for Immunotherapy ResearchHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- ImmunoMonitoring CoreHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Junjun Zheng
- Center for Immunotherapy ResearchHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- ImmunoMonitoring CoreHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Shu‐Hsia Chen
- Center for Immunotherapy ResearchHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- ImmunoMonitoring CoreHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Corrine Ying Xuan Chua
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
| | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research Institute6670 Bertner AveHoustonTX77003USA
- Department of SurgeryHouston Methodist Hospital6565 Fannin St.HoustonTX77003USA
- Department of Radiation OncologyHouston Methodist Hospital6565 Fannin St.HoustonTX77003USA
| |
Collapse
|
8
|
Seufferlein T, Mayerle J, Böck S, Brunner T, Ettrich TJ, Grenacher L, Gress TM, Hackert T, Heinemann V, Kestler A, Sinn M, Tannapfel A, Wedding U, Uhl W. S3-Leitlinie zum exokrinen Pankreaskarzinom – Langversion 2.0 – Dezember 2021 – AWMF-Registernummer: 032/010OL. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:e812-e909. [PMID: 36368658 DOI: 10.1055/a-1856-7346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | - Stefan Böck
- Medizinische Klinik und Poliklinik III, Universitätsklinikum München, Germany
| | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz, Austria
| | | | | | - Thomas Mathias Gress
- Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Germany
| | - Thilo Hackert
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie Universitätsklinikum, Heidelberg, Germany
| | - Volker Heinemann
- Medizinische Klinik und Poliklinik III, Klinikum der Universität München-Campus Grosshadern, München, Germany
| | | | - Marianne Sinn
- Universitätsklinikum Hamburg-Eppendorf Medizinische Klinik und Poliklinik II Onkologie Hämatologie, Hamburg, Germany
| | | | | | - Waldemar Uhl
- Allgemein- und Viszeralchirurgie, St Josef-Hospital, Bochum, Germany
| |
Collapse
|
9
|
Andersson R, Haglund C, Seppänen H, Ansari D. Pancreatic cancer - the past, the present, and the future. Scand J Gastroenterol 2022; 57:1169-1177. [PMID: 35477331 DOI: 10.1080/00365521.2022.2067786] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pancreatic cancer has been and still is associated with a very poor prognosis. This is due to a lack of major breakthroughs with respect to early diagnosis, prognostication, prediction, as well as novel, targeted therapies. The benefits of surgery and chemotherapy are evident, but the fact that only some 10% of all patients have early, localized disease highlights the unmet need for new early detection methods. An improved understanding of tumor biology and the development of molecular markers detectable both in the circulation and in cancer tissues may underlie the development of new tools for optimizing both diagnosis and treatment. MATERIAL AND METHODS Review of the literature. RESULTS AND CONCLUSION If we do not improve precision oncology for pancreatic ductal adenocarcinoma, the prognosis will still remain dismal and the" burden" on society will increase substantially.
Collapse
Affiliation(s)
- Roland Andersson
- Surgery, Department of Clinical Sciences Lund Lund University, Skåne University Hospital, Lund, Sweden
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Daniel Ansari
- Surgery, Department of Clinical Sciences Lund Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
10
|
Noubissi Nzeteu GA, Gibbs BF, Kotnik N, Troja A, Bockhorn M, Meyer NH. Nanoparticle-based immunotherapy of pancreatic cancer. Front Mol Biosci 2022; 9:948898. [PMID: 36106025 PMCID: PMC9465485 DOI: 10.3389/fmolb.2022.948898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) has a complex and unique tumor microenvironment (TME). Due to the physical barrier formed by the desmoplastic stroma, the delivery of drugs to the tumor tissue is limited. The TME also contributes to resistance to various immunotherapies such as cancer vaccines, chimeric antigen receptor T cell therapy and immune checkpoint inhibitors. Overcoming and/or modulating the TME is therefore one of the greatest challenges in developing new therapeutic strategies for PC. Nanoparticles have been successfully used as drug carriers and delivery systems in cancer therapy. Recent experimental and engineering developments in nanotechnology have resulted in increased drug delivery and improved immunotherapy for PC. In this review we discuss and analyze the current nanoparticle-based immunotherapy approaches that are at the verge of clinical application. Particularly, we focus on nanoparticle-based delivery systems that improve the effectiveness of PC immunotherapy. We also highlight current clinical research that will help to develop new therapeutic strategies for PC and especially targeted immunotherapies based on immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Gaetan Aime Noubissi Nzeteu
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
- *Correspondence: N. Helge Meyer, ; Gaetan Aime Noubissi Nzeteu,
| | - Bernhard F. Gibbs
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Nika Kotnik
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Achim Troja
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
| | - Maximilian Bockhorn
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
| | - N. Helge Meyer
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, Oldenburg, Germany
- *Correspondence: N. Helge Meyer, ; Gaetan Aime Noubissi Nzeteu,
| |
Collapse
|
11
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
It Takes Two to Tango: Potential Prognostic Impact of Circulating TGF-Beta and PD-L1 in Pancreatic Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070960. [PMID: 35888050 PMCID: PMC9323895 DOI: 10.3390/life12070960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with rising incidence and poor prognosis. The lack of reliable prognostic biomarkers hampers the individual evaluation of the survival and recurrence potential. Methods: Here, we investigate the value of plasma levels of two potential key players in molecular mechanisms underlying PDAC aggressiveness and immune evasion, soluble TGF-beta (sTGF-beta) and sPD-L1, in both metastatic and radically-resected PDAC. To this aim we prospectively enrolled 38 PDAC patients and performed appropriate statistical analyses in order to evaluate their correlation, and role in the prediction of disease relapse/progression, and patients’ outcome. Results: Metastatic patients showed lower levels of circulating sTGF-beta and higher levels of sPD-L1 compared to radically-resected patients. Moreover, a decrease in sTGF-beta levels (but not sPD-L1) was significantly associated with disease relapse in radically-resected patients. We also observed lower sTGF-beta at disease progression after first-line chemotherapy in metastatic patients, though this change was not statistically significant. We found a significant correlation between the levels of sTGF-beta and sPD-L1 before first-line chemotherapy. Conclusions: These findings support the possible interaction of TGF-beta and PD-L1 pathways and suggest that sTGF-beta and sPD-L1 might synergize and be new potential blood-based biomarkers.
Collapse
|
13
|
Wu K, Liu Y, Liu L, Peng Y, Pang H, Sun X, Xia D. Emerging Trends and Research Foci in Tumor Microenvironment of Pancreatic Cancer: A Bibliometric and Visualized Study. Front Oncol 2022; 12:810774. [PMID: 35515122 PMCID: PMC9063039 DOI: 10.3389/fonc.2022.810774] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/21/2022] [Indexed: 01/07/2023] Open
Abstract
Background Pancreatic cancer (PC) is a serious disease with high mortality. The tumor microenvironment plays a key role in the occurrence and development of PC. The purpose of this study is to analyze trends by year, country, institution, journal, reference and keyword in publications on the PC microenvironment and to predict future research hotspots. Methods The Web of Science Core Collection was used to search for publications. We analyzed the contributions of various countries/regions, institutes, and authors and identified research hotspots and promising future trends using the CiteSpace and VOSviewer programs. We also summarized relevant completed clinical trials. Results A total of 2,155 papers on the PC microenvironment published between 2011 and 2021 were included in the study. The number of publications has increased every year. The average number of citations per article was 32.69. The USA had the most publications, followed by China, and a total of 50 influential articles were identified through co-citation analysis. Clustering analysis revealed two clusters of keywords: basic research and clinical application. The co-occurrence cluster analysis showed glutamine metabolism, carcinoma-associated fibroblasts, oxidative phosphorylation as the highly concerned research topics of basic research in recently. The three latest hot topics in clinical application are liposomes, endoscopic ultrasound and photodynamic therapy. Conclusion The number of publications and research interest have generally increased, and the USA has made prominent contributions to the study of the tumor microenvironment of PC. The current research hotspots mainly focus on energy metabolism in the hypoxic tumor microenvironment, cancer associated fibroblasts in regulating the tumor microenvironment, accurate diagnosis, drug delivery and new treatments.
Collapse
Affiliation(s)
- Kaiwen Wu
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China.,Southwest Jiaotong University College of Medicine, Southwest Jiaotong University Affiliated Chengdu Third People's Hospital, Chengdu, China
| | - Ye Liu
- Naval Medical University, Shanghai, China
| | - Lei Liu
- Medical Research Center, Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yunlan Peng
- Southwest Jiaotong University College of Medicine, Southwest Jiaotong University Affiliated Chengdu Third People's Hospital, Chengdu, China
| | - Honglin Pang
- Southwest Jiaotong University College of Medicine, Southwest Jiaotong University Affiliated Chengdu Third People's Hospital, Chengdu, China
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Demeng Xia
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
| |
Collapse
|
14
|
Zhang F, Niu M, Wang L, Liu Y, Shi L, Cao J, Mi W, Ma Y, Liu J. Systemic-Immune-Inflammation Index as a Promising Biomarker for Predicting Perioperative Ischemic Stroke in Older Patients Who Underwent Non-cardiac Surgery. Front Aging Neurosci 2022; 14:865244. [PMID: 35431888 PMCID: PMC9010030 DOI: 10.3389/fnagi.2022.865244] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Objective This study aimed to investigate the clinical prognostic values of the preoperative systemic-immune-inflammation index (SII) in older patients undergoing non-cardiac surgery, using perioperative ischemic stroke as the primary outcome. Methods This retrospective cohort study included older patients who underwent non-cardiac surgery between January 2008 and August 2019. The patients were divided into SII < 583 and SII ≥ 583 group according to the optimal SII cut-off value. The outcome of interest was ischemic stroke within 30 days after surgery. Primary, sensitivity, and subgroup analyses were performed to confirm that preoperative SII qualifies as a promising, independent prognostic indicator. Propensity score matching (PSM) analysis was further applied to address the potential residual confounding effect of covariates to examine the robustness of our results. Results Among the 40,670 included patients with a median age of 70 years (interquartile range: 67, 74), 237 (0.58%) experienced an ischemic stroke within 30 days after surgery. SII ≥ 583 was associated with an increased risk of perioperative ischemic stroke in multivariate regression analysis [odds ratio (OR), 1.843; 95% confidence interval (CI), 1.369-2.480; P < 0.001]. After PSM adjustment, all covariates were well balanced between the two groups. The correlation between the SII and perioperative ischemic stroke remained significantly robust (OR: 2.195; 95% CI: 1.574-3.106; P < 0.001) in the PSM analysis. Conclusion Preoperative SII, which includes neutrophil, platelet, and lymphocyte counts obtained from routine blood analysis, was a potential prognostic biomarker for predicting perioperative ischemic stroke after non-cardiac surgery in elderly older patients. An elevated SII, based on an optimal cut-off value of 583, was an independent risk factor for perioperative ischemic stroke.
