1
|
Huang K, Zhou H, Chen M, Chen R, Wang X, Chen Q, Shi Z, Liang Y, Yu L, Ouyang P, Li L, Jiang D, Xu G. Interleukin-26 expression in tuberculosis disease and its regulatory effect in macrophage polarization and intracellular elimination of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2024; 14:1455819. [PMID: 39431054 PMCID: PMC11486762 DOI: 10.3389/fcimb.2024.1455819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Tuberculosis(TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infections, remains the leading cause of mortality from a single infectious agent globally. The progression of tuberculosis disease is contingent upon the complex interplay between the host's immune system and the pathogen Mtb. Interleukin-26 (IL-26), the most recently identified cytokine belonging to the IL-10 family, exhibits both extracellular antimicrobial properties and pro-inflammatory functions. However, the precise role of IL-26 in the host immune defense against Mtb infections and intracellular killing remains largely unexplored. In this study, we observed significantly elevated IL-26 mRNA expression in peripheral blood mononuclear cells of active-TB patients compared to healthy individuals. Conversely, circulating IL-26 levels in the plasma of adult TB patients were markedly lower than those of healthy cohorts. We purified recombinant IL-26 from an E. coli expression system using the Ni-NTA resin. Upon stimulations with the recombinant IL-26, human THP1 cells exhibited rapid morphological changes characterized by increased irregular spindle shape and formation of granular structures. Treating THP1 cells with IL-26 can also lead to heightened expressions of CD80, TNF-α, and iNOS but not CD206 and Arg1 in these cells, indicating an M1 macrophage differentiation phenotype. Furthermore, our investigations revealed a dose-dependent escalation of reactive oxygen species production, decreased mitochondrial membrane potential, and enhanced autophagy flux activity in THP1 macrophages following IL-26 treatment. Moreover, our results demonstrated that IL-26 contributed to the elimination of intracellular Mycobacterium tuberculosis via orchestrated ROS production. In conclusion, our findings elucidated the role of IL-26 in the development of tuberculosis and its contributions to intracellular bacilli killing by macrophages through the induction of M1-polarization and ROS production. These insights may have significant implications for understanding the pathogenesis of tuberculosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kaisong Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Haijin Zhou
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Mei Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Xiaoping Wang
- Reference Lab, Fourth People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi Chen
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Zhiyun Shi
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Binhaiwan Central Hospital, Dongguan, China
| | - Luxin Yu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Ping Ouyang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Li Li
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Suchitha GP, Dagamajalu S, Keshava Prasad TS, Devasahayam Arokia Balaya R. A Comprehensive Network Map of Interleukin-26 Signaling Pathway. J Interferon Cytokine Res 2024; 44:408-413. [PMID: 38639111 DOI: 10.1089/jir.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Interleukin-26 (IL-26) is a cytokine that belongs to the IL-20 subfamily and is primarily expressed in T helper 1 cells and Th17 memory CD4+ cells. Its receptor complex, consisting of IL-20R1 and IL-10R2, activates a signaling pathway involving several proteins such as Janus kinase 1 and tyrosine-protein kinase, signal transducer and activator of transcription (STAT) 1, and STAT3. This leads to the initiation of downstream signaling cascades that play a crucial role in various biological processes, including inflammation, immune response regulation, atopic dermatitis, macrophage differentiation, osteoclastogenesis, antibacterial host defense, anti-apoptosis, and tumor growth. In this study, we curated literature data pertaining to IL-26 signaling. The curated map includes a total of seven activation/inhibition events, 16 catalysis events, 33 gene regulation events, 25 protein expression types, two transport events, and three molecular associations.
Collapse
Affiliation(s)
- G P Suchitha
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, India
| | | | | |
Collapse
|
3
|
Gilliet M, Modlin RL. Immunobiology of IL-26. J Invest Dermatol 2024; 144:1217-1222. [PMID: 38206272 DOI: 10.1016/j.jid.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 01/12/2024]
Abstract
T helper 17 (Th17) cells produce a set of cytokines that include IL-17 family members, IL-21, IL-22, and IL-26. These cytokines all contribute to the classic function of Th17 cells in combatting extracellular infection and promoting inflammation in autoimmune diseases. However, of the Th17 cytokines, only IL-26 has direct antimicrobial activity against microbes and can activate a broad range of immune cells through its ability to bind DNA and trigger pattern recognition receptors. It is noteworthy that IL-26 is produced by mammalian cells, including human Th17 cells, but is absent in rodents. As such, IL-26 is a potential therapeutic target to augment host immune responses against microbial pathogens but also to prevent inflammation and tissue damage in a variety of autoimmune diseases.
Collapse
Affiliation(s)
- Michel Gilliet
- Department of Dermatology, CHUV University Hospital and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
4
|
Baldo A, Di Domizio J, Yatim A, Vandenberghe-Dürr S, Jenelten R, Fries A, Grizzetti L, Kuonen F, Paul C, Modlin RL, Conrad C, Gilliet M. Human neutrophils drive skin autoinflammation by releasing interleukin (IL)-26. J Exp Med 2024; 221:e20231464. [PMID: 38448036 PMCID: PMC10917069 DOI: 10.1084/jem.20231464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Autoinflammation is a sterile inflammatory process resulting from increased neutrophil infiltration and overexpression of IL-1 cytokines. The factors that trigger these events are, however, poorly understood. By investigating pustular forms of psoriasis, we show that human neutrophils constitutively express IL-26 and abundantly release it from granular stores upon activation. In pustular psoriasis, neutrophil-derived IL-26 drives the pathogenic autoinflammation process by inducing the expression of IL-1 cytokines and chemokines that further recruit neutrophils. This occurs via activation of IL-26R in keratinocytes and via the formation of complexes between IL-26 and microbiota DNA, which trigger TLR9 activation of neutrophils. Thus our findings identify neutrophils as an important source of IL-26 and point to IL-26 as the key link between neutrophils and a self-sustaining autoinflammation loop in pustular psoriasis.
