1
|
Wang X, Zhu MX, Wang JF, Liu P, Zhang LY, Zhou Y, Lin XX, Du YD, He KL. Multivariable prognostic models for post-hepatectomy liver failure: An updated systematic review. World J Hepatol 2025; 17:103330. [PMID: 40308827 PMCID: PMC12038414 DOI: 10.4254/wjh.v17.i4.103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Partial hepatectomy continues to be the primary treatment approach for liver tumors, and post-hepatectomy liver failure (PHLF) remains the most critical life-threatening complication following surgery. AIM To comprehensively review the PHLF prognostic models developed in recent years and objectively assess the risk of bias in these models. METHODS This review followed the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline. Three databases were searched from November 2019 to December 2022, and references as well as cited literature in all included studies were manually screened in March 2023. Based on the defined inclusion criteria, articles on PHLF prognostic models were selected, and data from all included articles were extracted by two independent reviewers. The PROBAST was used to evaluate the quality of each included article. RESULTS A total of thirty-four studies met the eligibility criteria and were included in the analysis. Nearly all of the models (32/34, 94.1%) were developed and validated exclusively using private data sources. Predictive variables were categorized into five distinct types, with the majority of studies (32/34, 94.1%) utilizing multiple types of data. The area under the curve for the training models included ranged from 0.697 to 0.956. Analytical issues resulted in a high risk of bias across all studies included. CONCLUSION The validation performance of the existing models was substantially lower compared to the development models. All included studies were evaluated as having a high risk of bias, primarily due to issues within the analytical domain. The progression of modeling technology, particularly in artificial intelligence modeling, necessitates the use of suitable quality assessment tools.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Hepatobiliary Surgery, Chinese PLA 970 Hospital, Yantai 264001, Shandong Province, China
- Medical Big Data Research Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ming-Xiang Zhu
- Medical Big Data Research Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Jun-Feng Wang
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 358 4CG, Netherlands
| | - Pan Liu
- Medical Big Data Research Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Yuan Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing 100853, China
| | - You Zhou
- Medical Big Data Research Center, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xi-Xiang Lin
- Medical Big Data Research Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying-Dong Du
- Department of Hepatobiliary Surgery, Chinese PLA 970 Hospital, Yantai 264001, Shandong Province, China
| | - Kun-Lun He
- Medical Big Data Research Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
2
|
Famularo S, Maino C, Milana F, Ardito F, Rompianesi G, Ciulli C, Conci S, Gallotti A, La Barba G, Romano M, De Angelis M, Patauner S, Penzo C, De Rose AM, Marescaux J, Diana M, Ippolito D, Frena A, Boccia L, Zanus G, Ercolani G, Maestri M, Grazi GL, Ruzzenente A, Romano F, Troisi RI, Giuliante F, Donadon M, Torzilli G. Preoperative prediction of post hepatectomy liver failure after surgery for hepatocellular carcinoma on CT-scan by machine learning and radiomics analyses. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:109462. [PMID: 39592285 DOI: 10.1016/j.ejso.2024.109462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION No instruments are available to predict preoperatively the risk of posthepatectomy liver failure (PHLF) in HCC patients. The aim was to predict the occurrence of PHLF preoperatively by radiomics and clinical data through machine-learning algorithms. MATERIALS AND METHODS Clinical data and 3-phases CT scans were retrospectively collected among 13 Italian centres between 2008 and 2022. Radiomics features were extracted in the non-tumoral liver area. Data were split between training(70 %) and test(30 %) sets. An oversampling was run(ADASYN) in the training set. Random-Forest(RF), extreme gradient boosting (XGB) and support vector machine (SVM) models were fitted to predict PHLF. Final evaluation of the metrics was run in the test set. The best models were included in an averaging ensemble model (AEM). RESULTS Five-hundred consecutive preoperative CT scans were collected with the relative clinical data. Of them, 17 (3.4 %) experienced a PHLF. Two-hundred sixteen radiomics features per patient were extracted. PCA selected 19 dimensions explaining >75 % of the variance. Associated clinical variables were: size, macrovascular invasion, cirrhosis, major resection and MELD score. Data were split in training cohort (70 %, n = 351) and a test cohort (30 %, n = 149). The RF model obtained an AUC = 89.1 %(Spec. = 70.1 %, Sens. = 100 %, accuracy = 71.1 %, PPV = 10.4 %, NPV = 100 %). The XGB model showed an AUC = 89.4 %(Spec. = 100 %, Sens. = 20.0 %, Accuracy = 97.3 %, PPV = 20 %, NPV = 97.3 %). The AEM combined the XGB and RF model, obtaining an AUC = 90.1 %(Spec. = 89.5 %, Sens. = 80.0 %, accuracy = 89.2 %, PPV = 21.0 %, NPV = 99.2 %). CONCLUSIONS The AEM obtained the best results in terms of discrimination and true positive identification. This could lead to better define patients fit or unfit for liver resection.