Collapse
Affiliation(s)
- Faqiang Zhang
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mu Niu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yanhong Liu
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Likai Shi
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiangbei Cao
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weidong Mi
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yulong Ma
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Yulong Ma,
| | - Jing Liu
- Anesthesia and Operation Center, The First Medical Center, Chinese PLA General Hospital, Beijing, China,Jing Liu,
| |
Collapse
|
15
|
Abstract
Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany
| | - Jessica Pahle
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Glorieux C, Xia X, You X, Wang Z, Han Y, Yang J, Noppe G, Meester CD, Ling J, Robert A, Zhang H, Li SP, Wang H, Chiao PJ, Zhang L, Li X, Huang P. Cisplatin and gemcitabine exert opposite effects on immunotherapy with PD-1 antibody in K-ras-driven cancer. J Adv Res 2021; 40:109-124. [PMID: 36100320 PMCID: PMC9481954 DOI: 10.1016/j.jare.2021.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Two common chemotherapeutic drugs, cisplatin and gemcitabine, exert opposite effect on the efficacy of PD-1 antibody in K-ras-driven cancers. Gemcitabine antagonizes PD-1Ab due to its inhibition on T cell infiltration in tumor tissues. Combination PD-1Ab and cisplatin leads to complete tumor eradication in vivo due to activation of the cGAS-mediated immune response. The impact of drugs on T cell functions should be considered as a critical factor in selecting drugs for immunochemotherapy to achieve optimal therapeutic outcome.
Introduction Immunochemotherapy using PD-1/PD-L1 antibodies in combination with chemotherapeutic agents has become a mainstream treatment for cancer patients, but it remains unclear which drug combinations would produce best therapeutic outcome. Objectives The purpose of this study was to investigate two common chemotherapeutic drugs, gemcitabine and cisplatin, for their impacts on the therapeutic efficacy of PD-1 antibody in K-ras-driven cancers known to overexpress PD-L1. Methods Both in vitro assays and syngeneic mouse tumor models were used in this study. Biochemical and molecular assays were used to determine the effects of drugs on T cell functions in cell culture models and in mouse/human tumor tissues. Allograft tumor models with K-ras mutation were used to investigate the combination effect of gemcitabine or cisplatin with immunotherapy. Data of lung cancer patients with K-ras mutation treated with cisplatin and toripalimab were analyzed to evaluate the clinical relevance of the lab findings. Results Cisplatin and gemcitabine unexpectedly exert opposite effect on the therapeutic activity of PD-1 antibody in vivo. Gemcitabine antagonizes the therapeutic effect of PD-1 antibody due to its significant inhibition on CD8+ T cell infiltration, which was observed both in mouse tumor allografts and in human pancreatic cancer tissues. In contrast, cisplatin shows synergistic activity with PD-1 antibody by activation of CD8+ T cells through the DNA damage-mediated cGAS-STING sensing mechanism, leading to increase of T cell infiltration and secretion of antitumor cytokines. Clinical data show that a combination of cisplatin with PD-1 antibody toripalimab could be effective in advanced lung cancer patients with K-ras mutation who failed prior therapies. Conclusions Our study shows that a key factor in selecting chemotherapeutic agents for immunochemotherapy is the drug’s impact on T cell functions, and that cisplatin-based chemotherapy is an excellent choice for combination with immune checkpoint antibody to achieve favorable clinical outcome.
Collapse
|
17
|
Jin S, Wang Q, Wu H, Pang D, Xu S. Oncolytic viruses for triple negative breast cancer and beyond. Biomark Res 2021; 9:71. [PMID: 34563270 PMCID: PMC8466906 DOI: 10.1186/s40364-021-00318-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Biological therapy is considered an alternative treatment capable of eliciting the same effects on tumors as surgery, radiotherapy, and chemotherapy. As a major player in biological therapy, oncolytic viruses (OVs) have attracted great attention and achieved good results. Specifically, the successful application of OVs in head and neck cancer, as well as melanoma, promoted its research in triple negative breast cancer (TNBC). TNBC is a high-risk molecular type of breast cancer, characterized by strong invasion, easy recurrence, and metastasis. Due to the absence of estrogen and progesterone receptors, as well as the absence of overexpression or gene amplification of human epidermal growth factor receptor 2 (HER2), endocrine therapy and anti HER-2 targeted therapy have proven ineffective. Although chemotherapy has shown substantial efficacy in some TNBC patients, the occurrence of drug resistance and poor prognosis have prompted the exploration of new and effective treatment methods. The emerging concept of OVs provides a new platform to treat TNBC. Indeed, several studies have confirmed the therapeutic effects of OVs in TNBC. Numerous studies have also investigated the efficacy of OVs in other malignances, including solid tumor clinical trials, thus further demonstrating the promising application of oncolytic virotherapy for TNBC. The primary focus of the current review is the examination of OV mechanisms underlying their antitumor properties, while also summarizing the ongoing progress in OV research regarding TNBC treatment, as well as the various combinatorial strategies comprising OVs and other therapies. We also briefly introduce specific relevant clinical trials and discuss some of the progress in the research of novel OVs for the treatment of other malignancies, thereby affirming the significant therapeutic potential of OVs for the treatment of TNBC, as well as other cancers.
Collapse
Affiliation(s)
- Shengye Jin
- Harbin Medical University, 157 Baojian Road, Harbin, 150086, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China
| | - Hao Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China. .,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China.
| |
Collapse
|
18
|
Guo J, Wang Y, Chen J, Qiu W, Chen W. Systematic review and trial sequential analysis of high-intensity focused ultrasound combined with chemotherapy versus chemotherapy in the treatment of unresectable pancreatic ductal adenocarcinoma. Int J Hyperthermia 2021; 38:1375-1383. [PMID: 34541997 DOI: 10.1080/02656736.2021.1962550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE This study aimed to compare the survival benefits between high-intensity focused ultrasound (HIFU) combined with chemotherapy and chemotherapy alone in patients with unresectable pancreatic ductal adenocarcinoma (PDAC). METHODS All randomized clinical trials (RCTs) and observational studies were systematically searched through the databases of PubMed, EMBASE, CNKi and CQVIP up to December 2020. Case reports, case series and nonsystematic reviews were excluded. A meta-analysis was conducted to generate combined hazard ratios (HRs) with 95% confidence intervals (CI) for overall survival (OS). RESULTS Seven trials, containing a total of 992 patients, were included in this study. The meta-analysis showed that a combination of HIFU and chemotherapy increased overall survival compared with chemotherapy alone, with a pooled HR of 0.40 (95% confidence interval [CI], 0.28-0.58). The combined therapy group had a significant advantage in 1-year survival rate (OR: 0.35, 95% CI: 0.22-0.53, p = 0.00). The trial sequence analysis (TSA) showed that there were enough trials to control for random errors. CONCLUSION Our analysis suggests that HIFU combined with chemotherapy intravenously will prolong survival for unresectable PDAC patients. The TSA showed that the survival benefit of combined therapy was definitive and there was no need to expand the sample size for repetitive exploration.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.,Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunbing Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinyun Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Wensheng Qiu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.,Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Huang Y, Yan X, Ren T, Yi F, Li Q, Zhang C. The safety and efficacy of chemotherapy combined with immunotherapy for pancreatic cancer: A meta-analysis. Medicine (Baltimore) 2021; 100:e26673. [PMID: 34398033 PMCID: PMC8294910 DOI: 10.1097/md.0000000000026673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Since the combination of chemotherapy and immunotherapy, such as new molecular targeted drugs or vaccines, is controversial in terms of survival advantages compared with chemotherapy therapy alone, we conducted a meta-analysis to compare the efficacy and safety of immunotherapy combined with chemotherapy and chemotherapy alone for advanced pancreatic cancer. METHODS We searched PubMed, Embase, and Cochrane Library from the establishment of the database to November 2020. We included some studies that reported pancreatic cancer patients receiving immunotherapy, and we excluded duplicate publications, research without full text, incomplete information or inability to conduct data extraction, animal experiments, reviews, and systematic reviews. RESULTS The risk ratio of the objective response rate and disease control rate was 1.10 (95% confidence interval [CI]: 0.88-1.38) and 1.17 (95% CI: 1.06-1.31), respectively, indicating that there was no significant difference between the objective response rate of combination therapy and chemotherapy alone, while the disease control rate of the combined treatment was higher than that of chemotherapy alone. The hazard ratio of overall survival and progression-free survival was 0.91 (95% CI: 0.82-1.01) and 0.87 (95% CI: 0.77-0.98), respectively, indicating that there was no significant difference between the overall survival of combination therapy and chemotherapy alone, while progression-free survival of the combined treatment was longer than that of chemotherapy alone. We also found that in addition to the combination treatment, the incidence of vomiting in pancreatic cancer was higher than that of chemotherapy alone, and the incidence of other complications was not significantly different from that of treatment alone. CONCLUSION Chemotherapy combined with immunotherapy for pancreatic cancer not only improves treatment efficiency but also does not cause serious adverse reactions. This treatment strategy should be widely used clinically.