Collapse
Affiliation(s)
- Alessia Baldo
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jeremy Di Domizio
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Ahmad Yatim
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sophie Vandenberghe-Dürr
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Raphael Jenelten
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Anissa Fries
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Lorenzo Grizzetti
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Carle Paul
- Department of Dermatology and Venereology, Centre Hospitalier Universitaire, Toulouse, France
| | - Robert L. Modlin
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Curdin Conrad
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michel Gilliet
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Chen L, Ruan G, Cheng Y, Yi A, Chen D, Wei Y. The role of Th17 cells in inflammatory bowel disease and the research progress. Front Immunol 2023; 13:1055914. [PMID: 36700221 PMCID: PMC9870314 DOI: 10.3389/fimmu.2022.1055914] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Th17 cells play an important role in the abnormal immune response in inflammatory bowel disease (IBD) and are involved in the development and progression of inflammation and fibrosis. An increasing amount of data has shown that gut microbes are important parts of intestinal immunity and regulators of Th17 cellular immunity. Th17 cell differentiation is regulated by intestinal bacteria and cytokines, and Th17 cells regulate the intestinal mucosal immune microenvironment by secreting cytokines, such as IL-17, IL-21, and IL-26. Solid evidence showed that, regarding the treatment of IBD by targeting Th17 cells, the therapeutic effect of different biological agents varies greatly. Fecal bacteria transplantation (FMT) in the treatment of IBD has been a popular research topic in recent years and is safe and effective with few side effects. To further understand the role of Th17 cells in the progression of IBD and associated therapeutic prospects, this review will discuss the progress of related research on Th17 cells in IBD by focusing on the interaction and immune regulation between Th17 cells and gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanling Wei
- *Correspondence: Yanling Wei, ; Dongfeng Chen,
| |
Collapse
|
6
|
Song D, Lai L, Lu J, Tong J, Ran Z. Interleukin-26 Expression in Inflammatory Bowel Disease and Its Immunoregulatory Effects on Macrophages. Front Med (Lausanne) 2022; 9:797135. [PMID: 35463017 PMCID: PMC9019154 DOI: 10.3389/fmed.2022.797135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aim Interleukin-26 (IL-26) has been implicated in several chronic inflammatory diseases. However, its role in inflammatory bowel disease (IBD) remains to be elucidated. We aimed to investigate IL-26 expression in IBD and its immunoregulatory effects on macrophages. Methods We assessed IL-26 expression in the intestinal mucosa and blood samples of IBD patients and healthy controls (HC). The associations between the clinical characteristics of IBD and IL-26 expression levels in serum and peripheral blood mononuclear cells (PBMCs) were investigated. In addition, the transcriptional changes in THP-1 macrophages exposed to IL-26 were determined by RNA sequencing and validated with qRT-PCR, ELISA and western blots. Results Compared with HC, in IBD patients, IL-26 expression levels were elevated in the inflamed intestinal mucosa, and reduced in serum and PBMCs. IL-26 mRNA levels in PBMCs, but not serum IL-26 levels, were inversely correlated with disease activity in IBD. Furthermore, IL-26 mRNA levels in PBMCs were significantly lower in patients with complicated Crohn's disease. A total of 1,303 differentially expressed protein-coding genes were identified between untreated and IL-26-treated macrophages. The up-regulated genes showed enrichment in some inflammatory and immune-related processes and pathways. Additionally, GSEA showed that neutrophil, monocyte, and lymphocyte chemotaxis was significantly enriched in IL-26-treated macrophages. Further validation revealed that IL-26 promotes the secretion of multiple inflammatory cytokines and chemokines and upregulates the expression of adhesion molecules, MMP-8, and MMP-9 while inhibiting MMP-1 in macrophages. Conclusion Compared with HC, in IBD patients, IL-26 levels were elevated in the inflamed intestinal mucosa, and reduced in the peripheral blood. The transcriptional changes in macrophages exposed to IL-26 suggest that IL-26 may amplify the aberrant immune response in IBD by activating macrophages.
Collapse
Affiliation(s)
- Dongjuan Song
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Lijie Lai
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Juntao Lu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jinlu Tong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
7
|
IL-26 inhibits hepatitis C virus replication in hepatocytes. J Hepatol 2022; 76:822-831. [PMID: 34952035 DOI: 10.1016/j.jhep.2021.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Interleukin-26 (IL-26) is a proinflammatory cytokine that has properties atypical for a cytokine, such as direct antibacterial activity and DNA-binding capacity. We previously observed an accumulation of IL-26 in fibrotic and inflammatory lesions in the livers of patients with chronic HCV infection and showed that infiltrating CD3+ lymphocytes were the principal source of IL-26. Surprisingly, IL-26 was also detected in the cytoplasm of hepatocytes from HCV-infected patients, even though these cells do not produce IL-26, even when infected with HCV. Based on this observation and possible interactions between IL-26 and nucleic acids, we investigated the possibility that IL-26 controlled HCV infection independently of the immune system. METHODS We evaluated the ability of IL-26 to interfere with HCV replication in hepatocytes and investigated the mechanisms by which IL-26 exerts its antiviral activity. RESULTS We showed that IL-26 penetrated HCV-infected hepatocytes, where it interacted directly with HCV double-stranded RNA replication intermediates, thereby inhibiting viral replication. IL-26 interfered with viral RNA-dependent RNA polymerase activity, preventing the de novo synthesis of viral genomic single-stranded RNA. CONCLUSIONS These findings reveal a new role for IL-26 in direct protection against HCV infection, independently of the immune system, and increase our understanding of the antiviral defense mechanisms controlling HCV infection. Future studies should evaluate the possible use of IL-26 for treating other chronic disorders caused by RNA viruses, for which few treatments are currently available, or emerging RNA viruses. LAY SUMMARY This study sheds new light on the body's arsenal for controlling hepatitis C virus (HCV) infection and identifies interleukin-26 (IL-26) as an antiviral molecule capable of blocking HCV replication. IL-26, which has unique biochemical and structural characteristics, penetrates infected hepatocytes and interacts directly with viral RNA, thereby blocking viral replication. IL-26 is, therefore, a new player in antiviral defenses, operating independently of the immune system. It is of considerable potential interest for treating HCV infection and other chronic disorders caused by RNA viruses for which few treatments are currently available, and for combating emerging RNA viruses.
Collapse
|
8
|
Orts B, Gutierrez A, Madero L, Sempere L, Frances R, Zapater P. Clinical and Immunological Factors Associated with Recommended Trough Levels of Adalimumab and Infliximab in Patients with Crohn's Disease. Front Pharmacol 2022; 12:795272. [PMID: 35046819 PMCID: PMC8762261 DOI: 10.3389/fphar.2021.795272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Up to 40% of patients with Crohn's disease do not respond to treatment with anti-TNF or lose response after the initial benefit. Low drug concentrations have been proposed as the main predictor of treatment failure. Our aim was to study the immunological profile and clinical evolution of patients with Crohn's disease according to the anti-TNF dose and serum trough levels. Methods: Crohn's disease patients in remission treated with infliximab or adalimumab at stable doses for at least for 3 months were included. Serum levels of anti-TNF, TNF-α, interferon-γ, and interleukin IL-12, IL-10, and IL-26 were determined in blood samples taken just before drug administration. Patients were classified according to anti-TNF levels below, within, or above the target level range and the use of intensified doses. Clinical evolution at 6 months was analyzed. Results: A total of 62 patients treated with infliximab (8 on intensified schedule) and 49 treated with adalimumab (7 on intensified schedule) were included. All infliximab-treated patients showed levels within the recommended range, but half of adalimumab-treated patients were below the recommended range. A significant negative relationship between body weight and adalimumab levels was observed, especially in patients treated with intensified doses. Patients with infliximab levels over 8 µg/ml presented higher median IL-10 than patients with in-range levels (84.0 pg/ml, interquartile range [IQR] 77.0-84.8 vs. 26.2 pg/mL, IQR 22.6-38.0; p < 0.001), along with lower values of interferon-γ (312.9 pg/ml, IQR 282.7-350.4 vs. 405.6 pg/ml, IQR 352.2-526.6; p = 0.005). Patients receiving intensified versus non-intensified doses of infliximab showed significantly higher IL-26 levels (91.8 pg/ml, IQR 75.6-109.5 vs. 20.5 pg/ml, IQR 16.2-32.2; p = 0.012), irrespective of serum drug levels. Patients with in-range levels of adalimumab showed higher values of IL-10 than patients with below-range levels (43.3 pg/ml, IQR 35.3-54.0 vs. 26.3 pg/ml, IQR 21.6-33.2; p = 0.001). Patients treated with intensified vs regular doses of adalimumab had increased levels of IL-12 (612.3 pg/ml, IQR 570.2-1353.7 vs. 516.4 pg/mL, IQR 474.5-591.2; p = 0.023). Four patients with low adalimumab levels (19%) and four treated with intensified doses were admitted to a hospital during a follow-up compared to none of the patients with levels within the range. Conclusion: Patients with Crohn's disease treated with infliximab and adalimumab exhibit differences in serum levels of cytokines depending on the drug, dose intensification, and steady state trough serum levels.
