1
|
Shaabani Ghahremanlo M, Hojati V, Vaezi G, Sharafi S. Transgenerational of Oxidative Damage Induced by Prenatal Ethanol Exposure on Spatial Learning/Memory and BDNF in the of Male Rats. IBRO Neurosci Rep 2024; 17:398-406. [PMID: 39583589 PMCID: PMC11583777 DOI: 10.1016/j.ibneur.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024] Open
Abstract
Alcohol consumption during pregnancy harms fetal development, leading to various physical and behavioral issues. This study investigates how prenatal ethanol exposure triggers oxidative stress (OS) and affects neurotrophic factors (NTFs), particularly brain-derived growth factor (BDNF) gene expression in the hippocampus, influencing learning and memory decline across two generations of male offspring from ethanol-exposed female rats. A rat model of fetal alcohol spectrum disorder (FASD) was initially generated to reflect on the deficits in the first generation, and then those transmitted via the male germline to the unexposed male ones. The pregnant rats were thus divided into four groups, namely, the control group (CTRL) receiving only distilled water (DW), and three groups being exposed to ethanol (20 %, 4.5 g/kg) by oral gavage, during the first 10-day gestation (FG), the second 10-day gestation (SG), and the entire gestation (EG) periods. Subsequent Morris water maze (MWM) tests on male offspring revealed spatial learning deficits during the second and entire gestational periods in both generations. Analysis of antioxidant enzyme activity including glutathione peroxidase (GPx), superoxide dismutase (SOD), and malondialdehyde (MDA), and BDNF gene expression in the hippocampus further highlighted the impacts of prenatal ethanol exposure. The study results demonstrated that prenatal ethanol exposure caused spatial learning/memory deficits during the SG and EG, altered antioxidant enzyme activity, and reduced BDNF gene expression in both generations. The findings underscore the role of OS in developmental and behavioral issues in FASD rat models and suggest that lasting transgenerational effects in the second generation may stem from alcohol-induced changes.
Collapse
Affiliation(s)
| | | | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Shahram Sharafi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
2
|
Wu T, Du X, Liu HH, Liu LY, Yang YK, Wang SJ, Duan CL. Bioactive solanidane steroidal alkaloids from Solanum lyratum. Fitoterapia 2024; 175:105916. [PMID: 38527590 DOI: 10.1016/j.fitote.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024]
Abstract
Six previously unreported solanidane steroidal alkaloids, namely lyrasolanosides A-F, were isolated from Solanum lyratum. In addition, five known steroidal alkaloids were also identified. The structures of these compounds were determined through the use of NMR, HRESIMS,UV, IR and ECD analysis. To assess their bioactivities, the cytotoxic effects of the six previously unreported compounds were evaluated on A549 cells. The results revealed that lyrasolanoside B (2) exhibited the highest potency among them. Lyrasolanoside B (2) exhibited significant inhibition of cell migration, invasion, and adhesion dramatically. Mechanistically, it was found to suppress the activity of JAK2/STAT3 signaling pathway by downregulating the expression of phosphorylated JAK2/STAT3 in an exosome-dependent manner. In addition, lyrasolanoside B (2) was found to significantly upregulate the expression of E-cadherin and downregulate the expression of N-cadherin and vimentin. These findings indicate that lyrasolanoside B (2) inhibits the metastasis of A549 cells by suppressing exosome-mediated EMT. These findings suggest that lyrasolanoside B (2) may inhibit the metastasis of lung cancer by regulating A549-derived exosomes.