Collapse
Affiliation(s)
- Simone Famularo
- Hepatobiliary Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy; IRCAD, Research Institute Against Cancer of the Digestive System, 1 Place de l'Hôpital, Strasbourg, 67091, France.
| | - Cesare Maino
- Department of Radiology, San Gerardo Hospital, Monza, Italy
| | - Flavio Milana
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesco Ardito
- Hepatobiliary Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Gianluca Rompianesi
- Division of Hepato-biliary-pancreatic, Minimally Invasive and Robotic Surgery, and Transplantation Service Federico II University HospitalNaplesItaly, Italy
| | - Cristina Ciulli
- School of Medicine and Surgery, University of Milan-Bicocca, Department of Surgery, San Gerardo Hospital, Monza, Italy
| | - Simone Conci
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Anna Gallotti
- Unit of General Surgery 1, University of Pavia and Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuliano La Barba
- General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Department of Medical and Surgical Sciences, University of Bologna Forlì, Italy
| | - Maurizio Romano
- Department of Surgical, Oncological and Gastroenterological Science (DISCOG), University of Padua, Hepatobiliary and Pancreatic Surgery Unit, Treviso Hospital, Italy
| | | | - Stefan Patauner
- Department of General and Pediatric Surgery, Bolzano Central Hospital, Bolzano, Italy
| | - Camilla Penzo
- Pole d'Expertise de la Regulation Numérique (PEReN), Paris, France
| | - Agostino Maria De Rose
- Hepatobiliary Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Jacques Marescaux
- IRCAD, Research Institute Against Cancer of the Digestive System, 1 Place de l'Hôpital, Strasbourg, 67091, France
| | - Michele Diana
- Dpt of Surgery, University Hospital of Geneva, Switzerland; ICube lab, Photonics for Health, University of Strasbourg, France
| | | | - Antonio Frena
- Department of General and Pediatric Surgery, Bolzano Central Hospital, Bolzano, Italy
| | - Luigi Boccia
- Department of General Surgery, Ospedale Carlo Poma, Mantua, Italy
| | - Giacomo Zanus
- Department of Surgical, Oncological and Gastroenterological Science (DISCOG), University of Padua, Hepatobiliary and Pancreatic Surgery Unit, Treviso Hospital, Italy
| | - Giorgio Ercolani
- General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Department of Medical and Surgical Sciences, University of Bologna Forlì, Italy
| | - Marcello Maestri
- Unit of General Surgery 1, University of Pavia and Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gian Luca Grazi
- HepatoBiliaryPancreatic Surgery, AOU Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Ruzzenente
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Fabrizio Romano
- School of Medicine and Surgery, University of Milan-Bicocca, Department of Surgery, San Gerardo Hospital, Monza, Italy
| | - Roberto Ivan Troisi
- Division of Hepato-biliary-pancreatic, Minimally Invasive and Robotic Surgery, and Transplantation Service Federico II University HospitalNaplesItaly, Italy
| | - Felice Giuliante
- Hepatobiliary Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Donadon
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Department of General Surgery, University Maggiore Hospital Della Carità, Novara, Italy
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
3
|
Laino ME, Fiz F, Morandini P, Costa G, Maffia F, Giuffrida M, Pecorella I, Gionso M, Wheeler DR, Cambiaghi M, Saba L, Sollini M, Chiti A, Savevsky V, Torzilli G, Viganò L. A virtual biopsy of liver parenchyma to predict the outcome of liver resection. Updates Surg 2023; 75:1519-1531. [PMID: 37017906 DOI: 10.1007/s13304-023-01495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