Collapse
|
20
|
Li L, Ren T, Liu K, Li ML, Geng YJ, Yang Y, Li HF, Li XC, Bao RF, Shu YJ, Weng H, Gong W, Lau WY, Wu XS, Liu YB. Development and Validation of a Prognostic Nomogram Based on the Systemic Immune-Inflammation Index for Resectable Gallbladder Cancer to Predict Survival and Chemotherapy Benefit. Front Oncol 2021; 11:692647. [PMID: 34268122 PMCID: PMC8276054 DOI: 10.3389/fonc.2021.692647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives To investigate the prognostic significance of the systemic immune-inflammation index (SII) in patients after radical cholecystectomy for gallbladder cancer (GBC) using overall survival (OS) as the primary outcome measure. Methods Based on data from a multi-institutional registry of patients with GBC, significant prognostic factors after radical cholecystectomy were identified by multivariate Cox proportional hazards model. A novel staging system was established, visualized as a nomogram. The response to adjuvant chemotherapy was compared between patients in different subgroups according to the novel staging system. Results Of the 1072 GBC patients enrolled, 691 was randomly selected in the discovery cohort and 381 in the validation cohort. SII>510 was found to be an independent predictor of OS (hazard ratio [HR] 1.90, 95% confidence interval [CI] 1.42-2.54). Carbohydrate antigen 199(CA19-9), tumor differentiation, T stage, N stage, margin status and SII were involved in the nomogram. The nomogram showed a superior prediction compared with models without SII (1-, 3-, 5-year integrated discrimination improvement (IDI):2.4%, 4.1%, 5.4%, P<0.001), and compared to TNM staging system (1-, 3-, 5-year integrated discrimination improvement (IDI):5.9%, 10.4%, 12.2%, P<0.001). The C-index of the nomogram in predicting OS was 0.735 (95% CI 0.683-0.766). The novel staging system based on the nomogram showed good discriminative ability for patients with T2 or T3 staging and with negative lymph nodes after R0 resection. Adjuvant chemotherapy offered significant survival benefits to these patients with poor prognosis. Conclusions SII was an independent predictor of OS in patients after radical cholecystectomy for GBC. The new staging system identified subgroups of patients with T2 or T3 GBC with negative lymph nodes who benefited from adjuvant chemotherapy. Clinical Trial Registration ClinicalTrials.gov, identifier (NCT04140552).
Collapse
Affiliation(s)
- Lin Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tai Ren
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mao-Lan Li
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Jun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huai-Feng Li
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Chuan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run-Fa Bao
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Jun Shu
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Weng
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Gong
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan Yee Lau
- Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong
| | - Xiang-Song Wu
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Bin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Research Center of Biliary Tract Disease, Renji Hospital, Shanghai, China.,Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| |
Collapse
|
21
|
Galanopoulos M, Doukatas A, Gkeros F, Viazis N, Liatsos C. Room for improvement in the treatment of pancreatic cancer: Novel opportunities from gene targeted therapy. World J Gastroenterol 2021; 27:3568-3580. [PMID: 34239270 PMCID: PMC8240062 DOI: 10.3748/wjg.v27.i24.3568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/11/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the highest and in fact, unchanged mortality-associated tumor, with an exceptionally low survival rate due to its challenging diagnostic approach. So far, its treatment is based on a combination of approaches (such as surgical resection with or rarely without chemotherapeutic agents), but with finite limits. Thus, looking for additional space to improve pancreatic tumorigenesis therapeutic approach, research has focused on gene therapy with unexpectedly growing horizons not only for the treatment of inoperable pancreatic disease, but also for its early stages. In vivo gene delivery viral vectors, despite few disadvantages (possible immunogenicity, toxicity, mutagenicity, or high cost), could be one of the most efficient cancer gene therapeutic strategies for clinical application due to their superiority compared with other systems (ex vivo delivery strategies). Their dominance consists of simple preparation, easy operation and a wide range of functions. Adenoviruses are one of the most common used vectors, inducing strong immune as well as inflammatory reactions. Oncolytic virotherapy, using the above mentioned in vivo viral vectors, is one of the most promising non-pathogenic, highly-selective cytotoxic anti-cancer therapy using anti-cancer agents with high anti-tumor potency and strong oncolytic effect. There have been a variety of targeted therapeutic and pre-clinical strategies tested for gene therapy in pancreatic cancer such as gene-editing systems (e.g., clustered regularly interspaced palindromic repeats-Cas9), RNA interference technology (e.g., microRNAs, short hairpin RNA or small interfering RNA), adoptive immunotherapy and vaccination (e.g., chimeric antigen receptor T-cell therapy) with encouraging results.
Collapse
Affiliation(s)
- Michail Galanopoulos
- Department of Gastroenterology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Aris Doukatas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens GR 15772, Greece
| | - Filippos Gkeros
- Department of Gastroenterology, Evangelismos, Ophthalmiatreion Athinon and Polyclinic Hospitals, Athens 10676, Greece
| | - Nikos Viazis
- Department of Gastroenterology, Evangelismos, Ophthalmiatreion Athinon and Polyclinic Hospitals, Athens 10676, Greece
| | - Christos Liatsos
- Department of Gastroenterology, 401 General Military Hospital, Athens 11525, Greece
| |
Collapse
|
22
|
Sun K, Zhang XD, Liu XY, Lu P. YAP1 is a Prognostic Biomarker and Correlated with Immune Cell Infiltration in Pancreatic Cancer. Front Mol Biosci 2021; 8:625731. [PMID: 34150844 PMCID: PMC8207136 DOI: 10.3389/fmolb.2021.625731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Yes-associated protein-1 (YAP1) is an important effector of the Hippo pathway and has crosstalk with other cancer signaling pathways. It induces an immunosuppressive tumor microenvironment by activating pathways in several cellular components. However, the mechanisms by which it drives immune infiltration in pancreatic cancer remain poorly understood. We analyzed the expression of YAP1 as well as its prognostic value and correlations with immune infiltrates in various cancers, with a focus on pancreatic cancer. In particular, using the Oncomine database and Gene Expression Profiling Interactive Analysis (GEPIA) database, we found that YAP1 is differentially expressed between tumor tissues and control tissues in a number of cancers and in particular, is elevated in pancreatic cancer. Using the Kaplan–Meier plotter, GEPIA, and Long-term Outcome and Gene Expression Profiling database of pan-cancers (LOGpc), we further established the prognostic value of YAP1. We found that YAP1 expression was significantly related to outcomes in multiple types of cancer based on data from The Cancer Genome Atlas, particularly in pancreatic cancer. Correlations between YAP1 and immune cell infiltration and immune cell marker expression were examined using Tumor Immune Estimation Resource and GEPIA. High expression levels of YAP1 were significantly associated with a variety of immune markers and immune cell subsets in pancreatic cancer. These results suggest that YAP1 is correlated with patient outcomes and tumor immune cell infiltration in multiple cancer types and is a valuable prognostic biomarker in pancreatic cancer.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, China
| | - Xue-de Zhang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, China
| | - Xiao-Yang Liu
- Department of General Surgery, People's Hospital of Gansu Province, Lanzhou, China
| | - Pei Lu
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, China
| |
Collapse
|
23
|
Kiaie SH, Sanaei MJ, Heshmati M, Asadzadeh Z, Azimi I, Hadidi S, Jafari R, Baradaran B. Immune checkpoints in targeted-immunotherapy of pancreatic cancer: New hope for clinical development. Acta Pharm Sin B 2021; 11:1083-1097. [PMID: 34094821 PMCID: PMC8144893 DOI: 10.1016/j.apsb.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has been recently considered as a promising alternative for cancer treatment. Indeed, targeting of immune checkpoint (ICP) strategies have shown significant success in human malignancies. However, despite remarkable success of cancer immunotherapy in pancreatic cancer (PCa), many of the developed immunotherapy methods show poor therapeutic outcomes in PCa with no or few effective treatment options thus far. In this process, immunosuppression in the tumor microenvironment (TME) is found to be the main obstacle to the effectiveness of antitumor immune response induced by an immunotherapy method. In this paper, the latest findings on the ICPs, which mediate immunosuppression in the TME have been reviewed. In addition, different approaches for targeting ICPs in the TME of PCa have been discussed. This review has also synopsized the cutting-edge advances in the latest studies to clinical applications of ICP-targeted therapy in PCa.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Masoud Heshmati
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Saleh Hadidi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5173957616, Iran
| |
Collapse
|
24
|
Arias-Pinilla GA, Modjtahedi H. Therapeutic Application of Monoclonal Antibodies in Pancreatic Cancer: Advances, Challenges and Future Opportunities. Cancers (Basel) 2021; 13:1781. [PMID: 33917882 PMCID: PMC8068268 DOI: 10.3390/cancers13081781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer remains as one of the most aggressive cancer types. In the absence of reliable biomarkers for its early detection and more effective therapeutic interventions, pancreatic cancer is projected to become the second leading cause of cancer death in the Western world in the next decade. Therefore, it is essential to discover novel therapeutic targets and to develop more effective and pancreatic cancer-specific therapeutic agents. To date, 45 monoclonal antibodies (mAbs) have been approved for the treatment of patients with a wide range of cancers; however, none has yet been approved for pancreatic cancer. In this comprehensive review, we discuss the FDA approved anticancer mAb-based drugs, the results of preclinical studies and clinical trials with mAbs in pancreatic cancer and the factors contributing to the poor response to antibody therapy (e.g. tumour heterogeneity, desmoplastic stroma). MAb technology is an excellent tool for studying the complex biology of pancreatic cancer, to discover novel therapeutic targets and to develop various forms of antibody-based therapeutic agents and companion diagnostic tests for the selection of patients who are more likely to benefit from such therapy. These should result in the approval and routine use of antibody-based agents for the treatment of pancreatic cancer patients in the future.