Collapse
Affiliation(s)
- Tong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao Du
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hai-Hui Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang-Yu Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu-Ke Yang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Su-Juan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Chang-Ling Duan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
3
|
Liu X, Wang F, Chen Y, An Y, Cheng L, Wang L, Kong D, Zhao W, Tian J, Niu Y, Cui W, Zhang W, Xu Y, Ba Y, Zhou H. Research progress on chemical components and pharmacological action of Solanum lyratum Thunb. J Pharm Pharmacol 2023; 75:328-362. [PMID: 36632823 DOI: 10.1093/jpp/rgac099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Solanum lyratum Thunb (SLT) is a perennial plant of the Solanaceae family, and is extensively used in the clinical practice of traditional Chinese medicine. Malaria, oedema, gonorrhoea, cancer, wind and fever, jaundiced hepatitis, cholecystitis and rheumatoid arthritis are among the diseases that it is used to treat. To offer a foundation for further development and usage of SLT, the pieces of literature about the chemical composition and pharmacological action of SLT were reviewed and analysed. KEY FINDINGS The chemical constituents of SLT mainly included steroids, alkaloids, flavonoids, terpenoids, anthraquinones, phenylpropanoids and others. Pharmacological action mainly contains anti-tumour, antibacterial, anti-inflammatory, anti-oxidation and other pharmacological actions, among them, the anti-tumour effect is particularly outstanding. SUMMARY At present, studies on the pharmacological effects of SLT mainly focus on alkaloids and steroidal saponins. In the follow-up studies, studies on the pharmacological activities of other chemical components in SLT, such as flavonoids and terpenoids, should be strengthened. It has the potential to pave the way for more research and development of novel SLT medicines.
Collapse
Affiliation(s)
- Xue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Fulin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yueru Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Ying An
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Lingmei Cheng
- The Third Hospital of Jinan, Jinan, Shandong Province, PR China
| | - Lu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Degang Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Wei Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Jinli Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yingshuo Niu
- Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Weiliang Cui
- Shandong Institute for Food and Drug Control, Jinan, Shandong Province, PR China
| | - Wenru Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yang Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yahui Ba
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| |
Collapse
|
4
|
Zhao Y, Gao WK, Wang XD, Zhang LH, Yu HY, Wu HH. Phytochemical and pharmacological studies on Solanum lyratum: a review. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:39. [PMID: 36348127 PMCID: PMC9643311 DOI: 10.1007/s13659-022-00361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Solanum lyratum is one of the temperate plants, broadly distributed in Korea, China, Japan, India, and South-East Asia and well-documented in those oriental ethnic medicine systems for curing cancers, jaundice, edema, gonorrhea, cholecystitis, phlogosis, rheumatoid arthritis, etc. This review systematically summarized the research progress on S. lyratum respecting the botany, traditional uses, phytochemistry, pharmacology, and toxicology to increase people's in-depth understanding of this plant, by data retrieval in a series of online or off-line electronic databases as far as we can reach. Steroidal saponins and alkaloids, terpenoids, nitrogenous compounds, and flavonoid compounds are the main chemical constituents in S. lyratum. Among them, steroidal alkaloids and saponins are the major active ingredients ever found in S. lyratum, exerting activities of anti-cancer, anti-inflammation, anti-microbial, anti-allergy, and anti-oxidation in vivo or in vitro. As a result, S. lyratum has been frequently prescribed for the abovementioned therapeutic purposes, and there are substantial traditional and modern shreds of evidence of its use.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Wen-Ke Gao
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Xiang-Dong Wang
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Li-Hua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Hai-Yang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Hong-Hua Wu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
5
|
Toxicological Safety Evaluation in Acute and 21-Day Studies of Ethanol Extract from Sol anum lyratum Thunb. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8518324. [PMID: 35399634 PMCID: PMC8991412 DOI: 10.1155/2022/8518324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022]
Abstract
Solanum lyratum (Solanaceae) is a traditional Chinese medicine widely used to remedy cold fever, damp-heat jaundice, herpes, and nephritis dropsy. Despite its obvious therapeutic advantages, few toxicological studies have involved the efficacy and safety of its long-term treatment. To investigate the acute and subchronic toxicity of the extract of 75% ethanol extract of whole Solanum lyratum (ESL) after oral administration in mice. In acute toxicity experiment, mice were intragastric administration with ESL at doses of 1000, 2000, 3000, 4000, or 5000 mg/kg for 1 day. In a subchronic toxicity experiment, mice were intragastrically administration with ESL at doses of 180, 360, and 720 mg/kg and 0.9% saline for 21 days. Weight gain, hematological, biochemical, and histopathological analysis of vital organs were evaluated. The presence of aristolochic acid I in ESL was studied using UPLC-QTOF-MS. Phytochemical analysis indicated that the presence of aristolochic acid I in ESL was 0.0025 mg/g. This relatively low concentration is not enough to cause toxicity. In the acute toxicity experiment, neither mortality nor clinical alterations were shown, except for the mild transient diarrhea at 5000 mg/kg. So the LD50 value of ESL was assessed to be more than 5000 mg/kg. In the subchronic toxicity experiment, neither mortality nor treatment-related clinical signs were observed. There was a significant increase in body weight, hemoglobin (HB), and urea nitrogen (BUN) after administration with ESL at 180 mg/kg. In addition, the weight of the stomach was increased and the hematocrit (HCT) was decreased after administration with ESL at 360 mg/kg. The changes were not considered treatment-related toxicological effects because the toxicity and histopathological analysis indicate that the extracts are safe for oral administration.
