1
|
Hiyama Y, Fujino H, Namba M, Fujii Y, Uchikawa S, Ono A, Nakahara T, Murakami E, Kawaoka T, Miki D, Tsuge M, Oka S. Value of autotaxin for hepatocellular carcinoma risk assessment in chronic hepatitis B patients treated with nucleos(t)ide analogs. Hepatol Res 2024; 54:981-992. [PMID: 38539054 DOI: 10.1111/hepr.14042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 11/03/2024]
Abstract
AIM Autotaxin (ATX) is a newly identified liver fibrosis biomarker; however, its clinical usefulness remains unclear. Therefore, we analyzed the changes in patients with chronic hepatitis B virus infection treated with nucleos(t)ide analogs (NAs) to evaluate its usefulness. We also investigated the predictors of hepatocellular carcinoma development, including ATX, in patients with chronic hepatitis B based on their clinical characteristics. METHODS This retrospective study included 179 patients with hepatitis B virus infection treated with NAs for >2 years. First, we measured the ATX levels before and up to 10 years after initiating entecavir (therapy for 88 patients whose serial ATX levels could be measured before and during entecavir therapy. Subsequently, for 179 patients whose ATX levels could be measured at the commencement of NAs, we examined the factors involved in developing hepatocellular carcinoma, including ATX. RESULTS The ATX levels showed a gradual and significant decrease during the observation period of up to 10 years. Multivariable analysis showed that a baseline ATX/upper limits of normal ratio ≥1.214, age, and alkaline phosphatase levels were independent risk factors for hepatocellular carcinoma development. The combination of age and ATX/upper limits of normal ratio was used to stratify the high-risk groups for liver carcinogenesis. CONCLUSIONS A decrease in ATX levels up to 10 years after the commencement of therapy suggested that ATX is a helpful biomarker in evaluating fibrosis in patients undergoing long-term NA therapy. Furthermore, this study showed that combining age and the baseline ATX/upper limits of normal ratio may help identify high-risk carcinogenesis groups.
Collapse
Affiliation(s)
- Yuichi Hiyama
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima, Japan
| | - Hatsue Fujino
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Maiko Namba
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasutoshi Fujii
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Cancer Treatment Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinsuke Uchikawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Ono
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Nakahara
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eisuke Murakami
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Zhao L, Duan Y, Li Z, Li J, Li S. Unearthing the Potential Therapeutic Effects of Oxyresveratrol Based on Intrinsic Links between Pharmacological Effects: Implications for the Gut-Liver-Brain Axis. Pharmaceuticals (Basel) 2024; 17:1063. [PMID: 39204169 PMCID: PMC11359039 DOI: 10.3390/ph17081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
Oxyresveratrol is a stilbene compound with a simple chemical structure and various therapeutic potentials. This study summarized and analyzed the multiple pharmacological effects and mechanisms of oxyresveratrol, identifying its prominent performance in neuroprotection, hepatoprotection, and anti-inflammatory activities in the intestines. By integrating the pharmacological effects of oxyresveratrol with insights from the network pharmacology and molecular docking of its interactions with targets linked to gut-liver-brain axis disorders, it has been shown that oxyresveratrol may hold promise for the treatment of gut-liver-brain axis-related disorders. The synergistic effect between various mechanisms has inspired further research and the development of oxyresveratrol's application value.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- College of Biology and Food Engineering, Huaihua University, Huaihua 418000, China
| | - Yan Duan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Zhaoxing Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Shunxiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| |
Collapse
|
3
|
Gairola A, Wetten A, Dyson J. Sodium/bile acid co-transporter inhibitors currently in preclinical or early clinical development for the treatment of primary biliary cholangitis. Expert Opin Investig Drugs 2024; 33:485-495. [PMID: 38613839 DOI: 10.1080/13543784.2024.2343789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Pruritus is common and often undertreated in patients with primary biliary cholangitis (PBC). Existing treatments largely have an aging and low-quality evidence base, and studies included only small numbers of patients. More recent data that has added to our understanding of pruritus treatments has often come from clinical trials where itching was a secondary outcome measure in a trial designed primarily to assess disease-modifying agents. This area represents an unmet clinical need in the management of PBC. AREAS COVERED In this manuscript, we first summarize the proposed mechanisms for PBC-related pruritus and the current treatment paradigm. We then present an appraisal of the existing pre-clinical and clinical evidence for the use of ileal bile acid transporter inhibitors (IBATis) for this indication in PBC patients. EXPERT OPINION Evidence for the efficacy of IBATis is promising but limited by the currently available volume of data. Furthermore, larger clinical trials with long-term data on efficacy, safety and tolerability are needed to confirm the role of using IBATis in clinical practice and their place on the itch treatment ladder. Additional focus should also be given to exploring the disease-modifying potential of IBATis in PBC.
Collapse
Affiliation(s)
- Abhishek Gairola
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Aaron Wetten
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Jessica Dyson
- Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
4
|
Iwadare T, Kimura T, Okumura T, Wakabayashi SI, Nakajima T, Kondo S, Kobayashi H, Yamashita Y, Sugiura A, Fujimori N, Yamazaki T, Kunimoto H, Shimamoto S, Igarashi K, Joshita S, Tanaka N, Umemura T. Serum autotaxin is a prognostic indicator of liver-related events in patients with non-alcoholic fatty liver disease. COMMUNICATIONS MEDICINE 2024; 4:73. [PMID: 38627520 PMCID: PMC11021564 DOI: 10.1038/s43856-024-00499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Circulating autotaxin (ATX) levels have been reported to correlate with liver inflammation activity and liver fibrosis severity in patients with non-alcoholic fatty liver disease (NAFLD). The objective of this study is to investigate whether serum ATX could predict liver-related events (LRE) in NAFLD patients. METHODS This retrospective investigation includes 309 biopsy-proven NAFLD patients registered at Shinshu University Hospital. All patients are followed for at least 1 year, during which time the prevalence of LRE, including newly developing hepatocellular carcinoma, hepatic encephalopathy, ascites, and esophagogastric varices, is investigated in relation to ATX levels at the time of liver biopsy. RESULTS During the median follow-up period of 7.0 years, LRE are observed in 20 patients (6.5%). The area under the receiver operating characteristic curve and cut-off value of serum ATX for predicting LRE are 0.81 and 1.227 mg/l, respectively. Multivariate Cox proportional hazards models for LRE determine ATX and advanced fibrosis as independently associated factors. Furthermore, in a competing risk analysis that considered non-liver-related death as a competing event, ATX (HR 2.29, 95% CI 1.22-4.30, p = 0.010) is identified as an independent factor associated with LRE, along with advanced fibrosis (HR 8.01, 95% CI 2.10-30.60, p = 0.002). The predictive utility of ATX for LRE is validated in an independent cohort. CONCLUSIONS Serum ATX may serve as a predictive marker for LRE in patients with NAFLD.
Collapse
Affiliation(s)
- Takanobu Iwadare
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan.
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan.
| | - Taiki Okumura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shun-Ichi Wakabayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Taro Nakajima
- Department of Gastroenterology, Maruko Central Hospital, Ueda, Japan
| | - Shohei Kondo
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyuki Kobayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuki Yamashita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ayumi Sugiura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoyuki Fujimori
- Department of Hepatology, Shinshu Ueda Medical Center, Ueda, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hideo Kunimoto
- Department of Hepatology, Nagano Municipal Hospital, Nagano, Japan
| | | | - Koji Igarashi
- Bioscience Division, TOSOH Corporation, Ayase, Kanagawa, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
5
|
Verma A, Kumar I, Indal M, Shukla S, Singh PK, Shukla RC. Variation in hepatic segmental portal venous pulsed wave Doppler flow distribution in patients with NAFLD: A pilot study. ULTRASOUND (LEEDS, ENGLAND) 2023; 31:300-307. [PMID: 37929252 PMCID: PMC10621493 DOI: 10.1177/1742271x231154862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 11/07/2023]
Abstract
Purpose To evaluate the segmental variations in portal venous pulsed wave colour Doppler flow velocity in patients with moderate to severe non-alcoholic fatty liver disease in comparison with healthy controls. Materials and Methods In this prospective, observational, case-control study, the maximum velocity of all the segmental branches of portal vein were evaluated on colour Doppler in patients with moderate to severe non-alcoholic fatty liver disease, and the values were compared between three groups (1) Healthy controls (n = 30), (2) non-alcoholic fatty liver disease group, that is moderate to severe fatty liver without features of portal hypertension (n = 32) and (3) non-alcoholic steatohepatitis-portal hypertension group, that is those non-alcoholic fatty liver disease patients with features of portal hypertension (n = 13). Results Compared to controls, non-alcoholic fatty liver disease group showed a lower velocity in all the eight segments of liver. The ratio of segment 2 to segment 7 peak portal vein maximum velocity was significantly higher in non-alcoholic fatty liver disease (1.03 ± 0.21) compared to controls (0.90 ± 0.17) and even higher in non-alcoholic steatohepatitis-Portal hypertension group (1.83 ± 0.40) with p value of 0.003. Conclusion Our study demonstrates the occurrence of flow redistribution occurring in cases of non-alcoholic fatty liver disease patients with the left lobe receiving higher portal venous flow. This flow redistribution was even more pronounced in a subset of non-alcoholic fatty liver disease patients who developed features of portal hypertension.