Collapse
Affiliation(s)
- Gustavo A. Arias-Pinilla
- Department of Oncology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| | - Helmout Modjtahedi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| |
Collapse
|
25
|
Craig DJ, Nanavaty NS, Devanaboyina M, Stanbery L, Hamouda D, Edelman G, Dworkin L, Nemunaitis JJ. The abscopal effect of radiation therapy. Future Oncol 2021; 17:1683-1694. [PMID: 33726502 DOI: 10.2217/fon-2020-0994] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Radiation therapy (RT) in some cases results in a systemic anticancer response known as the abscopal effect. Multiple hypotheses support the role of immune activation initiated by RT-induced DNA damage. Optimal radiation dose is necessary to promote the cGAS-STING pathway in response to radiation and initiate an IFN-1 signaling cascade that promotes the maturation and migration of dendritic cells to facilitate antigen presentation and stimulation of cytotoxic T cells. T cells then exert a targeted response throughout the body at areas not subjected to RT. These effects are further augmented through the use of immunotherapeutic drugs resulting in increased T-cell activity. Tumor-infiltrating lymphocyte presence and TREX1, KPNA2 and p53 signal expression are being explored as prognostic biomarkers.
Collapse
Affiliation(s)
- Daniel J Craig
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Nisha S Nanavaty
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Monika Devanaboyina
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Laura Stanbery
- Department of Medical Affairs, Gradalis, Inc, Carrollton, TX 75006, USA
| | - Danae Hamouda
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Gerald Edelman
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA.,Promedica Health System, Toledo, OH 43606, USA
| | - Lance Dworkin
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - John J Nemunaitis
- Department of Medical Affairs, Gradalis, Inc, Carrollton, TX 75006, USA
| |
Collapse
|
26
|
Javadrashid D, Baghbanzadeh A, Hemmat N, Hajiasgharzadeh K, Nourbakhsh NS, Lotfi Z, Baradaran B. Envisioning the immune system to determine its role in pancreatic ductal adenocarcinoma: Culprit or victim? Immunol Lett 2021; 232:48-59. [PMID: 33647329 DOI: 10.1016/j.imlet.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma has a poor 5-year survival rate that makes it one of the most fatal human malignancies. Unfortunately, despite the serious improvement in the survival of most cancers, there has been a minor advance in pancreatic cancer (PC). Major advances in PC treatment have been assessed over the bygone twenty-year time span, yet some complications make the survival of the patients shorter. Getting to know the PC tumor microenvironment (TME) and the immunosuppression that happens during the pathogenesis of this malignancy could be a great help to understand the nature of the immune system and find better treatment modalities based on it. Although many immune cells are present in PC, immunosuppression of the TME leads to severe immune dysfunction in the patients, therefore immune effectors fail to do their functions. Lately, immunotherapy has been presented as one of the promising treatment strategies for different malignancies including hepatocellular carcinoma, melanoma, non-small cell lung cancer, and kidney cancer. In PC, there has been shown promising results centered around the TME, immune checkpoint inhibitors, cancer vaccines, and other approaches especially when used as combinational therapy. Here we dig a little deeper into the role of the immune system and possible therapeutic options in the treatment of PC.
Collapse
Affiliation(s)
- Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ziba Lotfi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Fritz I, Wagner P, Olsson H. Improved survival in several cancers with use of H 1-antihistamines desloratadine and loratadine. Transl Oncol 2021; 14:101029. [PMID: 33550204 PMCID: PMC7868613 DOI: 10.1016/j.tranon.2021.101029] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/21/2023] Open
Abstract
Improved cancer survival with use of antihistamines desloratadine and loratadine. Improved survival seen in tumors that respond to immune checkpoint therapy. A – potentially immunological – anti-tumor effect of desloratadine and loratadine.
Background We have previously shown an association with substantially improved survival in breast cancer and melanoma for desloratadine and loratadine users, and set out to find whether an improved survival can be seen in tumors with and without a known response to immune checkpoint therapy, such as anti-CTLA-4 or anti-PD-1. Methods We investigated survival and use of six common H1-antihistamines (cetirizine, clemastine, desloratadine, ebastine, fexofenadine and loratadine) in a nation-wide cohort of all 429,198 Swedish patients with ten types of immunogenic (gastric, colorectal/anal, pancreatic, lung, breast, prostate, kidney, and bladder cancer, melanoma and Hodgkin lymphoma) and six non-immunogenic (liver, uterine, ovarian, brain/CNS, and thyroid cancer and non-Hodgkin lymphoma) tumors diagnosed 2006–2017. Follow-up was until 2019–02–24. Findings Desloratadine use was associated with an improved survival for all immunogenic tumors, but not for the non-immunogenic ones. Loratadine use was associated with improved survival for some tumors. Use of the other antihistamines could not be shown to be consistently associated with improved survival to a statistically significant degree. Interpretation Our hypothesis is that our findings result from immune checkpoint inhibition, and we believe both desloratadine and loratadine should be tested in randomized clinical trials as treatment of immunogenic tumors, with priority given to trials of desloratadine as treatment of tumors with few therapy options and dismal prognoses, such as pancreatic cancer. If our results can be confirmed in a clinical setting, new, potentially curative, therapies could result for several tumors, including ones with dire prognoses and limited treatment options.
Collapse
Affiliation(s)
- Ildikó Fritz
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden.
| | - Philippe Wagner
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden; Department of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Uchino Y, Muroya D, Yoshitomi M, Shichijo S, Yamada A, Sasada T, Yamada T, Okuda K, Itoh K, Yutani S. Investigation of factors associated with reduced clinical benefits of personalized peptide vaccination for pancreatic cancer. Mol Clin Oncol 2020; 14:39. [PMID: 33437477 PMCID: PMC7788558 DOI: 10.3892/mco.2020.2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/12/2020] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to determine the factors associated with reduced clinical benefits of personalized peptide vaccination (PPV) for pancreatic cancer. Phase II PPV clinical trials comprising 309 (8 non-advanced and 301 advanced-stage) patients with pancreatic cancer were conducted. Two to four peptides were selected among a set of 31 different peptides as vaccine candidates for personalized peptide vaccination based on human leukocyte antigen types and preexisting peptide-specific IgG levels, and subcutaneously injected. The selected peptides were subcutaneously injected. Of the 309 patients, 81 failed to complete the 1st PPV cycle due to rapid disease progression, and their median overall survival [2.1 months; 95% confidence interval (CI), 1.8-2.7] was significantly shorter than that of the remaining 228 patients (8.4 months; 95% CI, 8.4-9.9; P<0.01). ‘Immune boosting’ was defined when IgG levels before vaccination increased more than 2-fold after vaccination. Immune boosting was observed in the majority of patients with PPV irrespective of whether or not they received concomitant chemotherapy. Additionally, patients demonstrating immune boosting exhibited longer survival rates. Although the positive-response rates and peptide-specific IgG levels in pre- and post-vaccination samples differed among the 31 peptides, patients exhibiting immune boosting in response to each of the vaccinated peptides demonstrated longer survival times. Pre-vaccination factors associated with reduced clinical benefits were high c-reactive protein (CRP) levels, high neutrophil counts, lower lymphocyte and red blood cell counts, advanced disease stage and the greater number of chemotherapy courses prior to the PPV treatment. The post-vaccination factors associated with lower clinical benefits were PPV monotherapy and lower levels of immune boosting. In conclusion, pre-vaccination inflammatory signatures, rather than pre- or post-vaccination immunological signatures, were associated with reduced clinical benefits of personalized peptide vaccination (PPV) for pancreatic cancer.
Collapse
Affiliation(s)
- Yoshihiro Uchino
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839-0823, Japan.,Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Daisuke Muroya
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Munehiro Yoshitomi
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Shigeki Shichijo
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839-0823, Japan
| | - Akira Yamada
- Cancer Vaccine Development Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Tetsuro Sasada
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Kanagawa, Yokohama 241-8515, Japan
| | - Teppei Yamada
- Department of Gastroenterological Surgery, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Koji Okuda
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839-0823, Japan
| | - Shigeru Yutani
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839-0823, Japan
| |
Collapse
|
29
|
Therapeutic response assessment in pancreatic ductal adenocarcinoma: society of abdominal radiology review paper on the role of morphological and functional imaging techniques. Abdom Radiol (NY) 2020; 45:4273-4289. [PMID: 32936417 DOI: 10.1007/s00261-020-02723-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related death in the United States and is projected to be the second by 2030. Systemic combination chemotherapy is considered an essential first-line treatment for the majority of patients with PDA, in both the neoadjuvant and palliative settings. In addition, a number of novel therapies are being tested in clinical trials for patients with advanced PDA. In all cases, accurate and timely assessment of treatment response is critical to guide therapy, reduce drug toxicities and cost from a failing therapy, and aid adaptive clinical trials. Conventional morphological imaging has significant limitations, especially in the context of determining primary tumor response and resectability following neoadjuvant therapies. In this article, we provide an overview of current therapy options for PDA, highlight several morphological imaging findings that may be helpful to reduce over-staging following neoadjuvant therapy, and discuss a number of emerging imaging, and non-imaging, tools that have shown promise in providing a more precise quantification of disease burden and treatment response in PDA.