Collapse
Affiliation(s)
- Beatriz Orts
- Unidad de Farmacología Clínica, Hospital General Universitario de Alicante, Alicante, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Ana Gutierrez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Madero
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain
| | - Laura Sempere
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain
| | - Ruben Frances
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Clinical Medicine Department, Universidad Miguel Hernández, Elche, Spain
| | - Pedro Zapater
- Unidad de Farmacología Clínica, Hospital General Universitario de Alicante, Alicante, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación, Desarrollo e Innovación en Biotecnologia Sanitaria de Elche, IDiBE, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
9
|
The Role of Interleukins in the Pathogenesis of Dermatological Immune-Mediated Diseases. Adv Ther 2022; 39:4474-4508. [PMID: 35997892 PMCID: PMC9395905 DOI: 10.1007/s12325-022-02241-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 01/30/2023]
Abstract
Autoimmune inflammatory diseases are primarily characterized by deregulated expression of cytokines, which drive pathogenesis of these diseases. A number of approved and experimental therapies utilize monoclonal antibodies against cytokine proteins. Cytokines can be classified into different families including the interleukins, which are secreted and act on leukocytes, the tumor necrosis factor (TNF) family, as well as chemokine proteins. In this review article, we focus on the interleukin family of cytokines, of which 39 members have been identified to this date. We outline the role of each of these interleukins in the immune system, and various dermatological inflammatory diseases with a focused discussion on the pathogenesis of psoriasis and atopic dermatitis. In addition, we describe the roles of various interleukins in psychiatric, cardiovascular, and gastrointestinal comorbidities. Finally, we review clinical efficacy and safety data from emerging late-phase anti-interleukin therapies under development for psoriasis and atopic dermatitis. Collectively, additional fundamental and clinical research remains necessary to fully elucidate the roles of various interleukin proteins in the pathogenesis of inflammatory dermatologic diseases, and treatment outcomes in patients.
Collapse
|
10
|
Hansen BT, Maschkowitz G, Podschun R, Fickenscher H. The Kinocidin Interleukin-26 Shows Immediate Antimicrobial Effects Even to Multi-resistant Isolates. Front Microbiol 2021; 12:757215. [PMID: 34733265 PMCID: PMC8558509 DOI: 10.3389/fmicb.2021.757215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
The cationic proinflammatory cytokine Interleukin 26 (IL-26) shows antibacterial activity and inhibits the replication of cytomegalovirus and hepatitis C virus. This study evaluates the early microbicidal activities of IL-26 against major bacterial species including multi-resistant variants and Candida albicans. Recombinant IL-26 was bacterially expressed and studied for its microbicidal effects in culture. We show that IL-26 has strong 90% bactericidal activities against Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, and Acinetobacter baumannii. Similarly, IL-26 sensitivity was also detectable in vancomycin-resistant Enterococcus species, methicillin-resistant S. aureus, and carbapenem-resistant A. baumannii clinical isolates. Additionally, a significant, albeit weak fungicidal effect against Candida albicans was observed. Activities against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa were not detectable. The proinflammatory cytokine and kinocidin IL-26 shows strong bactericidal activities against A. baumannii and, almost selectively, against Gram-positive bacteria.
Collapse
Affiliation(s)
- Bjoern-Thore Hansen
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gregor Maschkowitz
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rainer Podschun
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
11
|
Gowhari Shabgah A, Abdelbasset WK, Sulaiman Rahman H, Bokov DO, Suksatan W, Thangavelu L, Ahmadi M, Malekahmadi M, Gheibihayat SM, Gholizadeh Navashenaq J. A comprehensive review of IL-26 to pave a new way for a profound understanding of the pathobiology of cancer, inflammatory diseases and infections. Immunology 2021; 165:44-60. [PMID: 34716913 DOI: 10.1111/imm.13424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Cytokines are considered vital mediators of the immune system. Down- or upregulation of these mediators is linked to several inflammatory and pathologic situations. IL-26 is referred to as an identified member of the IL-10 family and IL-20 subfamily. Due to having a unique cationic structure, IL-26 exerts diverse functions in several diseases. Since IL-26 is mainly secreted from Th17, it is primarily considered a pro-inflammatory cytokine. Upon binding to its receptor complex (IL-10R1/IL-20R2), IL-26 activates multiple signalling mediators, especially STAT1/STAT3. In cancer, IL-26 induces IL-22-producing cells, which consequently decrease cytotoxic T-cell functions and promote tumour growth through activating anti-apoptotic proteins. In hypersensitivity conditions such as rheumatoid arthritis, multiple sclerosis, psoriasis and allergic disease, this cytokine functions primarily as the disease-promoting mediator and might be considered a biomarker for disease prognosis. Although IL-26 exerts antimicrobial function in infections such as hepatitis, tuberculosis and leprosy, it has also been shown that IL-26 might be involved in the pathogenesis and exacerbation of sepsis. Besides, the involvement of IL-26 has been confirmed in other conditions, including graft-versus-host disease and chronic obstructive pulmonary disease. Therefore, due to the multifarious function of this cytokine, it is proposed that the underlying mechanism regarding IL-26 function should be elucidated. Collectively, it is hoped that the examination of IL-26 in several contexts might be promising in predicting disease prognosis and might introduce novel approaches in the treatment of various diseases.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- School of Medicine, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Dmitry O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha institute of medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, India
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Malekahmadi
- Research Center for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
12
|
Wu L, Xue Z, Jin S, Zhang J, Guo Y, Bai Y, Jin X, Wang C, Wang L, Liu Z, Wang JQ, Lu L, Liu W. huARdb: human Antigen Receptor database for interactive clonotype-transcriptome analysis at the single-cell level. Nucleic Acids Res 2021; 50:D1244-D1254. [PMID: 34606616 PMCID: PMC8728177 DOI: 10.1093/nar/gkab857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
T-cell receptors (TCRs) and B-cell receptors (BCRs) are critical in recognizing antigens and activating the adaptive immune response. Stochastic V(D)J recombination generates massive TCR/BCR repertoire diversity. Single-cell immune profiling with transcriptome analysis allows the high-throughput study of individual TCR/BCR clonotypes and functions under both normal and pathological settings. However, a comprehensive database linking these data is not yet readily available. Here, we present the human Antigen Receptor database (huARdb), a large-scale human single-cell immune profiling database that contains 444 794 high confidence T or B cells (hcT/B cells) with full-length TCR/BCR sequence and transcriptomes from 215 datasets. All datasets were processed in a uniform workflow, including sequence alignment, cell subtype prediction, unsupervised cell clustering, and clonotype definition. We also developed a multi-functional and user-friendly web interface that provides interactive visualization modules for biologists to analyze the transcriptome and TCR/BCR features at the single-cell level. HuARdb is freely available at https://huarc.net/database with functions for data querying, browsing, downloading, and depositing. In conclusion, huARdb is a comprehensive and multi-perspective atlas for human antigen receptors.