Collapse
Affiliation(s)
- Ashish Verma
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ishan Kumar
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Manish Indal
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sunit Shukla
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Pramod Kumar Singh
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ram Chandra Shukla
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Sepehrinezhad A, Shahbazi A, Joghataei MT, Larsen FS, Sahab Negah S. Inhibition of autotaxin alleviates pathological features of hepatic encephalopathy at the level of gut-liver-brain axis: an experimental and bioinformatic study. Cell Death Dis 2023; 14:490. [PMID: 37528089 PMCID: PMC10394058 DOI: 10.1038/s41419-023-06022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
There is accumulating evidence that the circulatory levels of autotaxin (ATX) and lysophosphatidic acid (LPA) are increased in patients with severe liver disease. However, the potential role of the ATX-LPA axis in hepatic encephalopathy (HE) remains unclear. Our study aimed to investigate the role of the ATX-LPA signaling pathway in mice with thioacetamide (TAA) induced acute HE. To show the role of the ATX-LPA axis in the context of HE, we first measured the involvement of ATX-LPA in the pathogenesis of TAA-induced acute HE. Then, we compared the potential effects of ATX inhibitor (HA130) on astrocyte responses at in vitro and gut-liver-brain axis at in vivo levels. The inflammatory chemokine (C-C motif) ligand 3 was significantly increased in the hyperammonemic condition and could be prevented by ATX inhibition in astrocytes at in vitro level. Further statistical tests revealed that plasma and tissue pro-inflammatory cytokines were inhibited by HA130 in mice. Furthermore, the stage of HE was significantly improved by HA130. The most surprising result was that HA130 alleviated immune infiltrating cells in the liver and intestine and decreased mucus-secreting cells in the intestine. Further analysis showed that the levels of liver enzymes in serum were significantly decreased in response to ATX inhibition. Surprisingly, our data indicated that HA130 could recover permeabilization of the blood-brain barrier, neuroinflammation, and recognition memory. Besides that, we found that the changes of Interleukin-1 (IL-1) and aquaporin-4 (AQP4) in HE might have a connection with the glymphatic system based on bioinformatics analyses. Taken together, our data showed that the ATX-LPA axis contributes to the pathogenesis of HE and that inhibition of ATX improves HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Fin Stolze Larsen
- Department of Gastroenterology and Hepatology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
7
|
Wiering L, Subramanian P, Hammerich L. Hepatic Stellate Cells: Dictating Outcome in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2023; 15:1277-1292. [PMID: 36828280 PMCID: PMC10148161 DOI: 10.1016/j.jcmgh.2023.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a fast growing, chronic liver disease affecting ∼25% of the global population. Nonalcoholic fatty liver disease severity ranges from the less severe simple hepatic steatosis to the more advanced nonalcoholic steatohepatitis (NASH). The presence of NASH predisposes individuals to liver fibrosis, which can further progress to cirrhosis and hepatocellular carcinoma. This makes hepatic fibrosis an important indicator of clinical outcomes in patients with NASH. Hepatic stellate cell activation dictates fibrosis development during NASH. Here, we discuss recent advances in the analysis of the profibrogenic pathways and mediators of hepatic stellate cell activation and inactivation, which ultimately determine the course of disease in nonalcoholic fatty liver disease/NASH.
Collapse
Affiliation(s)
- Leke Wiering
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Linda Hammerich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
8
|
Tsuchida Y, Shoda H, Sawada T, Fujio K. Role of autotaxin in systemic lupus erythematosus. Front Med (Lausanne) 2023; 10:1166343. [PMID: 37122329 PMCID: PMC10130763 DOI: 10.3389/fmed.2023.1166343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disease characterized by the production of various autoantibodies and deposition of immune complexes. SLE is a heterogenous disease, and the pattern of organ involvement and response to treatment differs significantly among patients. Novel biological markers are necessary to assess the extent of organ involvement and predict treatment response in SLE. Lysophosphatidic acid is a lysophospholipid involved in various biological processes, and autotaxin (ATX), which catalyzes the production of lysophosphatidic acid in the extracellular space, has gained attention in various diseases as a potential biomarker. The concentration of ATX is increased in the serum and urine of patients with SLE and lupus nephritis. Recent evidence suggests that ATX produced by plasmacytoid dendritic cells may play an important role in the immune system and pathogenesis of SLE. Furthermore, the production of ATX is associated with type I interferons, a key cytokine in SLE pathogenesis, and ATX may be a potential biomarker and key molecule in SLE.
Collapse
Affiliation(s)
- Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Yumi Tsuchida,
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuji Sawada
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Kamada Y, Nakamura T, Isobe S, Hosono K, Suama Y, Ohtakaki Y, Nauchi A, Yasuda N, Mitsuta S, Miura K, Yamamoto T, Hosono T, Yoshida A, Kawanishi I, Fukushima H, Kinoshita M, Umeda A, Kinoshita Y, Fukami K, Miyawaki T, Fujii H, Yoshida Y, Kawanaka M, Hyogo H, Morishita A, Hayashi H, Tobita H, Tomita K, Ikegami T, Takahashi H, Yoneda M, Jun DW, Sumida Y, Okanoue T, Nakajima A. SWOT analysis of noninvasive tests for diagnosing NAFLD with severe fibrosis: an expert review by the JANIT Forum. J Gastroenterol 2023; 58:79-97. [PMID: 36469127 PMCID: PMC9735102 DOI: 10.1007/s00535-022-01932-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD can progress to liver cirrhosis and hepatocellular carcinoma (HCC). Recently, the prognosis of NAFLD/NASH has been reported to be dependent on liver fibrosis degree. Liver biopsy remains the gold standard, but it has several issues that must be addressed, including its invasiveness, cost, and inter-observer diagnosis variability. To solve these issues, a variety of noninvasive tests (NITs) have been in development for the assessment of NAFLD progression, including blood biomarkers and imaging methods, although the use of NITs varies around the world. The aim of the Japan NASH NIT (JANIT) Forum organized in 2020 is to advance the development of various NITs to assess disease severity and/or response to treatment in NAFLD patients from a scientific perspective through multi-stakeholder dialogue with open innovation, including clinicians with expertise in NAFLD/NASH, companies that develop medical devices and biomarkers, and professionals in the pharmaceutical industry. In addition to conventional NITs, artificial intelligence will soon be deployed in many areas of the NAFLD landscape. To discuss the characteristics of each NIT, we conducted a SWOT (strengths, weaknesses, opportunities, and threats) analysis in this study with the 36 JANIT Forum members (16 physicians and 20 company representatives). Based on this SWOT analysis, the JANIT Forum identified currently available NITs able to accurately select NAFLD patients at high risk of NASH for HCC surveillance/therapeutic intervention and evaluate the effectiveness of therapeutic interventions.
Collapse
Affiliation(s)
- Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, 1-7, Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Takahiro Nakamura
- Medicine Division, Nippon Boehringer Ingelheim Co., Ltd., 2-1-1, Osaki, Shinagawa-Ku, Tokyo, 141-6017 Japan
| | - Satoko Isobe
- FibroScan Division, Integral Corporation, 2-25-2, Kamiosaki, Shinagawa-Ku, Tokyo, 141-0021 Japan
| | - Kumiko Hosono
- Immunology, Hepatology & Dermatology Medical Franchise Dept., Medical Division, Novartis Pharma K.K., 1-23-1, Toranomon, Minato-Ku, Tokyo, 105-6333 Japan
| | - Yukiko Suama
- Medical Information Services, Institute of Immunology Co., Ltd., 1-1-10, Koraku, Bunkyo-Ku, Tokyo, 112-0004 Japan
| | - Yukie Ohtakaki
- Product Development 1St Group, Product Development Dept., Fujirebio Inc., 2-1-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 163-0410 Japan
| | - Arihito Nauchi
- Academic Department, GE Healthcare Japan, 4-7-127, Asahigaoka, Hino, Tokyo, 191-8503 Japan
| | - Naoto Yasuda
- Ultrasound Business Area, Siemens Healthcare KK, 1-11-1, Osaki, Shinagawa-Ku, Tokyo, 141-8644 Japan
| | - Soh Mitsuta
- FibroScan Division, Integral Corporation, 2-25-2, Kamiosaki, Shinagawa-Ku, Tokyo, 141-0021 Japan
| | - Kouichi Miura
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Takuma Yamamoto
- Cardiovascular and Diabetes, Product Marketing Department, Kowa Company, Ltd., 3-4-10, Nihonbashi Honcho, Chuo-Ku, Tokyo, 103-0023 Japan
| | - Tatsunori Hosono
- Clinical Development & Operations Japan, Nippon Boehringer Ingelheim Co., Ltd., 2-1-1, Osaki, Shinagawa-Ku, Tokyo, 141-6017 Japan
| | - Akihiro Yoshida
- Medical Affairs Department, Kowa Company, Ltd., 3-4-14, Nihonbashi Honcho, Chuo-Ku, Tokyo, 103-8433 Japan
| | - Ippei Kawanishi
- R&D Planning Department, EA Pharma Co., Ltd., 2-1-1, Irifune, Chuo-Ku, Tokyo, 104-0042 Japan
| | - Hideaki Fukushima
- Diagnostics Business Area, Siemens Healthcare Diagnostics KK, 1-11-1, Osaki, Shinagawa-Ku, Tokyo, 141-8673 Japan
| | - Masao Kinoshita
- Marketing Dep. H.U. Frontier, Inc., Shinjuku Mitsui Building, 2-1-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 163-0408 Japan
| | - Atsushi Umeda
- Clinical Development Dept, EA Pharma Co., Ltd., 2-1-1, Irifune, Chuo-Ku, Tokyo, 104-0042 Japan
| | - Yuichi Kinoshita
- Global Drug Development Division, Novartis Pharma KK, 1-23-1, Toranomon, Minato-Ku, Tokyo, 105-6333 Japan
| | - Kana Fukami
- 2Nd Product Planning Dept, 2Nd Product Planning Division, Fujirebio Inc, 2-1-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 163-0410 Japan
| | - Toshio Miyawaki
- Medical Information Services, Institute of Immunology Co., Ltd., 1-1-10, Koraku, Bunkyo-Ku, Tokyo, 112-0004 Japan
| | - Hideki Fujii
- Departments of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, Osaka 545-8585 Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, 5-7, Kishibe Shinmachi, Suita, Osaka 564-8567 Japan
| | - Miwa Kawanaka
- Department of General Internal Medicine2, Kawasaki Medical School, Kawasaki Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, Okayama 700-8505 Japan
| | - Hideyuki Hyogo
- Department of Gastroenterology, JA Hiroshima Kouseiren General Hospital, 1-3-3, Jigozen, Hatsukaichi, Hiroshima 738-8503 Japan ,Hyogo Life Care Clinic Hiroshima, 6-34-1, Enkobashi-Cho, Minami-Ku, Hiroshima, Hiroshima 732-0823 Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1, Oaza Ikenobe, Miki-Cho, Kita-Gun, Kagawa 761-0793 Japan
| | - Hideki Hayashi
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, 7-1, Kashima-Cho, Gifu, Gifu 500-8513 Japan
| | - Hiroshi Tobita
- Division of Hepatology, Shimane University Hospital, 89-1, Enya-Cho, Izumo, Shimane 693-8501 Japan
| | - Kengo Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513 Japan
| | - Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1, Chuo, Ami-Machi, Inashiki-Gun, Ibaraki, 300-0395 Japan
| | - Hirokazu Takahashi
- Liver Center, Faculty of Medicine, Saga University Hospital, Saga University, 5-1-1, Nabeshima, Saga, Saga 849-8501 Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, 3-9, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa 236-0004 Japan
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, 04763 Korea
| | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, 21 Yazako Karimata, Nagakute, Aichi, 480-1195, Japan.