Collapse
|
30
|
Zhang L, Wang W, Wang R, Zhang N, Shang H, Bi Y, Chen D, Zhang C, Li L, Yin J, Zhang H, Cao Y. Reshaping the Immune Microenvironment by Oncolytic Herpes Simplex Virus in Murine Pancreatic Ductal Adenocarcinoma. Mol Ther 2020; 29:744-761. [PMID: 33130310 DOI: 10.1016/j.ymthe.2020.10.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the major type of pancreatic malignancy with very poor prognosis. Despite the promising results of immune checkpoint inhibitors (ICIs) in some solid tumors, immunotherapy is less effective for PDAC due to its immunosuppressive tumor microenvironment (TME). In this report, we established an immunocompetent syngeneic PDAC model and investigated the effect of oncolytic herpes simplex virus-1 (oHSV) on the composition of TME immune cells. The oHSV treatment significantly reduced tumor burden and prolonged the survival of tumor-bearing mice. Further, by single cell RNA sequencing (scRNA-seq) and multicolor fluorescence-activated cell sorting (FACS) analysis, we demonstrated that oHSV administration downregulated tumor-associated macrophages (TAMs), especially the anti-inflammatory macrophages, and increased the percentage of tumor-infiltrating lymphocytes, including activated cytotoxic CD8+ T cells and T helper (Th)1 cells. Besides, the combination of oHSV and immune checkpoint modulators extended the lifespan of the tumor-bearing mice. Overall, our data suggested that oHSV reshapes the TME of PDAC by boosting the immune activity and leads to improved responsiveness of PDAC to immunotherapy.
Collapse
Affiliation(s)
- Liming Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, PR China
| | - Ruikun Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Nianchao Zhang
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Hang Shang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China
| | - Yang Bi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China
| | - Da Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China
| | - Cuizhu Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Long Li
- Department of Immunology, Tianjin Medical University, Tianjin 300070, PR China; Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin 300070, PR China
| | - Jie Yin
- Department of Immunology, Tianjin Medical University, Tianjin 300070, PR China; Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin 300070, PR China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, PR China.
| | - Youjia Cao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
31
|
Mejia I, Bodapati S, Chen KT, Díaz B. Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines 2020; 8:E401. [PMID: 33050151 PMCID: PMC7601142 DOI: 10.3390/biomedicines8100401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) originates in the glandular compartment of the exocrine pancreas. Histologically, PDAC tumors are characterized by a parenchyma that is embedded in a particularly prominent stromal component or desmoplastic stroma. The unique characteristics of the desmoplastic stroma shape the microenvironment of PDAC and modulate the reciprocal interactions between cancer and stromal cells in ways that have profound effects in the pathophysiology and treatment of this disease. Here, we review some of the most recent findings regarding the regulation of PDAC cell invasion by the unique microenvironment of this tumor, and how new knowledge is being translated into novel therapeutic approaches.
Collapse
Affiliation(s)
- Isabel Mejia
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Sandhya Bodapati
- College of Osteopathic Medicine, Pacific Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Kathryn T. Chen
- Department of Surgery, Division of Surgical Oncology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Begoña Díaz
- Department of Medicine, Division of Medical Hematology Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Zagorulya M, Duong E, Spranger S. Impact of anatomic site on antigen-presenting cells in cancer. J Immunother Cancer 2020; 8:e001204. [PMID: 33020244 PMCID: PMC7537336 DOI: 10.1136/jitc-2020-001204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Checkpoint blockade immunotherapy (CBT) can induce long-term clinical benefits in patients with advanced cancer; however, response rates to CBT vary by cancer type. Cancers of the skin, lung, and kidney are largely responsive to CBT, while cancers of the pancreas, ovary, breast, and metastatic lesions to the liver respond poorly. The impact of tissue-resident immune cells on antitumor immunity is an emerging area of investigation. Recent evidence indicates that antitumor immune responses and efficacy of CBT depend on the tissue site of the tumor lesion. As myeloid cells are predominantly tissue-resident and can shape tumor-reactive T cell responses, it is conceivable that tissue-specific differences in their function underlie the tissue-site-dependent variability in CBT responses. Understanding the roles of tissue-specific myeloid cells in antitumor immunity can open new avenues for treatment design. In this review, we discuss the roles of tissue-specific antigen-presenting cells (APCs) in governing antitumor immune responses, with a particular focus on the contributions of tissue-specific dendritic cells. Using the framework of the Cancer-Immunity Cycle, we examine the contributions of tissue-specific APC in CBT-sensitive and CBT-resistant carcinomas, highlight how these cells can be therapeutically modulated, and identify gaps in knowledge that remain to be addressed.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ellen Duong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefani Spranger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
Saka D, Gökalp M, Piyade B, Cevik NC, Arik Sever E, Unutmaz D, Ceyhan GO, Demir IE, Asimgil H. Mechanisms of T-Cell Exhaustion in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12082274. [PMID: 32823814 PMCID: PMC7464444 DOI: 10.3390/cancers12082274] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
T-cell exhaustion is a phenomenon that represents the dysfunctional state of T cells in chronic infections and cancer and is closely associated with poor prognosis in many cancers. The endogenous T-cell immunity and genetically edited cell therapies (CAR-T) failed to prevent tumor immune evasion. The effector T-cell activity is perturbed by an imbalance between inhibitory and stimulatory signals causing a reprogramming in metabolism and the high levels of multiple inhibitory receptors like programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and Lymphocyte-activation gene 3 (Lag-3). Despite the efforts to neutralize inhibitory receptors by a single agent or combinatorial immune checkpoint inhibitors to boost effector function, PDAC remains unresponsive to these therapies, suggesting that multiple molecular mechanisms play a role in stimulating the exhaustion state of tumor-infiltrating T cells. Recent studies utilizing transcriptomics, mass cytometry, and epigenomics revealed a critical role of Thymocyte selection-associated high mobility group box protein (TOX) genes and TOX-associated pathways, driving T-cell exhaustion in chronic infection and cancer. Here, we will review recently defined molecular, genetic, and cellular factors that drive T-cell exhaustion in PDAC. We will also discuss the effects of available immune checkpoint inhibitors and the latest clinical trials targeting various molecular factors mediating T-cell exhaustion in PDAC.
Collapse
Affiliation(s)
- Didem Saka
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Muazzez Gökalp
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Betül Piyade
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Nedim Can Cevik
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Elif Arik Sever
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Derya Unutmaz
- Jackson Laboratory of Genomic Medicine, Farmington, CT 06032, USA;
| | - Güralp O. Ceyhan
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Ihsan Ekin Demir
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Hande Asimgil
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
34
|
Abdkarimi S, Razi Soofiyani S, Elham G, Mashhadi Abdolahi H, Safarzadeh E, Baradaran B. Targeting immune checkpoints: Building better therapeutic puzzle in pancreatic cancer combination therapy. Eur J Cancer Care (Engl) 2020; 29:e13268. [PMID: 32459388 DOI: 10.1111/ecc.13268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is related to a very weak diagnosis; the close parallel between disease incidence and mortality rates from pancreatic cancer reflects the fatal nature of this disease. Although early detection procedures are growing, they are not applicable yet for pancreatic cancer. The majority of cancer patients suffer from advanced disease, in which surgery has no potential effect. Based on the growing evidence, it is predicated that cancer immunotherapy alone or in combination will probably be an essential section of different cancer treatment methods. There are different kinds of immune processes, including various antitumour and tumour-promoting leukocytes. Moreover, tumour cells utilise numerous approaches to overwhelm the immune response. Use of antibody in the therapeutic protocols is proving significant success and is probably a key element of cancer treatment. This method is directed against numerous negative immunologic regulators and immune checkpoints. In the present review, the clinical outlines of immune checkpoint inhibition are discussed in pancreatic cancer.
Collapse
Affiliation(s)
- Sina Abdkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Goli Elham
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Mashhadi Abdolahi
- Tabriz Health Services Management Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Immunology and Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Mahmood J, Alexander AA, Samanta S, Kamlapurkar S, Singh P, Saeed A, Carrier F, Cao X, Shukla HD, Vujaskovic Z. A Combination of Radiotherapy, Hyperthermia, and Immunotherapy Inhibits Pancreatic Tumor Growth and Prolongs the Survival of Mice. Cancers (Basel) 2020; 12:cancers12041015. [PMID: 32326142 PMCID: PMC7226594 DOI: 10.3390/cancers12041015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Pancreatic cancer (PC) is the fourth-most-deadly cancer in the United States with a 5-year survival rate of only 8%. Unfortunately, only 10–20% of PC patients are candidates for surgery, with the vast majority of patients with locally-advanced disease undergoing chemotherapy and/or radiation therapy (RT). Current treatments are clearly inadequate and novel strategies are crucially required. We investigated a novel tripartite treatment (combination of tumor targeted hyperthermia (HT), radiation therapy (RT), and immunotherapy (IT)) to alter immunosuppressive PC-tumor microenvironment (TME). (2). Methods: In a syngeneic PC murine tumor model, HT was delivered before tumor-targeted RT, by a small animal radiation research platform (SARRP) followed by intraperitoneal injections of cytotoxic T-cell agonist antibody against OX40 (also known as CD134 or Tumor necrosis factor receptor superfamily member 4; TNFRSF4) that can promote T-effector cell activation and inhibit T-regulatory (T-reg) function. (3). Results: Tripartite treatment demonstrated significant inhibition of tumor growth (p < 0.01) up to 45 days post-treatment with an increased survival rate compared to any monotherapy. Flow cytometric analysis showed a significant increase (p < 0.01) in cytotoxic CD8 and CD4+ T-cells in the TME of the tripartite treatment groups. There was no tripartite-treatment-related toxicity observed in mice. (4). Conclusions: Tripartite treatment could be a novel therapeutic option for PC patients.