The preoperative risk assessment of liver resections (LR) is still an open issue. Liver parenchyma characteristics influence the outcome but cannot be adequately evaluated in the preoperative setting. The present study aims to elucidate the contribution of the radiomic analysis of non-tumoral parenchyma to the prediction of complications after elective LR. All consecutive patients undergoing LR between 2017 and 2021 having a preoperative computed tomography (CT) were included. Patients with associated biliary/colorectal resection were excluded. Radiomic features were extracted from a virtual biopsy of non-tumoral liver parenchyma (a 2 mL cylinder) outlined in the portal phase of preoperative CT. Data were internally validated. Overall, 378 patients were analyzed (245 males/133 females-median age 67 years-39 cirrhotics). Radiomics increased the performances of the preoperative clinical models for both liver dysfunction (at internal validaton, AUC = 0.727 vs. 0.678) and bile leak (AUC = 0.744 vs. 0.614). The final predictive model combined clinical and radiomic variables: for bile leak, segment 1 resection, exposure of Glissonean pedicles, HU-related indices, NGLDM_Contrast, GLRLM indices, and GLZLM_ZLNU; for liver dysfunction, cirrhosis, liver function tests, major hepatectomy, segment 1 resection, and NGLDM_Contrast. The combined clinical-radiomic model for bile leak based on preoperative data performed even better than the model including the intraoperative data (AUC = 0.629). The textural features extracted from a virtual biopsy of non-tumoral liver parenchyma improved the prediction of postoperative liver dysfunction and bile leak, implementing information given by standard clinical data. Radiomics should become part of the preoperative assessment of candidates to LR.
Collapse
Affiliation(s)
- Maria Elena Laino
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Francesco Fiz
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Pierandrea Morandini
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Guido Costa
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Fiore Maffia
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Mario Giuffrida
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ilaria Pecorella
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Matteo Gionso
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Dakota Russell Wheeler
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Martina Cambiaghi
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Martina Sollini
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Arturo Chiti
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Victor Savevsky
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Guido Torzilli
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy.
- Hepatobiliary Unit, Department of Minimally Invasive General and Oncologic Surgery, Humanitas Gavazzeni University Hospital, Viale M. Gavazzeni 21, 24125, Bergamo, Italy.
| |
Collapse
|
4
|
Viganò L, Ammirabile A, Zwanenburg A. Radiomics in liver surgery: defining the path toward clinical application. Updates Surg 2023; 75:1387-1390. [PMID: 37543527 DOI: 10.1007/s13304-023-01620-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Affiliation(s)
- Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
- Hepatobiliary Unit, Department of Minimally Invasive General and Oncologic Surgery, Humanitas Gavazzeni University Hospital, Viale M. Gavazzeni 21, 24125, Bergamo, Italy.