| | - Takeshi Okanoue
- Department of Gastroenterology & Hepatology, Saiseikai Suita Hospital, Osaka, 1-2, Kawazono-Cho, Suita, Osaka 564-0013 Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, 3-9, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa 236-0004 Japan
| | | |
Collapse
|
10
|
Pemafibrate improves liver dysfunction and non-invasive surrogates for liver fibrosis in patients with non-alcoholic fatty liver disease with hypertriglyceridemia: a multicenter study. Hepatol Int 2022; 17:606-614. [PMID: 36583842 DOI: 10.1007/s12072-022-10453-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND This retrospective, multicenter study evaluated the effect of pemafibrate treatment on liver function and fibrosis by liver function tests (LFTs) and various fibrotic biomarkers including FibroScan in non-alcoholic fatty liver disease (NAFLD) with hypertriglyceridemia. METHODS A total of 138 NAFLD patients treated with pemafibrate at three hospitals between September 2018 and April 2021 were included. To evaluate the effect of pemafibrate treatment, FibroScan-aspartate aminotransferase (FAST) score, a novel index of steatohepatitis that can be calculated based on the aspartate aminotransferase (AST) value, controlled attenuation parameter (CAP), and liver stiffness measurement (LSM) was used. RESULTS Serum TG levels were significantly decreased 4 weeks after pemafibrate treatment (p = 0.003). The levels of AST (p = 0.038), alanine aminotransferase (ALT) (p = 0.003), and gamma-glutamyl transferase (GGT) (p = 0.047) also significantly diminished 12 weeks after pemafibrate administration compared to before administration (p < 0.05). However, serum HDL-cholesterol (p = 0.193), LDL-cholesterol (p = 0.967), and eGFR (p = 0.909) levels were not significantly altered 12 weeks after pemafibrate administration. In addition, the fibrosis biomarkers' Type IV collagen (p = 0.753) and FIB-4 index (p = 0.333) did not significantly differ, while Autotaxin (p = 0.006) and the AST-to-platelet ratio index (APRI) (p = 0.003) significantly decreased 48 weeks after pemafibrate administration. No significant reductions in LSM (p = 0.959) and CAP (p = 0.266) were detected using FibroScan 48 weeks after pemafibrate administration. FAST score was significantly improved (p = 0.0475). CONCLUSION Pemafibrate improved LFTs, including fibrotic biomarkers and FAST score, due to the hepatic anti-inflammatory effect, suggesting that pemafibrate may prevent disease progression in NAFLD patients with hypertriglyceridemia.
Collapse
|
11
|
Circulating thrombospondin 2 levels reflect fibrosis severity and disease activity in HCV-infected patients. Sci Rep 2022; 12:18900. [PMID: 36344733 PMCID: PMC9640666 DOI: 10.1038/s41598-022-23357-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Among several secreted glycoproteins belonging to the thrombospondin family, thrombospondin 2 (TSP2) is involved in various functions, including collagen/fibrin formation. Liver/serum TSP2 levels have been correlated to liver fibrosis stage and disease activity in nonalcoholic fatty liver disease. This study investigated whether serum TSP2 was associated with clinicopathological features in hepatitis C virus (HCV)-infected patients as well. A total of 350 patients with HCV who had undergone liver biopsy were retrospectively enrolled and divided into a discovery cohort (n = 270) and a validation cohort (n = 80). In the discovery cohort, serum TSP2 levels were moderately correlated with both liver fibrosis stage (r = 0.426, P < 0.0001) and activity grade (r = 0.435, P < 0.0001). The area under the receiver operating characteristic curve of TSP2 for predicting severe fibrosis (≥ F3) was 0.78 and comparable to or better than those of autotaxin (0.78), FIB-4 index (0.78), and APRI (0.76). The discovery cohort findings were closely replicated in the validation cohort. Moreover, comprehensive liver genetic analysis of HCV-infected patients confirmed that the expression of the THBS2 gene encoding TSP2 was significantly higher in severely fibrotic F4 than in F1 patients. Circulating TSP2 levels may reflect the severity of hepatic fibrosis/inflammation in HCV-infected patients.
Collapse
|
12
|
Booijink R, Salgado‐Polo F, Jamieson C, Perrakis A, Bansal R. A type IV Autotaxin inhibitor ameliorates acute liver injury and nonalcoholic steatohepatitis. EMBO Mol Med 2022; 14:e16333. [PMID: 35833384 PMCID: PMC9449594 DOI: 10.15252/emmm.202216333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
The lysophosphatidic acid (LPA) signaling axis is an important but rather underexplored pathway in liver disease. LPA is predominantly produced by Autotaxin (ATX) that has gained significant attention with an impressive number of ATX inhibitors (type I-IV) reported. Here, we evaluated the therapeutic potential of a (yet unexplored) type IV inhibitor, Cpd17, in liver injury. We first confirmed the involvement of the ATX-LPA signaling axis in human and murine diseased livers. Then, we evaluated the effects of Cpd17, in comparison with the classic type I inhibitor PF8380, in vitro, where Cpd17 showed higher efficacy. Thereafter, we characterized the mechanism-of-action of both inhibitors and found that Cpd17 was more potent in inhibiting RhoA-mediated cytoskeletal remodeling, and phosphorylation of MAPK/ERK and AKT/PKB. Finally, the therapeutic potential of Cpd17 was investigated in CCl4 -induced acute liver injury and diet-induced nonalcoholic steatohepatitis, demonstrating an excellent potential of Cpd17 in reducing liver injury in both disease models in vivo. We conclude that ATX inhibition, by type IV inhibitor in particular, has an excellent potential for clinical application in liver diseases.
Collapse
Affiliation(s)
- Richell Booijink
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
- Oncode Institute, Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Fernando Salgado‐Polo
- Oncode Institute, Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Craig Jamieson
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
| | - Anastassis Perrakis
- Oncode Institute, Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
13
|
Cholestatic Itch: Our Current Understanding of Pathophysiology and Treatments. Am J Clin Dermatol 2022; 23:647-659. [PMID: 35900649 DOI: 10.1007/s40257-022-00710-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/01/2022]
Abstract
Hepatic pruritus is common in liver conditions, including cholestasis and nonalcoholic fatty liver disease. The pruritus can be severe enough to diminish sleep and decrease quality of life. The pathophysiology likely involves many molecules and receptors, including bile acids, bilirubin, lysophosphatidic acid (LPA), endogenous opioids, and serotonin. Recent advances suggest a significant role of Mas-related G protein-coupled receptor X4 (MRGPRX4) and autotaxin/LPA as key players in cholestatic pruritus. Further research is needed to develop increasingly targeted therapies with greater efficacy, especially given that many patients report itch refractory to various treatments. Cholestyramine was the only US FDA-approved drug for cholestatic pruritus until recent approval of ileal bile acid transporter (IBAT) inhibitors for use in the pediatric cholestatic conditions, progressive familial intrahepatic cholestasis and Alagille syndrome. Both medications decrease the bile acid pool. IBAT inhibitors are under investigation for broader use, and targeting LPA receptors and MRGPR4 are additional attractive options.
Collapse
|
14
|
Red Blood Cell-Conditioned Media from Non-Alcoholic Fatty Liver Disease Patients Contain Increased MCP1 and Induce TNF-α Release. Rep Biochem Mol Biol 2022; 11:54-62. [PMID: 35765536 PMCID: PMC9208556 DOI: 10.52547/rbmb.11.1.54] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 01/11/2023]
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) constitutes a global pandemic. An intricate network among cytokines and lipids possesses a central role in NAFLD pathogenesis. Red blood cells comprise an important source of both cytokines and signaling lipids and have an important role in molecular crosstalk during immunometabolic deregulation. However, their role in NAFLD has not been thoroughly investigated. Methods Conditioned media from erythrocytes derived from 10 NAFLD patients (4 men, 6 women, aged 57.875±15.16) and 10 healthy controls (4 men, 6 women, aged 39.3±15.55) was analyzed for the cytokines IFN-γ, TNF-α, CCL2, CCL5, IL-8, IL-1β, IL-12p40, IL-17, MIP-1β, the signaling lipids sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), and cholesterol. Their effect on the cytokine profile released by RAW 264.7 macrophages was also studied. Results MCP1 levels were greater in conditioned growth medium from NAFLD patient erythrocytes than in that from healthy controls (37±40 vs 6.51±5.63 pg/ml). No statistically significant differences were found between patients and healthy controls with regard to S1P, LPA, cholesterol, or eight other cytokines. TNF-a release by RAW 264.7 cells was greater after incubation with patient-derived erythrocyte-conditioned medium than in medium without RAW 264.7 cells from either healthy or NAFLD subjects. Conclusion Erythrocytes may contribute to liver infiltration by monocytes, and macrophage activation, partially due to CCL2 release, in the context of NAFLD..