Collapse
Affiliation(s)
- Lize Wu
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China
| | - Ziwei Xue
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Siqian Jin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Jinchun Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Yixin Guo
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Yadan Bai
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Xuexiao Jin
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chaochen Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Lie Wang
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zuozhu Liu
- Zhejiang University-University of Illinois at Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - James Q Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China
| | - Linrong Lu
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wanlu Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang 314400, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Bao JH, Shang HT, Hao CF, Liu JJ, Han SW, Zhang DL, Li ZL. Prognostic value of IL-26 level in hepatocellular carcinoma tissue in postoperative patients with hepatitis B related hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29:511-516. [DOI: 10.11569/wcjd.v29.i10.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The current hepatocellular carcinoma (HCC) staging system is not ideal for judging the prognosis of patients after surgical resection, so it is very important to find and identify the patients who are prone to recurrence and carry out targeted intervention. In recent years, the relationship between liver immunity and HCC has become a research hotspot. Interleukin (IL)-26 can predict the prognosis of patients with HCC, but there is a lack of research on the prognosis of patients 5 years after surgery.
AIM To analyze the prognostic value of IL-26 in HCC tissues of patients with hepatitis B.
METHODS The preoperative data of hepatitis B related HCC patients who were hospitalized and operated at our hospital from January 2006 to June 2015 were collected. The expression of IL-26 in resected HCC tissues was measured by immunohistochemistry and based on the median expression level of IL-26, the patients were divided into either a high expression group or a low expression group. The 5-year overall survival (OS) and progression free survival (PFS) were compared between the two groups by Kaplan-Meier method.
RESULTS The percentages of patients with a tumor size > 5 cm, microvascular invasion, and TNM stage III/IV disease in the high expression group were significantly higher than those of the low expression group (P = 0.026, 0.009, and P =0.045, respectively). High expression of IL-26 (hazard ratio [HR] = 1.667, P = 0.022), tumor size > 5 cm (HR = 1.096, P = 0.002), and microvascular invasion (HR = 2.696, P = 0.006) were the influencing factors of PFS in patients with HCC resection. High expression of IL-26 (HR = 1.643, P = 0.041) and microvascular invasion (HR = 3.303, P = 0.016) were independent prognostic factors for OS in patients with HCC resection. PFS and OS in patients with high expression of IL-26 were worse than those with low expression.
CONCLUSION The expression of IL-26 in HCC tissue correlates with the OS and PFS of patients with hepatitis B-related liver cancer after resection.
Collapse
Affiliation(s)
- Jian-Heng Bao
- Second Department of Hepatobiliary and Pancreatic Surgery, Nankai Hospital, Tianjin 300100, China
| | - Hai-Tao Shang
- Second Department of Hepatobiliary and Pancreatic Surgery, Nankai Hospital, Tianjin 300100, China
| | - Cheng-Fei Hao
- Second Department of Hepatobiliary and Pancreatic Surgery, Nankai Hospital, Tianjin 300100, China
| | - Jun-Jian Liu
- Second Department of Hepatobiliary and Pancreatic Surgery, Nankai Hospital, Tianjin 300100, China
| | - Shu-Wang Han
- Second Department of Hepatobiliary and Pancreatic Surgery, Nankai Hospital, Tianjin 300100, China
| | - De-Lin Zhang
- Second Department of Hepatobiliary and Pancreatic Surgery, Nankai Hospital, Tianjin 300100, China
| | - Zhong-Lian Li
- Second Department of Hepatobiliary and Pancreatic Surgery, Nankai Hospital, Tianjin 300100, China
| |
Collapse
|
14
|
Momtaz S, Navabakhsh M, Bakouee N, Dehnamaki M, Rahimifard M, Baeeri M, Abdollahi A, Abdollahi M, Farzaei MH, Abdolghaffari AH. Cinnamaldehyde targets TLR-4 and inflammatory mediators in acetic-acid induced ulcerative colitis model. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00725-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Hu S, Uniken Venema WT, Westra HJ, Vich Vila A, Barbieri R, Voskuil MD, Blokzijl T, Jansen BH, Li Y, Daly MJ, Xavier RJ, Dijkstra G, Festen EA, Weersma RK. Inflammation status modulates the effect of host genetic variation on intestinal gene expression in inflammatory bowel disease. Nat Commun 2021; 12:1122. [PMID: 33602935 PMCID: PMC7892863 DOI: 10.1038/s41467-021-21458-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
More than 240 genetic risk loci have been associated with inflammatory bowel disease (IBD), but little is known about how they contribute to disease development in involved tissue. Here, we hypothesized that host genetic variation affects gene expression in an inflammation-dependent way, and investigated 299 snap-frozen intestinal biopsies from inflamed and non-inflamed mucosa from 171 IBD patients. RNA-sequencing was performed, and genotypes were determined using whole exome sequencing and genome wide genotyping. In total, 28,746 genes and 6,894,979 SNPs were included. Linear mixed models identified 8,881 independent intestinal cis-expression quantitative trait loci (cis-eQTLs) (FDR < 0.05) and interaction analysis revealed 190 inflammation-dependent intestinal cis-eQTLs (FDR < 0.05), including known IBD-risk genes and genes encoding immune-cell receptors and antibodies. The inflammation-dependent cis-eQTL SNPs (eSNPs) mainly interact with prevalence of immune cell types. Inflammation-dependent intestinal cis-eQTLs reveal genetic susceptibility under inflammatory conditions that can help identify the cell types involved in and the pathways underlying inflammation, knowledge that may guide future drug development and profile patients for precision medicine in IBD.