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Viale Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alexander Zwanenburg
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Li C, Wang Q, Zou M, Cai P, Li X, Feng K, Zhang L, Sparrelid E, Brismar TB, Ma K. A radiomics model based on preoperative gadoxetic acid-enhanced magnetic resonance imaging for predicting post-hepatectomy liver failure in patients with hepatocellular carcinoma. Front Oncol 2023; 13:1164739. [PMID: 37476376 PMCID: PMC10354521 DOI: 10.3389/fonc.2023.1164739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Background Post-hepatectomy liver failure (PHLF) is a fatal complication after liver resection in patients with hepatocellular carcinoma (HCC). It is of clinical importance to estimate the risk of PHLF preoperatively. Aims This study aimed to develop and validate a prediction model based on preoperative gadoxetic acid-enhanced magnetic resonance imaging to estimate the risk of PHLF in patients with HCC. Methods A total of 276 patients were retrospectively included and randomly divided into training and test cohorts (194:82). Clinicopathological variables were assessed to identify significant indicators for PHLF prediction. Radiomics features were extracted from the normal liver parenchyma at the hepatobiliary phase and the reproducible, robust and non-redundant ones were filtered for modeling. Prediction models were developed using clinicopathological variables (Clin-model), radiomics features (Rad-model), and their combination. Results The PHLF incidence rate was 24% in the whole cohort. The combined model, consisting of albumin-bilirubin (ALBI) score, indocyanine green retention test at 15 min (ICG-R15), and Rad-score (derived from 16 radiomics features) outperformed the Clin-model and the Rad-model. It yielded an area under the receiver operating characteristic curve (AUC) of 0.84 (95% confidence interval (CI): 0.77-0.90) in the training cohort and 0.82 (95% CI: 0.72-0.91) in the test cohort. The model demonstrated a good consistency by the Hosmer-Lemeshow test and the calibration curve. The combined model was visualized as a nomogram for estimating individual risk of PHLF. Conclusion A model combining clinicopathological risk factors and radiomics signature can be applied to identify patients with high risk of PHLF and serve as a decision aid when planning surgery treatment in patients with HCC.
Collapse
Affiliation(s)
- Changfeng Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mengda Zou
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ping Cai
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xuesong Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Kai Feng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Leida Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Torkel B. Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kuansheng Ma
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Doyle JP, Patel PH, Petrou N, Shur J, Orton M, Kumar S, Bhogal RH. Radiomic applications in upper gastrointestinal cancer surgery. Langenbecks Arch Surg 2023; 408:226. [PMID: 37278924 DOI: 10.1007/s00423-023-02951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Cross-sectional imaging plays an integral role in the management of upper gastrointestinal (UGI) cancer, from initial diagnosis and staging to determining appropriate treatment strategies. Subjective imaging interpretation has known limitations. The field of radiomics has evolved to extract quantitative data from medical imaging and relate these to biological processes. The key concept behind radiomics is that the high-throughput analysis of quantitative imaging features can provide predictive or prognostic information, with the goal of providing individualised care. OBJECTIVE Radiomic studies have shown promising utility in upper gastrointestinal oncology, highlighting a potential role in determining stage of disease and degree of tumour differentiation and predicting recurrence-free survival. This narrative review aims to provide an insight into the concepts underpinning radiomics, as well as its potential applications for guiding treatment and surgical decision-making in upper gastrointestinal malignancy. CONCLUSION Outcomes from studies to date have been promising; however, further standardisation and collaboration are required. Large prospective studies with external validation and evaluation of radiomic integration into clinical pathways are needed. Future research should now focus on translating the promising utility of radiomics into meaningful patient outcomes.
Collapse
Affiliation(s)
- Joseph P Doyle
- Department of Surgery, The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
| | - Pranav H Patel
- Department of Surgery, The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
| | - Nikoletta Petrou
- Department of Surgery, The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
| | - Joshua Shur
- Department of Radiology, The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
| | - Matthew Orton
- Department of Radiology, The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
| | - Sacheen Kumar
- Department of Surgery, The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK
- Upper GI Surgical Oncology Research Group, The Institute for Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Ricky H Bhogal
- Department of Surgery, The Royal Marsden Hospital NHS Foundation Trust, 203 Fulham Road, London, SW3 6JJ, UK.