Collapse
|
15
|
Fujimori N, Kimura T, Tanaka N, Yamazaki T, Okumura T, Kobayashi H, Wakabayashi SI, Yamashita Y, Sugiura A, Pham J, Pydi SP, Sano K, Joshita S, Umemura T. 2-Step PLT16-AST44 method: Simplified liver fibrosis detection system in patients with non-alcoholic fatty liver disease. Hepatol Res 2022; 52:352-363. [PMID: 35040549 DOI: 10.1111/hepr.13745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
Abstract
AIM Accurate detection of the hepatic fibrosis stage is essential to estimate the outcome of patients with non-alcoholic fatty liver disease (NAFLD). Many formulas, biomarkers, and imaging tests are being developed to predict advanced liver fibrosis without performing a liver biopsy. However, these tests do not have high efficiency in detecting early-stage hepatic fibrosis. Therefore, we aimed to detect the presence of hepatic fibrosis (≥F1) merely by using only standard clinical markers. METHODS A total of 436 patients with NAFLD who underwent liver biopsy were retrospectively enrolled as the discovery cohort (316 patients) and the validation cohort (120 patients). Liver biopsy and laboratory data were matched to extract simple parameters for identifying ≥F1. RESULTS We developed a novel simplified ≥F1 detecting system, designated as 2-Step PLT16-AST44 method, where (1) PLT of 16 × 104 /μl or less, or (2) PLT greater than 16 × 104 /μl and AST greater than 44 U/L is determined as having ≥F1 fibrosis. The 2-Step PLT16-AST44 method had a sensitivity of 68%, a specificity of 90%, a positive predictive value (PPV) of 97%, a negative predictive value (NPV) of 40%, and an accuracy of 72% to detect ≥F1 fibrosis in the discovery cohort. Validation studies further supported these results. Despite its simplicity, the 2-Step PLT16-AST44 method's power to detect ≥F1 fibrosis in total NAFLD patients was comparable to hyaluronic acid, type 4 collagen 7S, FIB-4, and APRI. CONCLUSIONS We propose the 2-Step PLT16-AST44 method as a simple and beneficial early-stage hepatic fibrosis detection system.
Collapse
Affiliation(s)
- Naoyuki Fujimori
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Gastroenterology, Shinshu Ueda Medical Center, Ueda, Japan
| | - Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan.,Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Naoki Tanaka
- International Relations Office, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan.,Research Center for Social Systems, Shinshu University, Matsumoto, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Taiki Okumura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyuki Kobayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shun-Ichi Wakabayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuki Yamashita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ayumi Sugiura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jonathan Pham
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sai P Pydi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Kenji Sano
- Department of Pathology, Iida Municipal Hospital, Iida, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan.,Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
16
|
Gijbels A, Schutte S, Esser D, Wopereis S, Gonzales GB, Afman LA. Effects of a 12-week whole-grain or refined wheat intervention on plasma acylcarnitines, bile acids and signaling lipids, and association with liver fat: A post-hoc metabolomics study of a randomized controlled trial. Front Nutr 2022; 9:1026213. [PMID: 36330140 PMCID: PMC9624226 DOI: 10.3389/fnut.2022.1026213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We previously showed that whole-grain wheat (WGW) consumption had beneficial effects on liver fat accumulation, as compared to refined wheat (RW). The mechanisms underlying these effects remain unclear. OBJECTIVE In this study, we investigated the effects of WGW vs. RW consumption on plasma metabolite levels to explore potential underlying mechanisms of the preventive effect of WGW consumption on liver fat accumulation. METHODS Targeted metabolomics of plasma obtained from a concluded 12-week double-blind, randomized controlled trial was performed. Fifty overweight or obese men and women aged 45-70 years with mildly elevated levels of plasma cholesterol were randomized to either 98 g/d of WGW or RW products. Before and after the intervention, a total of 89 fasting plasma metabolite concentrations including acylcarnitines, trimethylamine-N-oxide (TMAO), choline, betaine, bile acids, and signaling lipids were quantified by UPLC-MS/MS. Intrahepatic triglycerides (IHTG) were quantified by 1H-MRS, and multiple liver markers, including circulating levels of β-hydroxybutyrate, alanine transaminase (ALT), aspartate transaminase (AST), γ-glutamyltransferase (γ-GT), serum amyloid A (SAA), and C-reactive protein, were assessed. RESULTS The WGW intervention increased plasma concentrations of four out of 52 signaling lipids-lysophosphatidic acid C18:2, lysophosphatidylethanolamine C18:1 and C18:2, and platelet-activating factor C18:2-and decreased concentrations of the signaling lipid lysophosphatidylglycerol C20:3 as compared to RW intervention, although these results were no longer statistically significant after false discovery rate (FDR) correction. Plasma concentrations of the other metabolites that we quantified were not affected by WGW or RW intervention. Changes in the above-mentioned metabolites were not correlated to change in IHTG upon the intervention. CONCLUSION Plasma acylcarnitines, bile acids, and signaling lipids were not robustly affected by the WGW or RW interventions, which makes them less likely candidates to be directly involved in the mechanisms that underlie the protective effect of WGW consumption or detrimental effect of RW consumption on liver fat accumulation. CLINICAL TRIAL REGISTRATION [www.ClinicalTrials.gov], identifier [NCT02385149].
Collapse
Affiliation(s)
- Anouk Gijbels
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Sophie Schutte
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Diederik Esser
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Suzan Wopereis
- Research Group Microbiology and Systems Biology, TNO, Netherlands Organization for Applied Scientific Research, Zeist, Netherlands
| | - Gerard Bryan Gonzales
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Lydia A. Afman
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Lydia A. Afman,
| |
Collapse
|
17
|
Inhibition of autotaxin by bile salts and bile salt-like molecules increases its expression by feedback regulation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166239. [PMID: 34389475 DOI: 10.1016/j.bbadis.2021.166239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autotaxin is an enzyme that converts lysophospholipid into lysophosphatidic acid (LPA), a highly potent signaling molecule through a range of LPA receptors. It is therefore important to investigate which factors play a role in regulating ATX expression. Since we have reported that ATX levels increase dramatically in patients with various forms of cholestasis, we embarked on a study to reveal factors that influence the enzyme activity ATX as well as its expression level in vitro and in vivo. METHODS Bile from cholestatic patients was fractionated by HPLC and analyzed for modulation of ATX activity. ATX expression was measured in fibroblasts upon stimulation or inhibition of LPA signaling. RESULTS Surprisingly, ATX activity was stimulated by most forms of its product LPA, but it was inhibited by bile salts and bile salt-like molecules, particularly by 3-OH sulfated bile salts and sulfated progesterone metabolites that are known to accumulate during chronic cholestasis and cholestasis of pregnancy, respectively. Activation of fibroblasts by LPA decreased ATX expression by 72%. Conversely, inhibition of LPA signaling increased ATX expression 3-fold, indicating strong feedback regulation by LPA signaling. In fibroblasts, we could verify that inhibition of ATX activity by bile salts induces its expression. Furthermore, induction of cholestasis in mice causes increased plasma ATX activity. CONCLUSIONS Multiple biliary compounds that accumulate in the systemic circulation during cholestasis inhibit ATX activity and thereby increase ATX expression through feedback regulation. This mechanism may contribute to increased serum ATX activity in patients with cholestasis.
Collapse
|
18
|
Fukiage A, Fujino H, Miki D, Ishii Y, Serikawa M, Tsuge M, Imamura M, Aikata H, Hayes CN, Chayama K. Clinical Usefulness of Serum Autotaxin for Early Prediction of Relapse in Male Patients with Type 1 Autoimmune Pancreatitis. Dig Dis Sci 2021; 66:1268-1275. [PMID: 32436125 DOI: 10.1007/s10620-020-06338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Serum IgG4 level is a useful diagnostic marker for autoimmune pancreatitis (AIP), but it is difficult to use to predict relapse. AIMS We investigated whether serum autotaxin (ATX) level is predictive of AIP relapse after steroid therapy. METHODS Fifty-six patients with type 1 AIP were investigated. We measured serum ATX at the time of diagnosis. We selected 24 males for whom serum samples during steroid therapy had been obtained and measured serum ATX at steroid therapy for induction of remission and at maintenance therapy. In the relapse group, we also measured ATX at the time of relapse. RESULTS ATX was significantly higher in female patients than in male patients. In order to clarify changes in ATX during steroid therapy, we focused on 24 male patients. We found that ATX decreased significantly during steroid therapy for induction of remission and at the time of maintenance therapy. In half of all patients who relapsed during maintenance therapy, ATX was significantly elevated at the time of relapse compared with that of induction therapy (P = 0.039). When we compared ATX at the time of maintenance therapy between patients with relapse and without, we observed significantly higher ATX in the former (P = 0.024). We found that the combination of ATX and elastase-1 could predict relapse with high accuracy (95%). CONCLUSIONS Preliminary evidence suggests that serum ATX might serve as a candidate biomarker to predict relapse of AIP as well as to monitor the effect of steroid therapy.