Collapse
|
6
|
The Role of miR-155 in Nutrition: Modulating Cancer-Associated Inflammation. Nutrients 2021; 13:nu13072245. [PMID: 34210046 PMCID: PMC8308226 DOI: 10.3390/nu13072245] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Nutrition plays an important role in overall human health. Although there is no direct evidence supporting the direct involvement of nutrition in curing disease, for some diseases, good nutrition contributes to disease prevention and our overall well-being, including energy level, optimum internal function, and strength of the immune system. Lately, other major, but more silent players are reported to participate in the body’s response to ingested nutrients, as they are involved in different physiological and pathological processes. Furthermore, the genetic profile of an individual is highly critical in regulating these processes and their interactions. In particular, miR-155, a non-coding microRNA, is reported to be highly correlated with such nutritional processes. In fact, miR-155 is involved in the orchestration of various biological processes such as cellular signaling, immune regulation, metabolism, nutritional responses, inflammation, and carcinogenesis. Thus, this review aims to highlight those critical aspects of the influence of dietary components on gene expression, primarily on miR-155 and its role in modulating cancer-associated processes.
Collapse
|
7
|
Gong YX, Liu Y, Jin YH, Jin MH, Han YH, Li J, Shen GN, Xie DP, Ren CX, Yu LY, Lee DS, Kim JS, Jo YJ, Kwon J, Lee J, Park YH, Kwon T, Cui YD, Sun HN. Picrasma quassioides Extract Elevates the Cervical Cancer Cell Apoptosis Through ROS-Mitochondrial Axis Activated p38 MAPK Signaling Pathway. In Vivo 2021; 34:1823-1833. [PMID: 32606152 DOI: 10.21873/invivo.11977] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM Picrasma quassioides (P. quassioides) is used in traditional Asian medicine widely for the treatment of anemopyretic cold, eczema, nausea, loss of appetite, diabetes mellitus, hypertension etc. In this study we aimed to understand the effect of P. quassioides ethanol extract on SiHa cervical cancer cell apoptosis. MATERIALS AND METHODS The P. quassioides extract-induced apoptosis was analyzed using the MTT assay, fluorescence microscopy, flow cytometry and western blotting. RESULTS P. quassioides extract induced cellular apoptosis by increasing the accumulation of cellular and mitochondrial reactive oxygen species (ROS) levels and inhibiting ATP synthesis. Pretreatment with N-Acetylcysteine (NAC), a classic antioxidant, decreased the intracellular ROS production and inhibited apoptosis. In addition, the P38 MAPK signaling pathway is a key in the apoptosis of SiHa cells induced by the P. quassioides extract. CONCLUSION The P. quassioides extract exerts its anti-cancer properties on SiHa cells through ROS-mitochondria axis and P38 MAPK signaling. Our data provide a new insight for P. quassioides as a therapeutic strategy for cervical cancer treatment.