Collapse
Affiliation(s)
- Javed Mahmood
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
- Correspondence: ; Tel.: +1-410-706-5133
| | - Allen A. Alexander
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - Santanu Samanta
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - Shriya Kamlapurkar
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - Prerna Singh
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - Ali Saeed
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - France Carrier
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| | - Xuefang Cao
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Hem D Shukla
- Department of Neurology and Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA;
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.A.A.); (S.S.); (S.K.); (P.S.); (A.S.); (F.C.); (Z.V.)
| |
Collapse
|
36
|
Tomás-Bort E, Kieler M, Sharma S, Candido JB, Loessner D. 3D approaches to model the tumor microenvironment of pancreatic cancer. Theranostics 2020; 10:5074-5089. [PMID: 32308769 PMCID: PMC7163433 DOI: 10.7150/thno.42441] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/19/2020] [Indexed: 01/18/2023] Open
Abstract
In tumor engineering, 3D approaches are used to model components of the tumor microenvironment and to test new treatments. Pancreatic cancers are a cancer of substantial unmet need and survival rates are lower compared to any other cancer. Bioengineering techniques are increasingly applied to understand the unique biology of pancreatic tumors and to design patient-specific models. Here we summarize how extracellular and cellular elements of the pancreatic tumor microenvironment and their interactions have been studied in 3D cell cultures. We review selected clinical trials, assess the benefits of therapies interfering with the tumor microenvironment and address their limitations and future perspectives.
Collapse
|
37
|
Mendis S, Gill S. Cautious optimism-the current role of immunotherapy in gastrointestinal cancers. Curr Oncol 2020; 27:S59-S68. [PMID: 32368175 PMCID: PMC7193996 DOI: 10.3747/co.27.5095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has been described as the "fourth pillar" of oncology treatment, in conjunction with surgery, chemotherapy, and radiotherapy. However, the role of immunotherapy in gastrointestinal tumours is still evolving. Data for checkpoint inhibition in esophagogastric, hepatocellular, colorectal, and anal squamous cell carcinomas are expanding. In phase iii trials in the second-line setting, PD-1 inhibitors have demonstrated positive results for the subset of esophageal cancers that are positive for PD-L1 at a combined positive score of 10 or more. Based on results of phase ii trials, PD-1 inhibitors were approved in North America for use in PD-L1-positive chemorefractory gastric cancers, in hepatocellular carcinoma after sorafenib exposure, and in treatment-refractory deficient mismatch repair (dmmr) or high microsatellite instability (msi-h) tumours, regardless of tissue site. Combination use of PD-1 and ctla-4 inhibitors has been approved by the U.S. Food and Drug Administration for chemorefractory dmmr or msi-h colorectal cancer. Responses to checkpoint inhibition are durable, particularly in the dmmr or msi-h colorectal cancer cohort. As trials of combination immunotherapy, immunotherapy in combination with other systemic therapies, and immunotherapy in combination with other treatment modalities move forward in multiple tumour sites, cautious optimism is called for. The treatment landscape is continually changing, and expanded indications are likely to be just around the corner.
Collapse
Affiliation(s)
- S Mendis
- Medical Oncology, BC Cancer, Vancouver, BC
| | - S Gill
- Medical Oncology, BC Cancer, Vancouver, BC
| |
Collapse
|
38
|
Miller AL, Garcia PL, Yoon KJ. Developing effective combination therapy for pancreatic cancer: An overview. Pharmacol Res 2020; 155:104740. [PMID: 32135247 DOI: 10.1016/j.phrs.2020.104740] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a fatal disease. The five-year survival for patients with all stages of this tumor type is less than 10%, with a majority of patients dying from drug resistant, metastatic disease. Gemcitabine has been a standard of care for the treatment of pancreatic cancer for over 20 years, but as a single agent gemcitabine is not curative. Since the only therapeutic option for the over 80 percent of pancreatic cancer patients ineligible for surgical resection is chemotherapy with or without radiation, the last few decades have seen a significant effort to develop effective therapy for this disease. This review addresses preclinical and clinical efforts to identify agents that target molecular characteristics common to pancreatic tumors and to develop mechanism-based combination approaches to therapy. Some of the most promising combinations include agents that inhibit transcription dependent on BET proteins (BET bromodomain inhibitors) or that inhibit DNA repair mediated by PARP (PARP inhibitors).
Collapse
Affiliation(s)
- Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA.
| |
Collapse
|
39
|
Mirlekar B, Michaud D, Lee SJ, Kren NP, Harris C, Greene K, Goldman EC, Gupta GP, Fields RC, Hawkins WG, DeNardo DG, Rashid NU, Yeh JJ, McRee AJ, Vincent BG, Vignali DAA, Pylayeva-Gupta Y. B cell-Derived IL35 Drives STAT3-Dependent CD8 + T-cell Exclusion in Pancreatic Cancer. Cancer Immunol Res 2020; 8:292-308. [PMID: 32024640 PMCID: PMC7056532 DOI: 10.1158/2326-6066.cir-19-0349] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/13/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy characterized by a paucity of tumor-proximal CD8+ T cells and resistance to immunotherapeutic interventions. Cancer-associated mechanisms that elicit CD8+ T-cell exclusion and resistance to immunotherapy are not well-known. Here, using a Kras- and p53-driven model of PDA, we describe a mechanism of action for the protumorigenic cytokine IL35 through STAT3 activation in CD8+ T cells. Distinct from its action on CD4+ T cells, IL35 signaling in gp130+CD8+ T cells activated the transcription factor STAT3, which antagonized intratumoral infiltration and effector function of CD8+ T cells via suppression of CXCR3, CCR5, and IFNγ expression. Inhibition of STAT3 signaling in tumor-educated CD8+ T cells improved PDA growth control upon adoptive transfer to tumor-bearing mice. We showed that activation of STAT3 in CD8+ T cells was driven by B cell- but not regulatory T cell-specific production of IL35. We also demonstrated that B cell-specific deletion of IL35 facilitated CD8+ T-cell activation independently of effector or regulatory CD4+ T cells and was sufficient to phenocopy therapeutic anti-IL35 blockade in overcoming resistance to anti-PD-1 immunotherapy. Finally, we identified a circulating IL35+ B-cell subset in patients with PDA and demonstrated that the presence of IL35+ cells predicted increased occurrence of phosphorylated (p)Stat3+CXCR3-CD8+ T cells in tumors and inversely correlated with a cytotoxic T-cell signature in patients. Together, these data identified B cell-mediated IL35/gp130/STAT3 signaling as an important direct link to CD8+ T-cell exclusion and immunotherapy resistance in PDA.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- B-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Case-Control Studies
- Cell Proliferation/physiology
- Humans
- Immunotherapy, Adoptive/methods
- Interleukins/genetics
- Interleukins/immunology
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Inbred C57BL
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/immunology
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Daniel Michaud
- Department of Cell Biology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Samuel J Lee
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Nancy P Kren
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Cameron Harris
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Kevin Greene
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Emily C Goldman
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Ryan C Fields
- Department of Surgery, Barnes-Jewish Hospital and the Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - William G Hawkins
- Department of Surgery, Barnes-Jewish Hospital and the Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - David G DeNardo
- Department of Medicine, Barnes-Jewish Hospital and the Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Naim U Rashid
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Biostatistics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Surgery, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Autumn J McRee
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
40
|
The Systemic-immune-inflammation Index Independently Predicts Survival and Recurrence in Resectable Pancreatic Cancer and its Prognostic Value Depends on Bilirubin Levels: A Retrospective Multicenter Cohort Study. Ann Surg 2020; 270:139-146. [PMID: 29334554 DOI: 10.1097/sla.0000000000002660] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Our aim was to determine the prognostic significance of the systemic-immune-inflammation index (SIII) in patients with resectable pancreatic cancer, using cancer-specific survival as the primary outcome. BACKGROUND Pancreatic cancer is associated with a dysfunctional immune system and poor prognosis. We examined the prognostic significance of the SIII in patients with resectable pancreatic ductal adenocarcinoma (PDAC) and the effects of bilirubin on this index. METHODS We retrospectively assessed all pancreatic resections performed between 2004 and 2015 at 4 tertiary referral centers to identify pathologically confirmed PDAC patients. Baseline clinicopathologic characteristics, preoperative laboratory values such as absolute neutrophil, lymphocyte, and platelet counts, C-reactive protein, albumin, bilirubin, and CA19-9 levels, and also follow-up information, were collected. The associations of the calculated inflammatory indices with outcome were both internally and externally validated. RESULTS In all, 590 patients with resectable PDAC were included. The discovery and validation cohort included 170 and 420 patients, respectively. SIII >900 [hazard ratio (HR) 2.32, 95% confidence interval (CI) 1.55-3.48], lymph node ratio (HR 3.75, 95% CI 2.08-6.76), and CA19.9 >200 kU/L (HR 1.62, 95% CI 1.07-2.46) were identified as independent predictors of cancer-specific survival. Separate model analysis confirmed that preoperative SIII contributed significantly to prognostication. However, SIII appeared to lose its prognostic significance in patients with bilirubin levels above 200 μmol/L. CONCLUSIONS SIII is an independent predictor of cancer-specific survival and recurrence in patients with resectable PDAC. SIII may lose its prognostic significance in patients with high bilirubin levels. Properly designed prospective studies are needed to further confirm this hypothesis.