Collapse
Affiliation(s)
- Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Werna T Uniken Venema
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Harm-Jan Westra
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ruggero Barbieri
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel D Voskuil
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Tjasso Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Bernadien H Jansen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Yanni Li
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Mark J Daly
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ramnik J Xavier
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutic, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Eleonora A Festen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
16
|
Corridoni D, Antanaviciute A, Gupta T, Fawkner-Corbett D, Aulicino A, Jagielowicz M, Parikh K, Repapi E, Taylor S, Ishikawa D, Hatano R, Yamada T, Xin W, Slawinski H, Bowden R, Napolitani G, Brain O, Morimoto C, Koohy H, Simmons A. Single-cell atlas of colonic CD8 + T cells in ulcerative colitis. Nat Med 2020; 26:1480-1490. [PMID: 32747828 DOI: 10.1038/s41591-020-1003-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Colonic antigen-experienced lymphocytes such as tissue-resident memory CD8+ T cells can respond rapidly to repeated antigen exposure. However, their cellular phenotypes and the mechanisms by which they drive immune regulation and inflammation remain unclear. Here we compiled an unbiased atlas of human colonic CD8+ T cells in health and ulcerative colitis (UC) using single-cell transcriptomics with T-cell receptor repertoire analysis and mass cytometry. We reveal extensive heterogeneity in CD8+ T-cell composition, including expanded effector and post-effector terminally differentiated CD8+ T cells. While UC-associated CD8+ effector T cells can trigger tissue destruction and produce tumor necrosis factor (TNF)-α, post-effector cells acquire innate signatures to adopt regulatory functions that may mitigate excessive inflammation. Thus, we identify colonic CD8+ T-cell phenotypes in health and UC, define their clonal relationships and characterize terminally differentiated dysfunctional UC CD8+ T cells expressing IL-26, which attenuate acute colitis in a humanized IL-26 transgenic mouse model.
Collapse
Affiliation(s)
- Daniele Corridoni
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- MRC WIMM Centre For Computational Biology, MRC WIMM, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Tarun Gupta
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David Fawkner-Corbett
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Anna Aulicino
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Marta Jagielowicz
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kaushal Parikh
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Steve Taylor
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Juntendo University, Tokyo, Japan
| | - Taketo Yamada
- Department of Pathology, Saitama Medical University, Saitama, Japan
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hubert Slawinski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Giorgio Napolitani
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Oliver Brain
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Juntendo University, Tokyo, Japan
| | - Hashem Koohy
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK.
- MRC WIMM Centre For Computational Biology, MRC WIMM, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Bottois H, Ngollo M, Hammoudi N, Courau T, Bonnereau J, Chardiny V, Grand C, Gergaud B, Allez M, Le Bourhis L. KLRG1 and CD103 Expressions Define Distinct Intestinal Tissue-Resident Memory CD8 T Cell Subsets Modulated in Crohn's Disease. Front Immunol 2020; 11:896. [PMID: 32477365 PMCID: PMC7235448 DOI: 10.3389/fimmu.2020.00896] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Intestinal tissue-resident memory CD8 T cells (Trm) are non-recirculating effector cells ideally positioned to detect and react to microbial infections in the gut mucosa. There is an emerging understanding of Trm cell differentiation and functions, but their implication in inflammatory bowel diseases, such as Crohn's disease (CD), is still unknown. Here, we describe CD8 cells in the human intestine expressing KLRG1 or CD103, two receptors of E-cadherin. While CD103 CD8 T cells are present in high numbers in the mucosa of CD patients and controls, KLRG1 CD8 T cells are increased in inflammatory conditions. Mucosal CD103 CD8 T cells are more responsive to TCR restimulation, but KLRG1 CD8 T cells show increased cytotoxic and proliferative potential. CD103 CD8 T cells originate mostly from KLRG1 negative cells after TCR triggering and TGFβ stimulation. Interestingly, mucosal CD103 CD8 T cells from CD patients display major changes in their transcriptomic landscape compared to controls. They express Th17 related genes including CCL20, IL22, and IL26, which could contribute to the pathogenesis of CD. Overall, these findings suggest that CD103 CD8 T cells in CD induce a tissue-wide alert increasing innate immune responses and recruitment of effector cells such as KLRG1 CD8 T cells.
Collapse
Affiliation(s)
- Hugo Bottois
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Marjolaine Ngollo
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Nassim Hammoudi
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France.,Gastroenterology Department, Hopital Saint Louis, AP-HP, Paris, France
| | - Tristan Courau
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Julie Bonnereau
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Victor Chardiny
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Céline Grand
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Brice Gergaud
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Matthieu Allez
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France.,Gastroenterology Department, Hopital Saint Louis, AP-HP, Paris, France
| | - Lionel Le Bourhis
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| |
Collapse
|
18
|
Louhaichi S, Mlika M, Hamdi B, Hamzaoui K, Hamzaoui A. Sputum IL-26 Is Overexpressed in Severe Asthma and Induces Proinflammatory Cytokine Production and Th17 Cell Generation: A Case-Control Study of Women. J Asthma Allergy 2020; 13:95-107. [PMID: 32099415 PMCID: PMC7006858 DOI: 10.2147/jaa.s229522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Asthma inflammation is a complex pathway involving numerous mediators. Interleukin-26 (IL-26), a member of the IL-10 cytokine family, is abundant in human airways and induces the production of proinflammatory cytokines. Our aim was to investigate the possible role of IL-26 in severe asthma. We analysed the expression of IL-26 in severe asthma both in peripheral blood and induced sputum. Patients and Methods A total of 50 adult women with severe asthma were recruited and compared to 30 healthy controls (HC). Serum and sputum fluid (SF) levels of IL-26 and IL-17 were defined by ELISA. IL-26 mRNA expression and IL-26 protein were analysed using RT-PCR and Western blot. In vitro, we studied the effect of recombinant IL-26 (rIL-26) and SF-IL-26 on cultured CD4+ T cells and monocytes, comparing patients and controls. Results Concentrations of IL-26 are higher in serum and induced sputum of asthmatic patients than in HC. Moreover, IL-26 protein and mRNA expression were significantly elevated in asthma sputum cells compared to PBMCs. We observed a positive correlation between body mass index (BMI) and sputum fluid IL-26, while the correlation between IL-26 and lung function tests (FEV1% and FEV1/FVC ratio) was negative. IL-17A was highly expressed in SF and correlated positively with IL-26. In patients’ sputum IL-26 and IL-17A were significantly associated with neutrophils. Stimulation of cultured CD4+ T cells with monocytes by recombinant IL-26 promoted the generation of RORγt+ Th17+ cells inducing the production of IL-17A, IL-1β, IL-6 and TNF-α cytokines. IL-26 expressed in SF was biologically active and induced IL-17 secretion in the presence of IL-1β and IL-6 cytokines. Conclusion These findings show that IL-26 is highly produced in asthmatic sputum, induces pro-inflammatory cytokine secretion by monocytes/macrophages, and favours Th17 cell generation. IL-26 thereby appears as a novel pro-inflammatory cytokine, produced locally in the airways that may constitute a promising target to treat asthma inflammatory process.