Collapse
Affiliation(s)
- Yi-Xi Gong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Yue Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Ying-Hua Jin
- Library and Information Center, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Jing Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Gui-Nan Shen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Dan-Ping Xie
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Chen-Xi Ren
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Li-Yun Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Dong-Seok Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Jeongwoo Kwon
- Department of Animal Sciences, Chungbuk Natonal University, Cheongju, Republic of Korea
| | - Jaihyung Lee
- Haeam Convalescence Hospital, Gyeonggi, Republic of Korea
| | - Yang Ho Park
- Park Yang Ho BRM Institute, Seoul, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yu-Dong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| |
Collapse
|
8
|
Ethanol Extracts of Solanum lyratum Thunb Regulate Ovarian Cancer Cell Proliferation, Apoptosis, and Epithelial-to-Mesenchymal Transition (EMT) via the ROS-Mediated p53 Pathway. J Immunol Res 2021; 2021:5569354. [PMID: 33869638 PMCID: PMC8035038 DOI: 10.1155/2021/5569354] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer is a type of common gynecological tumors with high incidence and poor survival. The anticancer effects of the traditional Chinese medicine Solanum lyratum Thunb (SLT) have been intensively investigated in various cancers but in ovarian cancer is rare. The current study is aimed at investigating the effect of SLT on ovarian cancer cells. Lactate dehydrogenase (LDH) and MTT assays indicated that SLT concentrations of 0.25 and 0.5 μg/mL were not cytotoxic and had significant inhibitory effects on the cell viabilities of A2780 and SKOV3 cells, hence were used for subsequent experiments. Flow cytometric and western blot analysis revealed that SLT effectively suppressed ovarian cancer cell proliferation via inducing cell cycle arrest and increasing apoptosis. Cell cycle and apoptosis-related protein expressions were also regulated in SLT-treated cells. Moreover, DCFH-DA and western blot assays demonstrated that SLT enhanced ROS accumulation and subsequently activated the p53 signaling pathway. However, SLT-regulated ovarian cancer cell proliferation, apoptosis, migration, invasion, and EMT were significantly reversed by an ROS inhibitor (NAC, N-acetyl-L-cysteine). Furthermore, A2780 and SKOV3 cells cocultured with M0 macrophages showed that SLT activated the polarization of M0 macrophages to M1 macrophages and inhibited the polarization to M2 macrophages, with the increased percentage of CD86+ cells and decreased percentage of CD206+ cells were detected. In summary, this study illustrated the anticancer effects of SLT on ovarian cancer cells, suggesting that SLT may have the potential to provide basic evidence for the discovery of antiovarian cancer agents.
Collapse
|
9
|
Wu Q, Dai T, Song J, Liu X, Song S, Li L, Liu J, Pugazhendhi A, Jacob JA. Effects of herbal and mushroom formulations used in Traditional Chinese Medicine on in vitro human cancer cell lines at the preclinical level: An empirical review of the cell killing mechanisms. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Han L, Wang JN, Cao XQ, Sun CX, Du X. An-te-xiao capsule inhibits tumor growth in non-small cell lung cancer by targeting angiogenesis. Biomed Pharmacother 2018; 108:941-951. [PMID: 30372906 DOI: 10.1016/j.biopha.2018.09.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
An-te-xiao capsule consists of total alkaloids from the dried whole plantof Solanum lyratum, and showed antitumor effects in our previous study. However, its inhibitory effect on multiple non-small cell lung cancer (NSCLC) cell lines and the underlying mechanisms have not been elucidated clearly. This study sought to investigate the inhibitory effects of An-te-xiao capsule on three main types of NSCLC cell lines (A549, NCI-H460, and NCI-H520) in vitro and in vivo and the underlying mechanisms of action including its potential anti-angiogenesis effects. An-te-xiao capsule showed no acute oral toxicity in mice, and significantly prolonged survival time in a mouse model of Lewis tumor xenograft. The inhibition of A549, NCI-H460, and NCI-H520 cells by An-te-xiao capsule was reflected in its effects on tumor growth, histopathological changes, tumor microvessel density (MVD), cell cycle regulatory proteins, and cell apoptosis. In vitro, An-te-xiao capsule repressed migration, invasion, and tube formation of tumor-derived vascular endothelial cells (Td-ECs), which were obtained using a co-culture system, in the presence or absence of vascular endothelial growth factor (VEGF) at safe concentrations selected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, An-te-xiao capsule inhibited the secretion of VEGF by A549 cells in the co-culture system and suppressed the phosphorylation of VEGF receptor 2 (VEGFR2). Taken together, An-te-xiao capsule has potential for treating NSCLC.