Collapse
Affiliation(s)
- Ayami Fukiage
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hatsue Fujino
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Yasutaka Ishii
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masahiro Serikawa
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masataka Tsuge
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
19
|
Langedijk JAGM, Beuers UH, Oude Elferink RPJ. Cholestasis-Associated Pruritus and Its Pruritogens. Front Med (Lausanne) 2021; 8:639674. [PMID: 33791327 PMCID: PMC8006388 DOI: 10.3389/fmed.2021.639674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Pruritus is a debilitating symptom of various cholestatic disorders, including primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and inherited progressive familial intrahepatic cholestasis (PFIC). The molecular mechanisms leading to cholestasis-associated pruritus are still unresolved and the involved pruritogens are indecisive. As a consequence of pruritus, patients suffer from sleep deprivation, loss of daytime concentration, auto-mutilation and sometimes even suicidal ideations. Current guideline-approved therapy of cholestasis-associated pruritus includes stepwise administration of several medications, which may alleviate complaints in some, but not all affected patients. Therefore, also experimental therapeutic approaches are required to improve patients' quality of life. This article reviews the current state of research on pruritogens and their receptors, and shortly discusses the most recent experimental therapies.
Collapse
Affiliation(s)
| | | | - Ronald P. J. Oude Elferink
- Amsterdam University Medical Centers, Tytgat Institute for Liver and Intestinal Research, Research Institute Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Kimura T, Tanaka N, Fujimori N, Yamazaki T, Katsuyama T, Iwashita Y, Pham J, Joshita S, Pydi SP, Umemura T. Serum thrombospondin 2 is a novel predictor for the severity in the patients with NAFLD. Liver Int 2021; 41:505-514. [PMID: 33386676 DOI: 10.1111/liv.14776] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
AIM Thrombospondins are a family of multidomain and secretory glycoproteins. Among them, thrombospondin 2 (TSP2) encoded by TSP2 gene has been reported to be involved in various functions such as collagen/fibrin formation, maintenance of normal blood vessel density and cell adhesion properties. Microarray analyses ranked TSP2 as one of the most highly up-regulated genes in the fibrotic liver in patients with non-alcoholic fatty liver disease (NAFLD). Since TSP2 possesses unique properties as a secretory protein, we hypothesized that hepatic TSP2 gene expression levels would be reflected in serum TSP2 levels. In this study, we examined the relationship between serum TSP2 concentrations and clinicopathological findings in NAFLD patients. METHODS One hundred and thirty NAFLD patients who had undergone liver biopsy between 2009 and 2015 were retrospectively enrolled. Serum samples were collected at the time of biopsy, and TSP2 was measured by enzyme immunoassays. RESULTS Serum TSP2 levels moderately correlated with ballooning (r = 0.56, P < .001) and fibrosis stage (r = 0.53, P < .001). The AUC values of TSP2 for predicting mild fibrosis (≧F1), moderate fibrosis (≧F2) and severe fibrosis (≧F3) were 0.73, 0.76 and 0.82 respectively. Additionally, NAFLD activity score (NAS) correlated best with TSP2 (r = 0.52, P < .001) compared to conventional NAFLD-related biomarkers, such as cytokeratin 18 M30, hyaluronic acid, type IV collagen 7S, APRI and FIB-4 index. CONCLUSION Serum TSP2 levels reflected hepatocyte ballooning, fibrosis and NAS in NAFLD patients. For clinical application of serum TSP2 as a predictor of NAFLD histological activity, additional validation and mechanistic investigations are required.
Collapse
Affiliation(s)
- Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan.,Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan.,Research Center for Social Systems, Shinshu University, Matsumoto, Japan
| | - Naoyuki Fujimori
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takahito Katsuyama
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuichi Iwashita
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jonathan Pham
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| |
Collapse
|
21
|
Sumida Y, Yoneda M, Tokushige K, Kawanaka M, Fujii H, Yoneda M, Imajo K, Takahashi H, Eguchi Y, Ono M, Nozaki Y, Hyogo H, Koseki M, Yoshida Y, Kawaguchi T, Kamada Y, Okanoue T, Nakajima A. FIB-4 First in the Diagnostic Algorithm of Metabolic-Dysfunction-Associated Fatty Liver Disease in the Era of the Global Metabodemic. Life (Basel) 2021; 11:143. [PMID: 33672864 PMCID: PMC7917687 DOI: 10.3390/life11020143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
The prevalence of obesity or metabolic syndrome is increasing worldwide (globally metabodemic). Approximately 25% of the adult general population is suffering from nonalcoholic fatty liver disease (NAFLD), which has become a serious health problem. In 2020, global experts suggested that the nomenclature of NAFLD should be updated to metabolic-dysfunction-associated fatty liver disease (MAFLD). Hepatic fibrosis is the most significant determinant of all cause- and liver -related mortality in MAFLD. The non-invasive test (NIT) is urgently required to evaluate hepatic fibrosis in MAFLD. The fibrosis-4 (FIB-4) index is the first triaging tool for excluding advanced fibrosis because of its accuracy, simplicity, and cheapness, especially for general physicians or endocrinologists, although the FIB-4 index has several drawbacks. Accumulating evidence has suggested that vibration-controlled transient elastography (VCTE) and the enhanced liver fibrosis (ELF) test may become useful as the second step after triaging by the FIB-4 index. The leading cause of mortality in MAFLD is cardiovascular disease (CVD), extrahepatic malignancy, and liver-related diseases. MAFLD often complicates chronic kidney disease (CKD), resulting in increased simultaneous liver kidney transplantation. The FIB-4 index could be a predictor of not only liver-related mortality and incident hepatocellular carcinoma, but also prevalent and incident CKD, CVD, and extrahepatic malignancy. Although NITs as milestones for evaluating treatment efficacy have never been established, the FIB-4 index is expected to reflect histological hepatic fibrosis after treatment in several longitudinal studies. We here review the role of the FIB-4 index in the management of MAFLD.
Collapse
Affiliation(s)
- Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan;
| | - Masashi Yoneda
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan;
| | - Katsutoshi Tokushige
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | - Miwa Kawanaka
- Department of General Internal Medicine2, Kawasaki Medical School, Okayama 700-8505, Japan;
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka 558-8585, Japan;
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (M.Y.); (K.I.); (A.N.)
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (M.Y.); (K.I.); (A.N.)
| | - Hirokazu Takahashi
- Department of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga 840-8502, Japan;
| | | | - Masafumi Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Women’s Medical University Medical Center East, Tokyo 116-8567, Japan;
| | - Yuichi Nozaki
- Department of Gastroenterology, National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Hideyuki Hyogo
- Department of Gastroenterology, JA Hiroshima General Hospital, Hiroshima 738-8503, Japan;
| | - Masahiro Koseki
- Division of Cardiovascular Medicine, Department of Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan;
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka 564-8567, Japan;
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Yoshihiro Kamada
- Department of Advanced Gastroenterology & Hepatology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan;
| | - Takeshi Okanoue
- Hepatology Center, Saiseikai Suita Hospital, Osaka 564-0013, Japan;
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (M.Y.); (K.I.); (A.N.)
| | | |
Collapse
|
22
|
Heyens LJM, Busschots D, Koek GH, Robaeys G, Francque S. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front Med (Lausanne) 2021; 8:615978. [PMID: 33937277 PMCID: PMC8079659 DOI: 10.3389/fmed.2021.615978] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing percentage of people have or are at risk to develop non-alcoholic fatty liver disease (NAFLD) worldwide. NAFLD comprises different stadia going from isolated steatosis to non-alcoholic steatohepatitis (NASH). NASH is a chronic state of liver inflammation that leads to the transformation of hepatic stellate cells to myofibroblasts. These cells produce extra-cellular matrix that results in liver fibrosis. In a normal situation, fibrogenesis is a wound healing process that preserves tissue integrity. However, sustained and progressive fibrosis can become pathogenic. This process takes many years and is often asymptomatic. Therefore, patients usually present themselves with end-stage liver disease e.g., liver cirrhosis, decompensated liver disease or even hepatocellular carcinoma. Fibrosis has also been identified as the most important predictor of prognosis in patients with NAFLD. Currently, only a minority of patients with liver fibrosis are identified to be at risk and hence referred for treatment. This is not only because the disease is largely asymptomatic, but also due to the fact that currently liver biopsy is still the golden standard for accurate detection of liver fibrosis. However, performing a liver biopsy harbors some risks and requires resources and expertise, hence is not applicable in every clinical setting and is unsuitable for screening. Consequently, different non-invasive diagnostic tools, mainly based on analysis of blood or other specimens or based on imaging have been developed or are in development. In this review, we will first give an overview of the pathogenic mechanisms of the evolution from isolated steatosis to fibrosis. This serves as the basis for the subsequent discussion of the current and future diagnostic biomarkers and anti-fibrotic drugs.
Collapse
Affiliation(s)
- Leen J. M. Heyens
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
- Department of Gastro-Enterology and Hepatology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Dana Busschots
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Ger H. Koek
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Geert Robaeys
- Faculty of Health and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Gastro-Enterology and Hepatology, Ziekenhuis Oost-Limburg, Genk, Belgium
- Department of Gastroenterology and Hepatology, University Hospital Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- *Correspondence: Sven Francque
| |
Collapse
|
23
|
Takemura K, Takizawa E, Tamori A, Nakamae M, Kubota H, Uchida-Kobayashi S, Enomoto M, Kawada N, Hino M. Association of serum autotaxin levels with liver fibrosis in patients pretreatment and posttreatment with chronic hepatitis C. J Gastroenterol Hepatol 2021; 36:217-224. [PMID: 32453907 DOI: 10.1111/jgh.15114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/25/2020] [Accepted: 05/16/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIM The evaluation of liver fibrosis in patients with chronic hepatitis C virus (HCV) infection is important as it is a risk factor for hepatocellular carcinoma. In the recent years, autotaxin (ATX) has been established as a new noninvasive biomarker to predict liver fibrosis. However, antiviral treatment has been reported to decrease serum ATX, but it is unclear whether posttreatment ATX levels reflect liver fibrosis. In the present study, the correlation between ATX and liver fibrosis in pretreatment and posttreatment patients with HCV infection was analyzed. METHODS A total of 199 samples from 136 patients with HCV infection who had undergone hepatic biopsy before and/or after antiviral treatment at Osaka City University Hospital were used. Posttreatment patients included 38 interferon-treated patients and 80 interferon-free direct-acting antiviral-treated patients; all patients achieved a sustained virological response (SVR). Serum ATX levels were determined by enzyme immunoassay with an AIA-2000 analyzer. RESULTS Serum ATX levels were largely correlated with liver fibrosis stage in patients with HCV infection before and after antiviral treatment. The measured values decreased even in similar liver fibrosis stages after treatment. The area under the receiver operating characteristic curve for the ability of ATX to diagnose above F2 stage before treatment was 0.81 (both male and female) and that after achieving SVR, it was 0.71 (male) and 0.72 (female). CONCLUSIONS Serum ATX levels were correlated with histological liver fibrosis stage after achieving SVR. However, separate cutoff values before and after antiviral therapy should be established.