Collapse
Affiliation(s)
- Sabrine Louhaichi
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia
| | - Mona Mlika
- Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Pathology Department, Abderrahman Mami Hospital, Ariana, Tunisia
| | - Besma Hamdi
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia
| | - Kamel Hamzaoui
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia
| | - Agnès Hamzaoui
- Research Laboratory 19SP02 "Chronic Pulmonary Pathologies: From Genome to Management", Abderrahman Mami Hospital, Ariana, Tunisia.,Medicine Faculty of Tunis, Department of Basic Sciences, Tunis El Manar University, Tunis, Tunisia.,Department of Paediatric and Respiratory Diseases, Abderrahman Mami Hospital, Pavillon B, Ariana, Tunisia
| |
Collapse
|
19
|
Abstract
Proinflammatory interleukin-26 (IL-26) is involved in chronic inflammation; however, the role of IL-26 in chronic hepatitis B (CHB) remains unknown.In this study, serum IL-26 was quantified in a cohort of CHB patients at baseline and during telbivudine (LdT) treatment.Our results showed that the serum IL-26 level was significantly elevated in CHB patients compared with that in healthy controls and was time-dependently decreased during LdT treatment, accompanying hepatitis B e antigen (HBeAg) seroconversion and reduced serum levels of hepatitis B virus (HBV) DNA, aspartate transaminase, and alanine transaminase across baseline and treatment. In addition, the serum level of IL-26 exhibited a similar declining trend to that of T helper 17 (Th17) cell-secreted IL-17 during LdT treatment in CHB patients. The percentage of IL-26-expressing CD4 cells was significantly higher than that of IL-26-expressing CD4 cells isolated from the peripheral blood mononuclear cells of CHB patients, suggesting that serum IL-26 might be mainly released from CD4 T cells. Furthermore, the baseline mRNA levels of IL-26 and orphan nuclear receptor RORγt-an important transcription factor expressed by Th17 cells-were positively correlated and displayed the same declining trend across the baseline and LdT treatment in CHB patients, suggesting that Th17 cells could be a possible cellular source of the increased serum IL-26 in CHB patients.Taken together, our results suggest that serum IL-26, possibly produced by Th17 CD4 cells, is a novel and potential biomarker for CHB prognosis and treatment.
Collapse
Affiliation(s)
- Liwen Luo
- Department of Pathophysiology and High Altitude Pathology
| | - Li Jiang
- Department of Infectious Diseases, Southwestern Hospital
| | - Zhiqiang Tian
- Institute of Immunology, Army Medical University, Chongqing
| | - Xinqi Zhang
- Department of Emergency, PLA 96th Hospital(General Hospital of Jinan Military Region), Jinan, China
| |
Collapse
|
20
|
Zhang X, Xie X, Wang Y, Li W, Lin Z. Interleukin-26 promotes the proliferation and activation of hepatic stellate cells to exacerbate liver fibrosis by the TGF-β1/Smad2 signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4271-4279. [PMID: 31933827 PMCID: PMC6949876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Liver fibrosis is a wound-healing process of liver featured by the activation of hepatic stellate cells (HSCs) and the deposition of extra cellular matrix (ECM). Accumulating facts have suggested that interleukin (IL) 26 is involved in the pathogenesis of liver fibrosis by the modulation of HSCs. However, the biological roles of IL-26 in liver fibrosis are still unclear. The present study aimed to determine the effect and mechanism of IL-26 on the proliferation and activation of HSCs in vitro. By cell counting kit (CCK)-8 assay, we observed that IL-26 significantly promoted the proliferation of HSCs by increasing S phase and decreasing G0/G1 phase. Annexin V-FITC/PI double staining showed that IL-26 could suppress the apoptosis of HSCs by inhibition of caspase 3 (CASP3) and Bcl-2 associated X protein (BAX). Furthermore, quantitative real-time PCR (qRT-PCR) assay and western blotting analysis revealed that IL-26 exacerbated the degree of hepatic fibrosis, which was associated with the upregulation of the mRNA levels and protein concentrations of IL-6, IL-10, tumor necrosis factor (TNF)-α, matrix metallopeptidase (MMP)-9, and α-smooth muscle act in (SMA). Mechanistically, western blotting analysis showed that IL-26 upregulated the protein expression levels of transforming growth factor (TGF)-β1 and SMAD family member 2 (Smad2) in HSCs. In summary, the data demonstrated a key role of IL-26 on the proliferation and activation of HSCs in liver fibrosis and the underlying mechanism might be related to the TGF-β1/Smad2 signaling pathway. The finding will provide a proof that targeting IL-26 may be developed as therapeutics for liver fibrosis.
Collapse
Affiliation(s)
- Xinqi Zhang
- Department of Emergency, Changzheng Hospital, Navy Military Medical UniversityShanghai 200003, China
- Department of Emergency, The 960th Hospital of The PLA Joint Logistics Support ForceJinan 250031, Shandong Province, China
| | - Xiaoye Xie
- Department of Emergency, The 960th Hospital of The PLA Joint Logistics Support ForceJinan 250031, Shandong Province, China
| | - Yanzhao Wang
- Department of Emergency, The 960th Hospital of The PLA Joint Logistics Support ForceJinan 250031, Shandong Province, China
| | - Wenfang Li
- Department of Emergency, Changzheng Hospital, Navy Military Medical UniversityShanghai 200003, China
| | - Zhaofen Lin
- Department of Emergency, Changzheng Hospital, Navy Military Medical UniversityShanghai 200003, China
| |
Collapse
|
21
|
Morsy MA, Gupta S, Nair AB, Venugopala KN, Greish K, El-Daly M. Protective Effect of Spirulina platensis Extract against Dextran-Sulfate-Sodium-Induced Ulcerative Colitis in Rats. Nutrients 2019; 11:nu11102309. [PMID: 31569451 PMCID: PMC6836255 DOI: 10.3390/nu11102309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease is a multifactorial inflammatory condition. This study aimed to test the protective effects of Spirulina platensis against ulcerative colitis (UC). UC was induced in thirty-six male Wistar rats by adding dextran sulfate sodium (DSS) to their drinking water, while a control group received only drinking water. UC rats were equally-divided into six groups that received a single oral daily dose of vehicle (DSS), sulfasalazine (SSZ, 50 mg/kg/day), chloroform or the hydroalcoholic extracts of Spirulina platensis (100 or 200 mg/kg/day) for 15 days, and then blood and colon samples were harvested for determination of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), erythrocyte sedimentation rate (ESR), myeloperoxidase (MPO), and histopathology. At the end of the study, compared to time-matched controls, UC rats showed increased TNF-α (1.64-fold), IL-6 (5.73-fold), ESR (3.18-fold), and MPO (1.61-fold), along with loss of body weight (24.73%) and disease activity index (1.767 ± 0.216 vs. 0 ± 0), p < 0.001. These effects were prevented by SSZ treatment (p < 0.001 vs. DSS). The hydroalcoholic extract of Spirulina platensis dose-dependently modulated all DSS-induced inflammatory changes. However, the chloroform extract significantly lowered only IL-6 and ESR, but not TNF-α or MPO levels. The protective effects of the hydroalcoholic extract of Spirulina platensis against experimental UC involved mitigation of DSS-induced inflammation.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to University), Mullana, Ambala, Haryana 133203, India.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain.