- Upper GI Surgical Oncology Research Group, The Institute for Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK.
| |
Collapse
|
7
|
Zhang S, Mu W, Dong D, Wei J, Fang M, Shao L, Zhou Y, He B, Zhang S, Liu Z, Liu J, Tian J. The Applications of Artificial Intelligence in Digestive System Neoplasms: A Review. HEALTH DATA SCIENCE 2023; 3:0005. [PMID: 38487199 PMCID: PMC10877701 DOI: 10.34133/hds.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 03/17/2024]
Abstract
Importance Digestive system neoplasms (DSNs) are the leading cause of cancer-related mortality with a 5-year survival rate of less than 20%. Subjective evaluation of medical images including endoscopic images, whole slide images, computed tomography images, and magnetic resonance images plays a vital role in the clinical practice of DSNs, but with limited performance and increased workload of radiologists or pathologists. The application of artificial intelligence (AI) in medical image analysis holds promise to augment the visual interpretation of medical images, which could not only automate the complicated evaluation process but also convert medical images into quantitative imaging features that associated with tumor heterogeneity. Highlights We briefly introduce the methodology of AI for medical image analysis and then review its clinical applications including clinical auxiliary diagnosis, assessment of treatment response, and prognosis prediction on 4 typical DSNs including esophageal cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma. Conclusion AI technology has great potential in supporting the clinical diagnosis and treatment decision-making of DSNs. Several technical issues should be overcome before its application into clinical practice of DSNs.
Collapse
Affiliation(s)
- Shuaitong Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Wei Mu
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jingwei Wei
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Mengjie Fang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Lizhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yu Zhou
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bingxi He
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Song Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jianhua Liu
- Department of Oncology, Guangdong Provincial People's Hospital/Second Clinical Medical College of Southern Medical University/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
9
|
Miranda J, Horvat N, Fonseca GM, Araujo-Filho JDAB, Fernandes MC, Charbel C, Chakraborty J, Coelho FF, Nomura CH, Herman P. Current status and future perspectives of radiomics in hepatocellular carcinoma. World J Gastroenterol 2023; 29:43-60. [PMID: 36683711 PMCID: PMC9850949 DOI: 10.3748/wjg.v29.i1.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Given the frequent co-existence of an aggressive tumor and underlying chronic liver disease, the management of hepatocellular carcinoma (HCC) patients requires experienced multidisciplinary team discussion. Moreover, imaging plays a key role in the diagnosis, staging, restaging, and surveillance of HCC. Currently, imaging assessment of HCC entails the assessment of qualitative characteristics which are prone to inter-reader variability. Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that cannot be assessed visually with the naked eye from medical imaging. The main potential applications of radiomic models in HCC are to predict histology, response to treatment, genetic signature, recurrence, and survival. Despite the encouraging results to date, there are challenges and limitations that need to be overcome before radiomics implementation in clinical practice. The purpose of this article is to review the main concepts and challenges pertaining to radiomics, and to review recent studies and potential applications of radiomics in HCC.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-010, Brazil
| | - Natally Horvat
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | | | - Maria Clara Fernandes
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States
| | | | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Paulo Herman
- Department of Gastroenterology, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| |
Collapse
|
10
|
Fahmy D, Alksas A, Elnakib A, Mahmoud A, Kandil H, Khalil A, Ghazal M, van Bogaert E, Contractor S, El-Baz A. The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14246123. [PMID: 36551606 PMCID: PMC9777232 DOI: 10.3390/cancers14246123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.