Collapse
Affiliation(s)
- Kazuya Takemura
- Department of Central Clinical Laboratory, Osaka City University Hospital, Osaka, Japan
| | - Etsuko Takizawa
- Department of Central Clinical Laboratory, Osaka City University Hospital, Osaka, Japan
| | - Akihiro Tamori
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Mika Nakamae
- Department of Central Clinical Laboratory, Osaka City University Hospital, Osaka, Japan.,Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroshi Kubota
- Department of Central Clinical Laboratory, Osaka City University Hospital, Osaka, Japan
| | | | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masayuki Hino
- Department of Central Clinical Laboratory, Osaka City University Hospital, Osaka, Japan.,Department of Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
24
|
Ahmed NAF, Deiab AG, Hasan ASM, Elbaky AMYA. Serum autotaxin levels in responders to HCV treatment by direct-acting antivirals. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hepatitis C virus (HCV) infection is considered one of the main causes of chronic liver disease around the world. Liver biopsy has been believed to be the gold standard for the assessment of the degree of liver fibrosis. Thus, there is a need to improve non-invasive evaluation of liver fibrosis. The aim of the present study was to study the changes in serum levels of ATX (Autotaxin) as a marker of hepatic fibrosis in responders to HCV treatment by DAAs. This prospective study was carried out at hepatology outpatient clinics for HCV treatment in Mansoura Specialized Medical Hospital that involved 54 participants: 34 patients with HCV and 20 controls; ATX was measured for the controls and all patients before and after treatment.
Results
We found a significant higher ATX level in control subjects vs HCV patients, 100% of control subjects had ATX > 97.5 and 58.8% of HCV had ATX ≤ 97.5. Also, a significantly higher ATX after treatment with DAAs as a whole was observed.
Conclusion
The authors concluded that ATX should be considered cautiously as a diagnostic marker for liver fibrosis in Egyptian patients with chronic hepatitis C infection. Although this study yielded negative results, this may be important to prevent duplication of the research efforts.
Collapse
|
25
|
Saleh SAB, Abdelwahab KM, Mady AM, Mohamed GA. The impact of achieving a sustained virological response with direct-acting antivirals on serum autotaxin levels in chronic hepatitis C patients. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00060-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Autotaxin (ATX) is an emerging biomarker for liver fibrosis. Achievement of sustained virological response (SVR) by direct-acting antivirals (DAAs) results in hepatic fibrosis regression in chronic hepatitis C (CHC) patients. In this context, the clinical implications of ATX have not yet been well-defined. In this study, we aimed to assess the impact of achieving SVR with DAA therapy on serum ATX levels and whether these levels can reflect the regression of hepatic fibrosis in CHC patients. We evaluated serum ATX levels at baseline and 12 weeks post-DAA therapy in 48 CHC patients. We compared ATX with FIB4 score and AST-to-Platelet Ratio Index (APRI) as regards the detection of grade F3–4 fibrosis.
Results
Serum ATX levels were significantly declined in 47 patients after the achievement of SVR12 (p < 0.001). The diagnostic ability of ATX for the detection of grade F3–4 fibrosis was inferior to FIB4 and APRI scores at baseline and SVR12.
Conclusion
Achievement of SVR with DAA therapy causes a significant decline in serum autotaxin concentrations, suggesting early regression of hepatic fibrosis in CHC patients. However, its diagnostic capability for routine patient monitoring and follow-up is still under debate.
Collapse
|
26
|
Kim SJ, Howe C, Mitchell J, Choo J, Powers A, Oikonomopoulos A, Pothoulakis C, Hommes DW, Im E, Rhee SH. Autotaxin loss accelerates intestinal inflammation by suppressing TLR4-mediated immune responses. EMBO Rep 2020; 21:e49332. [PMID: 32875703 DOI: 10.15252/embr.201949332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Autotaxin (ATX) converts lysophosphatidylcholine and sphingosyl-phosphorylcholine into lysophosphatidic acid and sphingosine 1-phosphate, respectively. Despite the pivotal function of ATX in lipid metabolism, mechanisms by which ATX regulates immune and inflammatory disorders remain elusive. Here, using myeloid cell lineage-restricted Atx knockout mice, we show that Atx deficiency disrupts membrane microdomains and lipid rafts, resulting in the inhibition of Toll-like receptor 4 (TLR4) complex formation and the suppression of adaptor recruitment, thereby inhibiting TLR4-mediated responses in macrophages. Accordingly, TLR4-induced innate immune functions, including phagocytosis and iNOS expression, are attenuated in Atx-deficient macrophages. Consequently, Atx-/- mice exhibit a higher bacterial prevalence in the intestinal mucosa compared to controls. When combined with global Il10-/- mice, which show spontaneous colitis due to the translocation of luminal commensal microbes into the mucosa, myeloid cell lineage-restricted Atx knockout accelerates colitis development compared to control littermates. Collectively, our data reveal that Atx deficiency compromises innate immune responses, thereby promoting microbe-associated gut inflammation.
Collapse
Affiliation(s)
- Su Jin Kim
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,College of Pharmacy, Pusan National University, Busan, Korea
| | - Cody Howe
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Jonathon Mitchell
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Jieun Choo
- College of Pharmacy, Pusan National University, Busan, Korea
| | - Alexandra Powers
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Angelos Oikonomopoulos
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Daniel W Hommes
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Korea
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
27
|
Nie C, Zhang L, Chen X, Li Y, Ha F, Liu H, Han T. Autotaxin: An Early Warning Biomarker for Acute-on-chronic Liver Failure. J Clin Transl Hepatol 2020; 8:240-245. [PMID: 33083245 PMCID: PMC7562802 DOI: 10.14218/jcth.2020.00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background and Aims: Recent accumulating evidence indicates the biological actions of autotaxin (ATX) in liver disease. However, the relationship between ATX and liver failure has not been reported. The present study aimed to examine alterations of serum ATX in acute-on-chronic liver failure (ACLF) and evaluate whether serum ATX could be useful as an early warning biomarker of ACLF. Methods: Serum ATX was measured in 50 patients with hepatitis B-related ACLF, 14 patients with alcohol-related ACLF, 11 patients with hepatitis B-related pre-ACLF, 11 patients with alcohol-related Child-Pugh A cirrhosis, 39 patients with hepatitis B-related Child-Pugh A cirrhosis, 26 patients with chronic hepatitis B, and 38 healthy volunteers by enzyme-linked immunosorbent assay. Results: Serum ATX level was significantly higher in the pre-ACLF group than in the Child-Pugh A cirrhosis and chronic hepatitis B groups but lower than in the ACLF group; furthermore, patients with pre-ACLF deteriorated to ACLF had significantly higher serum ATX levels than pre-ACLF patients that did not progress to ACLF. Serum ATX levels were significantly higher among male ACLF patients with preclinical infection, spontaneous bacterial peritonitis or pneumonia, as compared to patients with ACLF but no spontaneous bacterial peritonitis or pneumonia. Serum ATX levels were well correlated with serum biochemical parameters of liver function and model for end-stage liver disease score. Serum ATX ≥ 584.1 ng/mL was a poor prognostic factor for ACLF (hazard ratio of 4.750, 95% confidence interval of 1.106-20.392, p=0.036). Conclusions: Serum ATX level may be a useful early warning biomarker for ACLF.
Collapse
Affiliation(s)
- Caiyun Nie
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Lei Zhang
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, China
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ying Li
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- The Affiliated Hospital of Nankai University, Tianjin, China
- Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Fushuang Ha
- The Affiliated Hospital of Nankai University, Tianjin, China
- Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Hua Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- The Affiliated Hospital of Nankai University, Tianjin, China
- Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Tao Han
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- The Affiliated Hospital of Nankai University, Tianjin, China
- Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- Correspondence to: Tao Han, Department of Hepatology and Gastroenterology, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Artificial Cells, Tianjin Third Central Hospital, 83 Jintang Road, Tianjin 300170, China. Tel: +86-22-84112298, Fax: +86-22-84112208, E-mail:
| |
Collapse
|
28
|
Takemura K, Takizawa E, Tamori A, Nakamae M, Kubota H, Uchida-Kobayashi S, Enomoto M, Kawada N, Hino M. Post-Treatment M2BPGi Level and the Rate of Autotaxin Reduction are Predictive of Hepatocellular Carcinoma Development after Antiviral Therapy in Patients with Chronic Hepatitis C. Int J Mol Sci 2020; 21:E4517. [PMID: 32630450 PMCID: PMC7350226 DOI: 10.3390/ijms21124517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/10/2023] Open
Abstract
Patients with chronic hepatitis C virus (HCV) develop hepatocellular carcinoma (HCC) regardless of achieving a sustained viral response (SVR). Because advanced liver fibrosis is a powerful risk factor for HCC, we analyzed the association between autotaxin (ATX), a liver fibrosis marker, and post-SVR HCC development within 3 years after antiviral treatment. We included 670 patients with HCV who received direct-acting antivirals, achieved SVR and were followed up for at least 6 months (270 of them were followed up for 3 years or more). We measured serum ATX levels before treatment and 12/24 weeks after treatment. The diagnosis of HCC was based on imaging modalities, such as dynamic computed tomography and dynamic magnetic resonance imaging and/or liver biopsy. The present study revealed that high levels of serum ATX predicted post-SVR HCC development (area under the receiver operating characteristic: 0.70-0.76). However, Wisteria floribunda agglutinin positive Mac-2 binding protein (M2BPGi), another liver fibrosis marker, was a more useful predictive marker especially post-treatment according to a multivariate analysis. Patients with a high rate of ATX reduction before and after antiviral treatment did not develop HCC regardless of high pretreatment ATX levels. In conclusion, post-treatment M2BPGi level and the combination of pretreatment ATX levels and rate of ATX reduction were useful predictive markers for post-SVR HCC development in patients with chronic HCV infection.