| | - Mahmoud El-Daly
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| |
Collapse
|
22
|
Domazetovic V, Bonanomi AG, Stio M, Vincenzini MT, Iantomasi T. Resveratrol decreases TNFα-induced ICAM-1 expression and release by Sirt-1-independent mechanism in intestinal myofibroblasts. Exp Cell Res 2019; 382:111479. [DOI: 10.1016/j.yexcr.2019.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023]
|
23
|
Hatano R, Itoh T, Otsuka H, Okamoto S, Komiya E, Iwata S, Aune TM, Dang NH, Kuwahara-Arai K, Ohnuma K, Morimoto C. Characterization of novel anti-IL-26 neutralizing monoclonal antibodies for the treatment of inflammatory diseases including psoriasis. MAbs 2019; 11:1428-1442. [PMID: 31397631 DOI: 10.1080/19420862.2019.1654305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-26, known as a Th17 cytokine, acts on various cell types and has multiple biological functions. Although its precise role still remains to be elucidated, IL-26 is suggested to be associated with the pathology of diverse chronic inflammatory diseases such as psoriasis, inflammatory bowel diseases and rheumatoid arthritis. To develop novel neutralizing anti-human IL-26 monoclonal antibodies (mAbs) for therapeutic use in the clinical setting, we immunized mice with human IL-26 protein. Hybridomas producing anti-IL-26 mAbs were screened for various in vitro functional assays, STAT3 phosphorylation and antibiotic assays. Although the IL-20RA/IL-10RB heterodimer is generally believed to be the IL-26 receptor, our data strongly suggest that both IL-20RA-dependent and -independent pathways are involved in IL-26-mediated stimulation. We also investigated the potential therapeutic effect of anti-IL-26 mAbs in the imiquimod-induced psoriasis-like murine model using human IL-26 transgenic mice. These screening methods enabled us to develop novel neutralizing anti-human IL-26 mAbs. Importantly, administration of IL-26-neutralizing mAb did not have an effect on the antimicrobial activity of IL-26. Taken together, our data strongly suggest that our newly developed anti-human IL-26 mAb is a potential therapeutic agent for the treatment of diverse chronic inflammatory diseases including psoriasis.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Takumi Itoh
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Haruna Otsuka
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Sayo Okamoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Eriko Komiya
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan.,Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine , Urayasu , Japan
| | - Satoshi Iwata
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Nam H Dang
- Division of Hematology/Oncology, University of Florida , Gainesville , FL , USA
| | - Kyoko Kuwahara-Arai
- Department of Microbiology, Juntendo University School of Medicine , Tokyo , Japan
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| |
Collapse
|
24
|
Scala E, Di Caprio R, Cacciapuoti S, Caiazzo G, Fusco A, Tortorella E, Fabbrocini G, Balato A. A new T helper 17 cytokine in hidradenitis suppurativa: antimicrobial and proinflammatory role of interleukin-26. Br J Dermatol 2019; 181:1038-1045. [PMID: 30829398 DOI: 10.1111/bjd.17854] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Interleukin (IL)-26 is a signature T helper 17 cytokine described as a proinflammatory and antimicrobial mediator. So far, IL-26 has been reported in several immune-mediated inflammatory diseases, but its involvement in inflammatory skin disorders is poorly known. OBJECTIVES To investigate the role of IL-26 in hidradenitis suppurativa (HS), through its involvement in antimicrobial activity. METHODS IL-26 was assessed in patients with HS through gene expression and protein analysis at skin and circulating levels. Ex vivo HS organ skin cultures, together with IL-26 antibody treatment, were performed to determine the IL-26 activity. Peripheral blood mononuclear cells (PBMCs) from patients with HS and healthy controls were either silenced or not with IL-26 small interfering (si)RNA in order to measure its antimicrobial, cytotoxic and phagocytic activities against Staphylococcus aureus. RESULTS Firstly, we observed that IL-26 is able to modulate the proinflammatory response at the immune cell level. IL-26 was increased in the plasma of patients with HS compared with healthy controls. Subsequently, we explored the bactericidal, cytotoxic and phagocytic activities of PBMCs against S. aureus in patients with HS and healthy controls. These activities were lower in patients with HS than in controls. Remarkably, the killing activities were reduced when healthy control PBMCs were transfected with IL-26 siRNA. However, the transfection did not affect the killing activity of HS PBMCs, supporting the idea that IL-26 lacks efficacy in HS. CONCLUSIONS Our findings suggest that infection susceptibility in HS might be related to IL-26. Although the role of bacteria remains controversial in HS, this paper supports that there is a defect of antimicrobial response in these patients. What's already known about this topic? Interleukin (IL)-26 is a T helper 17 cytokine described as an antimicrobial and proinflammatory mediator. IL-26 has been reported in immune-mediated inflammatory diseases, but its involvement in inflammatory skin disorders remains unclear. Hidradenitis suppurativa (HS) is a chronic inflammatory skin disorder characterized by deficiency of IL-20 and IL-22 (a close homologue of IL-26), which causes antimicrobial peptide pauperization leading to severe and recurrent skin infections. What does this study add? IL-26 plasma levels are higher in patients with HS than in healthy control individuals. The antimicrobial activity of IL-26 might be ineffective in patients with HS. What is the translational message? Cutaneous antimicrobial incompetence in HS could be related to IL-26.
Collapse
Affiliation(s)
- E Scala
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - R Di Caprio
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - S Cacciapuoti
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - G Caiazzo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - A Fusco
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - E Tortorella
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - G Fabbrocini
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - A Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
25
|
Expression of IL-26 predicts prognosis of patients with hepatocellular carcinoma after surgical resection. Hepatobiliary Pancreat Dis Int 2019; 18:242-248. [PMID: 30956053 DOI: 10.1016/j.hbpd.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is no data regarding prognostic impact of interleukin (IL)-26 on outcomes of patients with hepatocellular carcinoma (HCC). The present study aimed to evaluate the prognostic impact of IL-26 on HCC patients undergoing liver resection. METHODS From 2003 to 2008, 122 patients with HCC who received surgical curative resection were enrolled. Patients were stratified into IL-26-upper and -lower groups according to the median expression level from immunohistochemical staining of resected specimens. Prognostic impact of IL-26 was estimated using Kaplan-Meier curves. Univariate and multivariate analyses were performed to evaluate time-dependent prognostic impact and independency of IL-26. Demographic and clinical factors that were associated with IL-26 were comprehensively identified. RESULTS Prognosis of the patients with high level of IL-26 revealed to be significantly unfavorable in both cumulative recurrence-free survival (P < 0.001) and overall survival (P = 0.002). Upper expression of IL-26 (HR: 1.643; 95% CI: 1.021 to 2.644; P = 0.041) and microvascular invasion (HR: 3.303; 95% CI: 1.255 to 8.696; P = 0.016) were identified as significant independent prognostic factors for overall survival in the multivariable analysis. CONCLUSIONS IL-26 is a novel prognostic factor for HCC after resection. Evaluation of IL-26 expression may be potentially valuable in clinical therapy when planning individualized follow-up schedule and evaluating candidates for prophylactic adjuvant treatment to prevent recurrence.