Collapse
Affiliation(s)
- Lin Han
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing, 100091, People's Republic of China
| | - Jian-Nong Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing, 100091, People's Republic of China.
| | - Xiao-Qiang Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing, 100091, People's Republic of China
| | - Cai-Xia Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing, 100091, People's Republic of China
| | - Xiao Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing, 100091, People's Republic of China
| |
Collapse
|
11
|
Taurine prevents ethanol-induced apoptosis mediated by mitochondrial or death receptor pathways in liver cells. Amino Acids 2018; 50:863-875. [DOI: 10.1007/s00726-018-2561-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
|
12
|
张 配, 刘 芳, 高 娇, 马 琳, 孙 小, 郑 海, 刘 浩, 赵 素. [Small interfering RNA-mediated monocarboxylate transporter 1 silencing enhances sensitivity of nasopharyngeal carcinoma HNE1/DDP cells to cisplatin-induced apoptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:883-888. [PMID: 28736362 PMCID: PMC6765516 DOI: 10.3969/j.issn.1673-4254.2017.07.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the effect of small interfering RNA (siRNA)-mediated silencing of monocarboxylate transporter 1 (MCT1) on the sensitivity of drug-resistant nasopharyngeal carcinoma HNE1/DDP cells to cisplatin (DDP)-induced apoptosis and explore the possible mechanism. METHODS The expression of MCT1 was analyzed in HNE1 and HNE1/DDP cells and in HNE1/DDP cells transfected with siRNA using Western blot. MTT assay was used to assess the inhibitory effect of different concentrations of DDP alone or in combination with MCT1 siRNA on the proliferation of HNE1/DDP cells. The apoptosis of cells treated with MCT1 siRNA or/and DDP (8 µmol/L) was assessed using flow cytometry with PI staining, and the mitochondrial membrane potential was detected using JC-1 staining assay; the expressions of Mcl-1, Bak, Bcl-2, and Bax were analyzed using Western blotting. RESULTS HNE1/DDP cells showed a high expression of MCT1, and MCT1 silencing using siRNA significantly increased the sensitivity of HNE1/DDP cells to DDP (P<0.05) and partly reversed DDP resistance of the cells. MCT1 silencing enhanced the sensitivity of HNE1/DDP cells to DDP-induced apoptosis. Treatment of HNE1/DDP cells with MCT1 siRNA combined with 8 µmol/L DDP for 24 h resulted in an apoptotic rate of (51.23∓2.86)%, significantly higher than that in cells treated with MCT1 siRNA or DDP alone (P<0.05). The combined treatment also reduced the mitochondrial membrane potential, down-regulated the expression of Mcl-1 and Bcl-2, and up-regulated the expression of Bax in the DDP-resistant cells. CONCLUSION MCT1 siRNA can enhance the sensitivity of HNE1/DDP cells to DDP-induced apoptosis, the mechanism of which may involve the down-regulation of Mcl-1 and Bcl-2 and up-regulation of Bax expression.
Collapse
Affiliation(s)
- 配 张
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| | - 芳 刘
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| | - 娇 高
- 蚌埠医学院第一附属医院 骨科,安徽 蚌埠 233004Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 琳艳 马
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| | - 小锦 孙
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| | - 海伦 郑
- 蚌埠医学院第一附属医院 消化科,安徽 蚌埠 233004Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 浩 刘
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| | - 素容 赵
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| |
Collapse
|