Collapse
MESH Headings
- Aged
- Antigens, Neoplasm/blood
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antiviral Agents/therapeutic use
- Biomarkers/blood
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Female
- Hepacivirus/pathogenicity
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/metabolism
- Humans
- Liver Cirrhosis/complications
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Membrane Glycoproteins/blood
- Middle Aged
- Phosphoric Diester Hydrolases/blood
- Phosphoric Diester Hydrolases/metabolism
- Phosphoric Diester Hydrolases/physiology
- Risk Factors
Collapse
Affiliation(s)
- Kazuya Takemura
- Department of Central Clinical Laboratory, Osaka City University Hospital, 1-5-7, Asahi-machi, Abeno-ku, Osaka-shi, Osaka 545-8586, Japan; (K.T.); (E.T.); (M.N.); (H.K.); (M.H.)
| | - Etsuko Takizawa
- Department of Central Clinical Laboratory, Osaka City University Hospital, 1-5-7, Asahi-machi, Abeno-ku, Osaka-shi, Osaka 545-8586, Japan; (K.T.); (E.T.); (M.N.); (H.K.); (M.H.)
| | - Akihiro Tamori
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka-shi, Osaka 545-8585, Japan; (S.U.-K.); (M.E.); (N.K.)
| | - Mika Nakamae
- Department of Central Clinical Laboratory, Osaka City University Hospital, 1-5-7, Asahi-machi, Abeno-ku, Osaka-shi, Osaka 545-8586, Japan; (K.T.); (E.T.); (M.N.); (H.K.); (M.H.)
- Department of Hematology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka-shi, Osaka 545-8585, Japan
| | - Hiroshi Kubota
- Department of Central Clinical Laboratory, Osaka City University Hospital, 1-5-7, Asahi-machi, Abeno-ku, Osaka-shi, Osaka 545-8586, Japan; (K.T.); (E.T.); (M.N.); (H.K.); (M.H.)
| | - Sawako Uchida-Kobayashi
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka-shi, Osaka 545-8585, Japan; (S.U.-K.); (M.E.); (N.K.)
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka-shi, Osaka 545-8585, Japan; (S.U.-K.); (M.E.); (N.K.)
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka-shi, Osaka 545-8585, Japan; (S.U.-K.); (M.E.); (N.K.)
| | - Masayuki Hino
- Department of Central Clinical Laboratory, Osaka City University Hospital, 1-5-7, Asahi-machi, Abeno-ku, Osaka-shi, Osaka 545-8586, Japan; (K.T.); (E.T.); (M.N.); (H.K.); (M.H.)
- Department of Hematology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka-shi, Osaka 545-8585, Japan
| |
Collapse
|
29
|
Morita Y, Kurano M, Morita E, Shimamoto S, Igarashi K, Sawabe M, Aoki J, Yatomi Y. Urinary autotaxin concentrations are associated with kidney injury. Clin Chim Acta 2020; 509:156-165. [PMID: 32540127 DOI: 10.1016/j.cca.2020.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND While basic researches have shown the involvement of the autotaxin-lysophosphatidic acid (ATX-LPA) axis in the pathogenesis of kidney diseases, no clinical studies have revealed the association between urinary ATX concentrations and kidney disease yet. We investigate the clinical characteristics in relation to the urinary ATX concentrations and the potential association between urinary ATX concentrations and various kidney diseases. METHODS We measured the urinary ATX concentrations in residual urine samples after routine clinical testing from a total of 326 subjects with various kidney diseases and healthy subjects. We compared the urinary ATX concentrations in relation to clinical parameters and urinary biomarkers, and investigated their association with various kidney diseases. RESULTS The urinary ATX concentrations were associated with the gender, eGFR, presence/absence of hematuria, serum ATX, urinary concentrations of total protein (TP), microalbumin, N-acetyl-β-D-glucosaminidase (NAG), α1-microglobulin (α1-MG), and transforming growth factor-β. Multiple regression analyses identified urinary α1-MG, age, urinary TP, NAG, and hematuria as being significantly associated with the urinary ATX concentrations. Urinary ATX concentrations were higher in subjects with membranous nephropathy and systemic lupus erythematosus than in the control subjects. CONCLUSIONS Urinary ATX might be associated with pathological conditions of the kidney associated with kidney injury.
Collapse
Affiliation(s)
- Yoshifumi Morita
- Department of Clinical Laboratory, the University of Tokyo Hospital, Tokyo, Japan; Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, the University of Tokyo Hospital, Tokyo, Japan; Department of Clinical Laboratory Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Eriko Morita
- Department of Clinical Laboratory, the University of Tokyo Hospital, Tokyo, Japan
| | | | - Koji Igarashi
- Bioscience Division, TOSOH Corporation, Kanagawa, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, the University of Tokyo Hospital, Tokyo, Japan; Department of Clinical Laboratory Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Fujii H, Kawada N. The Role of Insulin Resistance and Diabetes in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:ijms21113863. [PMID: 32485838 PMCID: PMC7312931 DOI: 10.3390/ijms21113863] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) consists of the entire spectrum of fatty liver disease in patients without significant alcohol consumption, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) to cirrhosis, with NASH recently shown as an important cause of hepatocellular carcinoma (HCC). There is a close relationship between insulin resistance (IR) and NAFLD, with a five-fold higher prevalence of NAFLD in patients with type 2 diabetes (T2DM) compared to that in patients without T2DM. IR is involved in the progression of disease conditions such as steatosis and NASH, as well as hepatic fibrosis progression. The mechanisms underlying these processes involve genetic factors, hepatic fat accumulation, alterations in energy metabolism, and inflammatory signals derived from various cell types including immune cells. In NASH-associated fibrosis, the principal cell type responsible for extracellular matrix production is the hepatic stellate cell (HSC). HSC activation by IR involves “direct” and “indirect” pathways. This review will describe the molecular mechanisms of inflammation and hepatic fibrosis in IR, the relationship between T2DM and hepatic fibrosis, and the relationship between T2DM and HCC in patients with NAFLD.
Collapse
Affiliation(s)
- Hideki Fujii
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
- Correspondence: ; Tel.: +81-6-6645-3897
| | | |
Collapse
|
31
|
Training of Deep Convolutional Neural Networks to Identify Critical Liver Alterations in Histopathology Image Samples. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is responsible for a wide range of pathological disorders. It is characterized by the prevalence of steatosis, which results in excessive accumulation of triglyceride in the liver tissue. At high rates, it can lead to a partial or total occlusion of the organ. In contrast, nonalcoholic steatohepatitis (NASH) is a progressive form of NAFLD, with the inclusion of hepatocellular injury and inflammation histological diseases. Since there is no approved pharmacotherapeutic solution for both conditions, physicians and engineers are constantly in search for fast and accurate diagnostic methods. The proposed work introduces a fully automated classification approach, taking into consideration the high discrimination capability of four histological tissue alterations. The proposed work utilizes a deep supervised learning method, with a convolutional neural network (CNN) architecture achieving a classification accuracy of 95%. The classification capability of the new CNN model is compared with a pre-trained AlexNet model, a visual geometry group (VGG)-16 deep architecture and a conventional multilayer perceptron (MLP) artificial neural network. The results show that the constructed model can achieve better classification accuracy than VGG-16 (94%) and MLP (90.3%), while AlexNet emerges as the most efficient classifier (97%).
Collapse
|
32
|
Elevated Autotaxin and LPA Levels During Chronic Viral Hepatitis and Hepatocellular Carcinoma Associate with Systemic Immune Activation. Cancers (Basel) 2019; 11:cancers11121867. [PMID: 31769428 PMCID: PMC6966516 DOI: 10.3390/cancers11121867] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Circulating autotaxin (ATX) is elevated in persons with liver disease, particularly in the setting of chronic hepatitis C virus (HCV) and HCV/HIV infection. It is thought that plasma ATX levels are, in part, attributable to impaired liver clearance that is secondary to fibrotic liver disease. In a discovery data set, we identified plasma ATX to be associated with parameters of systemic immune activation during chronic HCV and HCV/HIV infection. We and others have observed a partial normalization of ATX levels within months of starting interferon-free direct-acting antiviral (DAA) HCV therapy, consistent with a non-fibrotic liver disease contribution to elevated ATX levels, or HCV-mediated hepatocyte activation. Relationships between ATX, lysophosphatidic acid (LPA) and parameters of systemic immune activation will be discussed in the context of HCV infection, age, immune health, liver health, and hepatocellular carcinoma (HCC).