Collapse
|
41
|
Pandey R, Zhou M, Islam S, Chen B, Barker NK, Langlais P, Srivastava A, Luo M, Cooke LS, Weterings E, Mahadevan D. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) in Pancreatic Ductal Adenocarcinoma (PDA): An integrative analysis of a novel therapeutic target. Sci Rep 2019; 9:18347. [PMID: 31797958 PMCID: PMC6893022 DOI: 10.1038/s41598-019-54545-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
We investigated biomarker CEACAM6, a highly abundant cell surface adhesion receptor that modulates the extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDA). The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) RNA-Seq data from PDA patients were analyzed for CEACAM6 expression and evaluated for overall survival, association, enrichment and correlations. A CRISPR/Cas9 Knockout (KO) of CEACAM6 in PDA cell line for quantitative proteomics, mitochondrial bioenergetics and tumor growth in mice were conducted. We found CEACAM6 is over-expressed in primary and metastatic basal and classical PDA subtypes. Highest levels are in classical activated stroma subtype. CEACAM6 over-expression is universally a poor prognostic marker in KRAS mutant and wild type PDA. High CEACAM6 expression is associated with low cytolytic T-cell activity in both basal and classical PDA subtypes and correlates with low levels of T-REG markers. In HPAF-II cells knockout of CEACAM6 alters ECM-cell adhesion, catabolism, immune environment, transmembrane transport and autophagy. CEACAM6 loss increases mitochondrial basal and maximal respiratory capacity. HPAF-II CEACAM6−/− cells are growth suppressed by >65% vs. wild type in mice bearing tumors. CEACAM6, a key regulator affects several hallmarks of PDA including the fibrotic reaction, immune regulation, energy metabolism and is a novel therapeutic target in PDA.
Collapse
Affiliation(s)
- Ritu Pandey
- University of Arizona Cancer Center, University of Arizona, Tucson, USA. .,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, USA.
| | - Muhan Zhou
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Shariful Islam
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Baowei Chen
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Natalie K Barker
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Paul Langlais
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Anup Srivastava
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Moulun Luo
- Department of Medicine, College of Medicine, University of Arizona, Tucson, USA
| | - Laurence S Cooke
- University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - Eric Weterings
- University of Arizona Cancer Center, University of Arizona, Tucson, USA.,Department of Medicine, College of Medicine, University of Arizona, Tucson, USA.,Department of Radiation Oncology, College of Medicine, University of Arizona, Tucson, USA
| | - Daruka Mahadevan
- University of Arizona Cancer Center, University of Arizona, Tucson, USA. .,Department of Medicine, College of Medicine, University of Arizona, Tucson, USA.
| |
Collapse
|
42
|
Andersson R, Pereira CF, Bauden M, Ansari D. Is immunotherapy the holy grail for pancreatic cancer? Immunotherapy 2019; 11:1435-1438. [PMID: 31747808 DOI: 10.2217/imt-2019-0164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University & Skåne University Hospital, Lund, Sweden
| | - Carlos-Filipe Pereira
- Molecular Medicine & Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University & Skåne University Hospital, Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University & Skåne University Hospital, Lund, Sweden
| |
Collapse
|
43
|
Looi CK, Chung FFL, Leong CO, Wong SF, Rosli R, Mai CW. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J Exp Clin Cancer Res 2019; 38:162. [PMID: 30987642 PMCID: PMC6463646 DOI: 10.1186/s13046-019-1153-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/22/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal type of cancers, with an overall five-year survival rate of less than 5%. It is usually diagnosed at an advanced stage with limited therapeutic options. To date, no effective treatment options have demonstrated long-term benefits in advanced pancreatic cancer patients. Compared with other cancers, pancreatic cancer exhibits remarkable resistance to conventional therapy and possesses a highly immunosuppressive tumor microenvironment (TME). MAIN BODY In this review, we summarized the evidence and unique properties of TME in pancreatic cancer that may contribute to its resistance towards immunotherapies as well as strategies to overcome those barriers. We reviewed the current strategies and future perspectives of combination therapies that (1) promote T cell priming through tumor associated antigen presentation; (2) inhibit tumor immunosuppressive environment; and (3) break-down the desmoplastic barrier which improves tumor infiltrating lymphocytes entry into the TME. CONCLUSIONS It is imperative for clinicians and scientists to understand tumor immunology, identify novel biomarkers, and optimize the position of immunotherapy in therapeutic sequence, in order to improve pancreatic cancer clinical trial outcomes. Our collaborative efforts in targeting pancreatic TME will be the mainstay of achieving better clinical prognosis among pancreatic cancer patients. Ultimately, pancreatic cancer will be a treatable medical condition instead of a death sentence for a patient.
Collapse
Affiliation(s)
- Chin-King Looi
- 0000 0000 8946 5787grid.411729.8School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE) International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Chee-Onn Leong
- 0000 0000 8946 5787grid.411729.8School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- 0000 0000 8946 5787grid.411729.8Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Shew-Fung Wong
- 0000 0000 8946 5787grid.411729.8School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Rozita Rosli
- 0000 0001 2231 800Xgrid.11142.37UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Sri Kembangan, Selangor Malaysia
| | - Chun-Wai Mai
- 0000 0000 8946 5787grid.411729.8School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- 0000 0000 8946 5787grid.411729.8Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Murakami T, Hiroshima Y, Matsuyama R, Homma Y, Hoffman RM, Endo I. Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg 2019; 3:130-137. [PMID: 30923782 PMCID: PMC6422798 DOI: 10.1002/ags3.12225] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/08/2018] [Accepted: 11/04/2018] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer remains a highly recalcitrant disease despite the development of systemic chemotherapies. New treatment options are thus urgently required. Dense stromal formation, so-called "desmoplastic stroma," plays controversial roles in terms of pancreatic cancer growth, invasion, and metastasis. Cells such as cancer-associated fibroblasts, endothelial cells, and immune cells comprise the tumor microenvironment of pancreatic cancer. Pancreatic cancer is considered an immune-quiescent disease, but activation of immunological response in pancreatic cancer may contribute to favorable outcomes. Herein, we review the role of the tumor microenvironment in pancreatic cancer, with a focus on immunological aspects.
Collapse
Affiliation(s)
- Takashi Murakami
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yukihiko Hiroshima
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Ryusei Matsuyama
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yuki Homma
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Robert M. Hoffman
- AntiCancer, Inc.San DiegoCalifornia
- Department of SurgeryUniversity of CaliforniaSan DiegoCalifornia
| | - Itaru Endo
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
45
|
|
46
|
Pandit H, Hong YK, Li Y, Rostas J, Pulliam Z, Li SP, Martin RCG. Evaluating the Regulatory Immunomodulation Effect of Irreversible Electroporation (IRE) in Pancreatic Adenocarcinoma. Ann Surg Oncol 2019; 26:800-806. [PMID: 30610562 DOI: 10.1245/s10434-018-07144-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Irreversible electroporation (IRE) has been demonstrated as an effective local method for locally advanced (stage 3) pancreatic adenocarcinoma. Immune regulatory T cells (Tregs) induce immunosuppression of tumors by inhibiting patients' anti-tumor adaptive immune response. This study aimed to evaluate the immunomodulation effect of IRE to identify an ideal time point for potential adjuvant immunotherapy. METHODS This study prospectively evaluated an institutional review board-approved study of patients undergoing either in situ IRE or pancreatectomy. Patient blood samples were collected at different time points (before surgery [preOP] and on postoperative day [POD] 1, POD3, and POD5). Peripheral blood mononuclear cells (PBMCs) were isolated and evaluated for three different CD4 + Treg subsets (CD25 + CD4 +, CD4 + CD25 + FoxP3 +, CD4 + CD25 + FoxP3 -) by flow cytometry and analyzed for median fold change (MFC) between each two consecutive time points (MFC = log2(T2/T1)). RESULTS The study analyzed 15 patients with in situ IRE (n = 11) or pancreatectomy (PAN) (n = 4). In both groups, CD25 + CD4 + Tregs decreased on POD1 followed by a steady increase in pancreatectomy, whereas the trend in the IRE group reversed between D3 and D5 (MFC: IRE [- 0.01], PAN [+ 0.39]). For each period, CD4 + CD25 + FoxP3 + Tregs showed the most dramatic inverse effect, with D3 to D5 showing the most change (MFC: IRE [- 0.18], PAN [+ 0.39]). Also, CD4 + CD25 + FoxP3 - Tregs showed an inverse effect between D3 and D5 (MFC: IRE [- 0.25], PAN [+ 0.49]). Altogether, the Treg trend was inversely affected by the in situ IRE procedure, with the greatest cumulative significant change for all three Treg subsets between D3 and D5 (MFC ± SEM: IRE [- 0.24 ± 0.05], PAN [+ 0.37 ± 0.02]; p = 0.016). CONCLUSIONS The study data suggest that in situ IRE procedure-mediated Treg attenuation between POD3 and POD5 can provide a clinical window of opportunity for potentiating clinical efficacy in combination with immunotherapy.