Collapse
|
26
|
Weishaar IM, Young RS, Wiles BM, McGee DW. The Effect of IL-26 on TNF-α-Induced CXCL8 Responses by Colonic Epithelial Cell Lines. Immunol Invest 2019; 48:822-834. [PMID: 30917710 DOI: 10.1080/08820139.2019.1594247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Th17 cells of the intestine and colon can produce several important cytokines during mucosal inflammation. However, few studies have focused on the role of IL-26 in intestinal inflammations. Colonic epithelial cells express receptors for IL-26, and this cytokine has been shown to induce the HT-29 colonic epithelial cell line to produce the chemokine CXCL8. However, epithelial cells would function in a cytokine network environment during mucosal inflammation and any effect of IL-26 on colonic epithelial cell chemokine responses could be affected by the presence of other potent pro-inflammatory cytokines like TNF-α and IL-1. Therefore, we investigated the effect of IL-26 with TNF-α or IL-1 on colonic epithelial cell line secretion of CXCL8. IL-26 alone had no effect on HT-29 or DLD1 cell line CXCL8 secretion. Yet, IL-26 was found to significantly enhance TNF-α-induced, but not IL-1-induced, CXCL8 secretion, but only at high levels of TNF-α. Similar results were seen with DLD1 cells. IL-26 did not enhance TNF-α-induced CXCL8 mRNA levels and did not affect TNF-α-induced IκBα phosphorylation or degradation. However, signaling through ERK and p38 MAPK were determined to be involved in the enhancing effect of IL-26 on the TNF-α-induced CXCL8 secretion, perhaps through known post-translational effects. These results suggest that the role of IL-26 in intestinal inflammation may be limited to enhancing CXCL8 secretion in the presence high levels of TNF-α, such as may occur in inflammatory bowel disease. Abbreviations: DMEM, Dulbecco's Modified Eagle's Medium; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IBD, inflammatory bowel disease; IL, interleukin; ITS, insulin, transferrin, selenium; TBS, Tris buffered saline; TNF, tumor necrosis factor.
Collapse
Affiliation(s)
- Isabelle M Weishaar
- Department of Biological Sciences, Binghamton University (SUNY) , Binghamton , New York USA
| | - Rebecca S Young
- Department of Biological Sciences, Binghamton University (SUNY) , Binghamton , New York USA
| | - Brody M Wiles
- Department of Biological Sciences, Binghamton University (SUNY) , Binghamton , New York USA
| | - Dennis W McGee
- Department of Biological Sciences, Binghamton University (SUNY) , Binghamton , New York USA
| |
Collapse
|
27
|
Larochette V, Miot C, Poli C, Beaumont E, Roingeard P, Fickenscher H, Jeannin P, Delneste Y. IL-26, a Cytokine With Roles in Extracellular DNA-Induced Inflammation and Microbial Defense. Front Immunol 2019; 10:204. [PMID: 30809226 PMCID: PMC6379347 DOI: 10.3389/fimmu.2019.00204] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Interleukin 26 (IL-26) is the most recently identified member of the IL-20 cytokine subfamily, and is a novel mediator of inflammation overexpressed in activated or transformed T cells. Novel properties have recently been assigned to IL-26, owing to its non-conventional cationic, and amphipathic features. IL-26 binds to DNA released from damaged cells and, as a carrier molecule for extracellular DNA, links DNA to inflammation. This observation suggests that IL-26 may act both as a driver and an effector of inflammation, leading to the establishment of a deleterious amplification loop and, ultimately, sustained inflammation. Thus, IL-26 emerges as an important mediator in local immunity/inflammation. The dysregulated expression and extracellular DNA carrier capacity of IL-26 may have profound consequences for the chronicity of inflammation. IL-26 also exhibits direct antimicrobial properties. This review summarizes recent advances on the biology of IL-26 and discusses its roles as a novel kinocidin.
Collapse
Affiliation(s)
- Vincent Larochette
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Charline Miot
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Caroline Poli
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Elodie Beaumont
- Inserm unit 1259, Medical School of the University of Tours, Tours, France
| | - Philippe Roingeard
- Inserm unit 1259, Medical School of the University of Tours, Tours, France
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Pascale Jeannin
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| |
Collapse
|
28
|
Niess JH, Hruz P, Kaymak T. The Interleukin-20 Cytokines in Intestinal Diseases. Front Immunol 2018; 9:1373. [PMID: 29967613 PMCID: PMC6015891 DOI: 10.3389/fimmu.2018.01373] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Autoimmune/inflammatory intestinal diseases, such as Crohn’s disease and ulcerative colitis, infectious gastrointestinal diseases, and gastrointestinal cancers, such as colorectal cancer, are worldwide a significant health problem. Intercellular communication and direct contact with the environment as the microbiota colonizes the gastrointestinal surface facilitates these diseases. Cytokines mediate the intercellular communication to maintain the equilibrium between host and environment and to regulate immune responses. One cytokine family that exchange information between immune cells and epithelial cells is the IL-20 cytokine family which includes the cytokines IL-19, IL-20, IL-22, IL-24, and IL-26. These cytokines share common receptor subunits and signaling pathways. IL-22 is the most intensively studied cytokine within this family in contexts of gastrointestinal disease, but the importance of other family members is more and more appreciated. In this review, the potential function of IL-20 cytokines concerning gastrointestinal conditions is discussed.
Collapse
Affiliation(s)
- Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Gastroenterology and Hepatology, University Hospital of Basel, Basel, Switzerland
| | - Petr Hruz
- Department of Gastroenterology and Hepatology, University Hospital of Basel, Basel, Switzerland
| | - Tanay Kaymak
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
RETRACTED: Anti-angiogenic effect of Interleukin-26 in oxygen-induced retinopathy mice via inhibiting NFATc1-VEGF pathway. Biochem Biophys Res Commun 2018; 499:849-855. [PMID: 29621550 DOI: 10.1016/j.bbrc.2018.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 11/23/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
This article has been retracted at the request of authors.
The Journal received an expression of concern from a reader, which noted that:
“The problem is that there is no IL-26 gene in the mouse. They claim they bought the KO mouse and the mouse IL-26 protein but given that there is no mouse IL-26 gene, a purchase is not possible and in fact no such reagents are available. Furthermore they do reference and anti-IL-26 antibody but the spec sheet clearly states that it is only reactive with the human protein…., the Enzo Life Sciences online catalog does not have a listing for recombinant IL-26 of any kind.”
The authors apologize for their mistakes and have asked to retract the article.
Collapse
|