Collapse
|
33
|
Fujino H, Tanaka M, Imamura M, Morio K, Ono A, Nakahara T, Murakami E, Kawaoka T, Takahashi S, Miki D, Tsuge M, Hiramatsu A, Aikata H, Hayes CN, Chayama K. Pruritus in patients with chronic liver disease and serum autotaxin levels in patients with primary biliary cholangitis. BMC Gastroenterol 2019; 19:169. [PMID: 31651244 PMCID: PMC6813053 DOI: 10.1186/s12876-019-1092-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Pruritus is a common symptom seen in patients with chronic liver disease. However, frequency and severity of pruritus in patients with chronic liver disease is unclear. We investigated frequency, severity and predictive factors of pruritus in these patients from a large cohort. Methods A total of 2477 patients with chronic liver disease without allergies or skin diseases were investigated for itch frequency and severity. Itch severity was self-assessed using pruritus scores using the numerical rating scale (NRS). Multivariate regression analysis was performed to identify factors associated with pruritus. Serum autotaxin levels were measured in patients with primary biliary cholangitis (PBC), and the relationship to liver fibrosis and pruritus was analyzed. Results The frequency of pruritus in patients with chronic liver disease was significantly higher than in subjects without liver disease (29.8 and 16.2%, respectively, P < 0.001). NRS was high in patients with chronic liver disease, especially in those with PBC, as is generally expected. Multivariate analysis identified lower albumin, higher eosinophil count, and etiology of PBC as independent factors associated with severe pruritus (≥5 points of NRS). In patients with PBC, serum autotaxin levels were significantly correlated with liver fibrosis markers such as platelet count and liver stiffness, and hepatobiliary enzymes such as total bilirubin, aspartate aminotransferase and alkaline phosphatase. However, no significant correlations between serum autotaxin levels and frequency and severity of pruritus were observed in patients with PBC. Conclusion The frequency of pruritus was high in patients with chronic liver disease. Reduction of liver function is associated with severe pruritus based on the large number of patients with chronic liver disease. Serum autotaxin is useful for assessing liver fibrosis and severity of cholangitis; however, it is not a predictive marker for severe pruritus in patients with PBC.
Collapse
Affiliation(s)
- Hatsue Fujino
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Mio Tanaka
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. .,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan.
| | - Kei Morio
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Takashi Nakahara
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Eisuke Murakami
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Shoichi Takahashi
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan.,Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Akira Hiramatsu
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
34
|
Honda Y, Imajo K, Kobayashi T, Kessoku T, Ogawa Y, Tomeno W, Yoneda M, Kobayashi N, Saito S, Nakajima A. Autotaxin is a valuable biomarker for the prediction of liver fibrosis in patients with non-alcoholic fatty liver disease. Hepatol Res 2019; 49:1136-1146. [PMID: 31144415 DOI: 10.1111/hepr.13382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
AIM We investigated the characteristics of serum autotaxin (ATX) and its diagnostic performance for liver fibrosis in a large cohort of patients with non-alcoholic fatty liver disease (NAFLD). METHODS We compared the usefulness of ATX and other fibrosis markers in 307 biopsy-confirmed NAFLD patients. In addition, in 145 participants with NAFLD, we compared the diagnostic performance of ATX with that of non-invasive imaging methods (vibration-controlled transient elastography and magnetic resonance elastography [MRE]). RESULTS Serum ATX concentration was significantly correlated with fibrosis stage in male and female NAFLD patients. In male patients, the area under the receiver operating characteristic (AUROC) curve values of ATX for the diagnosis of ≥stage 1, ≥stage 2, ≥stage 3, and ≥stage 4 fibrosis were 0.65, 0.75, 0.81, and 0.95, respectively. In female NAFLD participants, the AUROC values were all >0.81. The sensitivity of ATX was highest for the diagnosis of ≥stage 2 and ≥stage 3 fibrosis in both men and women with NAFLD. In the comparison between ATX and non-invasive imaging methods, the AUROC for MRE was the highest at every stage of fibrosis. CONCLUSIONS Serum ATX concentration is significantly correlated with fibrosis stage in NAFLD patients. The diagnostic accuracy of ATX for liver fibrosis is lower than that of MRE, but the sensitivities of ATX for the diagnosis of ≥stage 2 and ≥stage 3 were highest. We conclude that ATX is useful for the selection of patients requiring further evaluation for liver fibrosis.
Collapse
Affiliation(s)
- Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wataru Tomeno
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Gastroenterology, International University of Health and Welfare Atami Hospital, Atami, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noritoshi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Oncology Division, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
35
|
Kimura T, Tanaka N, Tanaka E. What will happen in patients with advanced nonalcoholic fatty liver disease? Hepatobiliary Surg Nutr 2019; 8:283-285. [PMID: 31245415 DOI: 10.21037/hbsn.2019.01.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan.,International Research Center for Agricultural Food Industry, Shinshu University, Matsumoto, Japan
| | - Eiji Tanaka
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
36
|
Tanaka N, Kimura T, Fujimori N, Nagaya T, Komatsu M, Tanaka E. Current status, problems, and perspectives of non-alcoholic fatty liver disease research. World J Gastroenterol 2019; 25:163-177. [PMID: 30670907 PMCID: PMC6337019 DOI: 10.3748/wjg.v25.i2.163] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease that can lead to liver cirrhosis, liver cancer, and ultimately death. NAFLD is pathologically classified as non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis (NASH) based on the existence of ballooned hepatocytes, although the states have been known to transform into each other. Moreover, since the detection of ballooned hepatocytes may be difficult with limited biopsied specimens, its clinical significance needs reconsideration. Repeated liver biopsy to assess histological NAFLD activity for therapeutic response is also impractical, creating the need for body fluid biomarkers and less invasive imaging modalities. Recent longitudinal observational studies have emphasized the importance of advanced fibrosis as a determinant of NAFLD outcome. Thus, identifying predictors of fibrosis progression and developing better screening methods will enable clinicians to isolate high-risk NAFLD patients requiring early intensive intervention. Despite the considerable heterogeneity of NAFLD with regard to underlying disease, patient age, and fibrosis stage, several clinical trials are underway to develop a first-in-class drug. In this review, we summarize the present status and future direction of NAFLD/NASH research towards solving unmet medical needs.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- International Research Center for Agricultural Food Industry, Shinshu University, Matsumoto 390-8621, Japan
| | - Takefumi Kimura
- Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Naoyuki Fujimori
- Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Tadanobu Nagaya
- Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Michiharu Komatsu
- Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Eiji Tanaka
- Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| |
Collapse
|
37
|
Komatsu M, Tanaka N, Kimura T, Fujimori N, Sano K, Horiuchi A, Sugiura A, Yamazaki T, Shibata S, Joshita S, Umemura T, Matsumoto A, Tanaka E. Miglitol attenuates non-alcoholic steatohepatitis in diabetic patients. Hepatol Res 2018; 48:1092-1098. [PMID: 29935004 DOI: 10.1111/hepr.13223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/03/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022]
Abstract
AIM Postprandial hyperglycemia is frequently accompanied by non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH). Although α-glucosidase inhibitors (αGIs) can slow glucose absorption from the intestine and suppress the surge of circulating glucose concentration after meals, it remains unclear whether αGIs are also beneficial for NASH. The aim of this prospective study was to examine the efficacy and safety of miglitol, a typical αGI, for NASH. METHODS Seventeen patients with histologically confirmed NASH and hemoglobin A1c (HbA1c) >6.5% were treated with miglitol (150 mg/day) for 12 months. The changes in clinical parameters and liver histology were analyzed. RESULTS All patients completed the 12-month miglitol treatment course with no severe adverse events. The treatment significantly decreased body mass index, serum alanine aminotransferase levels, and HbA1c (all P < 0.001). Post-treatment liver biopsy of 11 patients revealed significant improvements in steatosis (from 2.2 ± 0.6 to 1.5 ± 0.7, P = 0.001), lobular inflammation (from 1.8 ± 0.8 to 1.3 ± 0.5, P = 0.014), portal inflammation scores (from 0.6 ± 0.5 to 0.1 ± 0.3, P = 0.025), and NAFLD activity score (from 5.5 ± 1.5 to 3.9 ± 1.4, P = 0.012). Fibrosis and hepatocyte ballooning scores were unchanged. CONCLUSIONS Miglitol appears to safely ameliorate NASH activity by attenuation of steatosis and lobular/portal inflammation. Appropriately powered controlled trials are warranted to validate our results.
Collapse
Affiliation(s)
- Michiharu Komatsu
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan.,International Research Center for Agricultural Food Industry, Shinshu University, Matsumoto, Japan
| | - Takefumi Kimura
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoyuki Fujimori
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenji Sano
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Akira Horiuchi
- Digestive Disease Center, Showa Inan General Hospital, Komagane, Japan
| | - Ayumi Sugiura
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoo Yamazaki
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Soichiro Shibata
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoru Joshita
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeji Umemura
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akihiro Matsumoto
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eiji Tanaka
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
38
|
Esmaeili A, Namazi S. Is melatonin effective for pruritus caused by liver disease? Med Hypotheses 2018; 121:177-179. [PMID: 30396475 DOI: 10.1016/j.mehy.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
There is still no definitive treatment to relieve pruritus associated with liver disease, because the precise mechanism of itching has not yet been determined. Different mechanisms have been proposed. One recent explanation is thought to be the rise in serum levels of lysophosphatidic acid which is a metabolite of lysophosphatidyl choline conversion by autotaxin enzyme in liver disease is. Over expression of autotaxin which occurs in atopic dermatitis has been shown to be involved in itching pathology. Importantly, gene amplification of autotaxin also occurs in cholestasis. Melatonin has pleiotropic properties such as suppressive effects on serum level of autotaxin which relieves itching of atopic dermatitis. Due to some similarities in mechanism of itching, it is hypothesized that melatonin may improve itching of liver diseases.
Collapse
Affiliation(s)
- Ayda Esmaeili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1419733141, Iran.
| | - Soha Namazi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1419733141, Iran.
| |
Collapse
|