Collapse
Affiliation(s)
- Harshul Pandit
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Young K Hong
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yan Li
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jack Rostas
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zachary Pulliam
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Su Ping Li
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert C G Martin
- Division of Surgical Oncology, Hiram C. Polk Jr. M.D. Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA. .,Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
47
|
Principe DR, Park A, Dorman MJ, Kumar S, Viswakarma N, Rubin J, Torres C, McKinney R, Munshi HG, Grippo PJ, Rana A. TGFβ Blockade Augments PD-1 Inhibition to Promote T-Cell-Mediated Regression of Pancreatic Cancer. Mol Cancer Ther 2018; 18:613-620. [PMID: 30587556 DOI: 10.1158/1535-7163.mct-18-0850] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/07/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains remarkably lethal with a 5-year survival rate of 8%. This is mainly attributed to the late stage of presentation, as well as widespread resistance to conventional therapy. In addition, PDAC tumors are largely nonimmunogenic, and most patients have displayed incomplete responses to cancer immunotherapies. Our group has previously identified TGFβ as a crucial repressor of antitumor immune function in PDAC, particularly with respect to cytotoxic T lymphocytes. However, pharmacologic inhibition of TGFβ signaling has had limited efficacy in clinical trials, failing to promote a significant antitumor immune response. Hence, in this work, we extend our analysis to identify and circumvent the mechanisms of resistance to TGFβ signal inhibition in PDAC. Consistent with our previous observations, adoptive transfer of TGFβ-insensitive CD8+ T cells led to the near complete regression of neoplastic disease in vivo However, we demonstrate that this cannot be recapitulated via global reduction in TGFβ signaling, through either genetic ablation or pharmacologic inhibition of TGFBR1. In fact, tumors with TGFβ signal inhibition displayed increased PD-L1 expression and had no observable change in antitumor immunity. Using genetic models of advanced PDAC, we then determined that concomitant inhibition of both TGFβ and PD-L1 receptors led to a reduction in the neoplastic phenotype, improving survival and reducing disease-associated morbidity in vivo Combined, these data strongly suggest that TGFβ and PD-L1 pathway inhibitors may synergize in PDAC, and this approach warrants clinical consideration.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois. .,University of Illinois College of Medicine, Chicago, Illinois.,Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Alex Park
- University of Illinois College of Medicine, Chicago, Illinois
| | - Matthew J Dorman
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Sandeep Kumar
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Navin Viswakarma
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Jonathan Rubin
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Carolina Torres
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ronald McKinney
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
48
|
Immunotherapy, Radiotherapy, and Hyperthermia: A Combined Therapeutic Approach in Pancreatic Cancer Treatment. Cancers (Basel) 2018; 10:cancers10120469. [PMID: 30486519 PMCID: PMC6316720 DOI: 10.3390/cancers10120469] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) has the highest mortality rate amongst all other cancers in both men and women, with a one-year relative survival rate of 20%, and a five-year relative survival rate of 8% for all stages of PC combined. The Whipple procedure, or pancreaticoduodenectomy, can increase survival for patients with resectable PC, however, less than 20% of patients are candidates for surgery at time of presentation. Most of the patients are diagnosed with advanced PC, often with regional and distant metastasis. In these advanced cases, chemotherapy and radiation have shown limited tumor control, and PC continues to be refractory to treatment and results in a poor survival outcome. In recent years, there has been intensive research on checkpoint inhibitor immunotherapy for PC, however, PC is characterized with dense stromal tissue and a tumor microenvironment (TME) that is highly immunosuppressive, which makes immunotherapy less effective. Interestingly, when immunotherapy is combined with radiation therapy (RT) and loco-regional hyperthermia (HT), it has demonstrated enhanced tumor responses. HT improves tumor killing via a variety of mechanisms, targeting both the tumor and the TME. Targeted HT raises the temperature of the tumor and surrounding tissues to 42–43 °C and makes the tumor more immunoresponsive. HT can also modulate the immune system of the TME by inducing and synthesizing heat shock proteins (HSP), which also activate an anti-tumor response. It is well known that HT can enhance RT-induced DNA damage in cancer cells and simultaneously help to oxygenate hypoxic regions. Thus, it is envisaged that combined HT and RT might have immunomodulatory effects in the PC-TME, making PC more responsive to immunotherapies. Moreover, the combined tripartite approach of immunotherapy, RT, and HT could reduce the overall toxicity associated with each individual therapy, while concomitantly enhancing the immunotherapeutic effect of overall individual therapies to treat local and metastatic PC. Thus, the use of a tripartite combinatorial approach could be promising and more efficacious than monotherapy or dual therapy to treat and increase the survival of the PC patients.
Collapse
|
49
|
Gao M, Lin M, Moffitt RA, Salazar MA, Park J, Vacirca J, Huang C, Shroyer KR, Choi M, Georgakis GV, Sasson AR, Talamini MA, Kim J. Direct therapeutic targeting of immune checkpoint PD-1 in pancreatic cancer. Br J Cancer 2018; 120:88-96. [PMID: 30377341 PMCID: PMC6325157 DOI: 10.1038/s41416-018-0298-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) hijacks innate cellular processes to promote cancer growth. We hypothesized that PC exploits PD-1/PD-L1 not only to avoid immune responses, but to directly enhance growth. We also hypothesized that immune checkpoint inhibitors (ICIs) have direct cytotoxicity in PC. We sought to elucidate therapeutic targeting of PD-1/PD-L1. METHODS PD-1 was assessed in PC cells, patient-derived organoids (PDOs), and clinical tissues. Then, PC cells were exposed to PD-L1 to evaluate proliferation. To test PD-1/PD-L1 signaling, cells were exposed to PD-L1 and MAPK was examined. Radio-immunoconjugates with anti-PD-1 drugs were developed to test uptake in patient-derived tumor xenografts (PDTXs). Next, PD-1 function was assessed by xenografting PD-1-knockdown cells. Finally, PC models were exposed to ICIs. RESULTS PD-1 expression was demonstrated in PCs. PD-L1 exposure increased proliferation and activated MAPK. Imaging PDTXs revealed uptake of radio-immunoconjugates. PD-1 knockdown in vivo revealed 67% smaller volumes than controls. Finally, ICI treatment of both PDOs/PDTXs demonstrated cytotoxicity and anti-MEK1/2 combined with anti-PD-1 drugs produced highest cytotoxicity in PDOs/PDTXs. CONCLUSIONS Our data reveal PCs innately express PD-1 and activate druggable oncogenic pathways supporting PDAC growth. Strategies directly targeting PC with novel ICI regimens may work with adaptive immune responses for optimal cytotoxicity.
Collapse
Affiliation(s)
- Mei Gao
- Department of Surgery, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Miranda Lin
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Richard A Moffitt
- Department of Pathology, State University of New York, Stony Brook, NY, USA
| | - Marcela A Salazar
- Department of Experimental Therapeutics, City of Hope, Duarte, CA, USA
| | - Jinha Park
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Jeffrey Vacirca
- New York Cancer Specialists, East Setauket, New York, NY, USA
| | - Chuan Huang
- Departments of Radiology, State University of New York, Stony Brook, NY, USA.,Departments of Psychiatry, State University of New York, Stony Brook, NY, USA
| | - Kenneth R Shroyer
- Department of Pathology, State University of New York, Stony Brook, NY, USA
| | - Minsig Choi
- Departments of Medicine, State University of New York, Stony Brook, NY, USA
| | | | - Aaron R Sasson
- Departments of Surgery, State University of New York, Stony Brook, NY, USA
| | - Mark A Talamini
- Departments of Surgery, State University of New York, Stony Brook, NY, USA
| | - Joseph Kim
- Department of Surgery, University of Kentucky, Lexington, KY, USA. .,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
50
|
Cui C, Yu B, Jiang Q, Li X, Shi K, Yang Z. The roles of PD-1/PD-L1 and its signalling pathway in gastrointestinal tract cancers. Clin Exp Pharmacol Physiol 2018; 46:3-10. [PMID: 30161295 DOI: 10.1111/1440-1681.13028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022]
Abstract
Cancer immunotherapy has been increasingly applied in the treatment of advanced malignancies. Consequently, immune checkpoints have become a major concern. As PD-1 is an important immunomodulatory protein, the blockade of PD-1 and its ligand PD-L1 is a promising tumour immunotherapy for human carcinoma. In this review, we first discuss the role of the PD-1/PD-L1 interaction in gastrointestinal tract cancers. Targeting PD-1 and PD-L1 in immune cells and tumour cells may show remarkable efficiency in gastrointestinal tract cancers. Second, the PD-1/PD-L1-associated signalling pathway involved in cancer immunotherapy in gastrointestinal tract cancers is discussed. Most importantly, this review summarizes the PD-1/PD-L1-targeted immunotherapy combinations with relevant signalling pathways, which may result in a breakthrough for the treatment of gastrointestinal tract cancers, such as gastric cancer, colorectal cancer and liver cancer. Meanwhile, the review provides a deeper insight into the mechanism of checkpoint blockade immunotherapies.
Collapse
Affiliation(s)
- Chunguo Cui
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bo Yu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qi Jiang
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xingfang Li
- 2nd Hospital of Jilin University, Changchun City, China
| | - Kaiyao Shi
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zecheng Yang
- 2nd Hospital of Jilin University, Changchun City, China
| |
Collapse
|