Collapse
Affiliation(s)
- Dalia Fahmy
- Diagnostic Radiology Department, Mansoura University Hospital, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Heba Kandil
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Faculty of Computer Sciences and Information, Mansoura University, Mansoura 35516, Egypt
| | - Ashraf Khalil
- College of Technological Innovation, Zayed University, Abu Dhabi 4783, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
11
|
Dana J, Venkatasamy A, Saviano A, Lupberger J, Hoshida Y, Vilgrain V, Nahon P, Reinhold C, Gallix B, Baumert TF. Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease. Hepatol Int 2022; 16:509-522. [PMID: 35138551 PMCID: PMC9177703 DOI: 10.1007/s12072-022-10303-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
Chronic liver diseases, resulting from chronic injuries of various causes, lead to cirrhosis with life-threatening complications including liver failure, portal hypertension, hepatocellular carcinoma. A key unmet medical need is robust non-invasive biomarkers to predict patient outcome, stratify patients for risk of disease progression and monitor response to emerging therapies. Quantitative imaging biomarkers have already been developed, for instance, liver elastography for staging fibrosis or proton density fat fraction on magnetic resonance imaging for liver steatosis. Yet, major improvements, in the field of image acquisition and analysis, are still required to be able to accurately characterize the liver parenchyma, monitor its changes and predict any pejorative evolution across disease progression. Artificial intelligence has the potential to augment the exploitation of massive multi-parametric data to extract valuable information and achieve precision medicine. Machine learning algorithms have been developed to assess non-invasively certain histological characteristics of chronic liver diseases, including fibrosis and steatosis. Although still at an early stage of development, artificial intelligence-based imaging biomarkers provide novel opportunities to predict the risk of progression from early-stage chronic liver diseases toward cirrhosis-related complications, with the ultimate perspective of precision medicine. This review provides an overview of emerging quantitative imaging techniques and the application of artificial intelligence for biomarker discovery in chronic liver disease.
Collapse
Affiliation(s)
- Jérémy Dana
- Institut de Recherche sur les Maladies Virales et Hépatiques, Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, 3 Rue Koeberlé, 67000, Strasbourg, France.
- Institut Hospitalo-Universitaire (IHU), Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Department of Diagnostic Radiology, McGill University, Montreal, Canada.
| | - Aïna Venkatasamy
- Institut Hospitalo-Universitaire (IHU), Strasbourg, France
- Streinth Lab (Stress Response and Innovative Therapies), Inserm UMR_S 1113 IRFAC, Interface Recherche Fondamentale et Appliquée à la Cancérologie, 3 Avenue Moliere, Strasbourg, France
- Department of Radiology Medical Physics, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Division of Digestive and Liver Diseases, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA
| | - Valérie Vilgrain
- Radiology Department, Hôpital Beaujon, Université de Paris, CRI, INSERM 1149, APHP. Nord, Paris, France
| | - Pierre Nahon
- Liver Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Seine Saint-Denis, Bobigny, France
- Université Sorbonne Paris Nord, 93000, Bobigny, France
- Inserm, UMR-1138 "Functional Genomics of Solid Tumors", Paris, France
| | - Caroline Reinhold
- Department of Diagnostic Radiology, McGill University, Montreal, Canada
- Augmented Intelligence and Precision Health Laboratory, Research Institute of McGill University Health Centre, Montreal, Canada
- Montreal Imaging Experts Inc., Montreal, Canada
| | - Benoit Gallix
- Institut Hospitalo-Universitaire (IHU), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Department of Diagnostic Radiology, McGill University, Montreal, Canada
| | - Thomas F Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Institut National de la Santé et de la Recherche Médicale (Inserm), U1110, 3 Rue Koeberlé, 67000, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
12
|
Multi-phase contrast-enhanced magnetic resonance image-based radiomics-combined machine learning reveals microscopic ultra-early hepatocellular carcinoma lesions. Eur J Nucl Med Mol Imaging 2022; 49:2917-2928. [PMID: 35230493 PMCID: PMC9206604 DOI: 10.1007/s00259-022-05742-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022]
Abstract
Purpose
This study aimed to investigate whether models built from radiomics features based on multiphase contrast-enhanced MRI can identify microscopic pre-hepatocellular carcinoma lesions. Methods We retrospectively studied 54 small hepatocellular carcinoma (SHCC, diameter < 2 cm) patients and 70 patients with hepatocellular cysts or haemangiomas from September 2018 to June 2021. For the former, two MRI scans were collected within 12 months of each other; the 2nd scan was used to confirm the diagnosis. The volumes of interest (VOIs), including SHCCs and normal liver tissues, were delineated on the 2nd scans, mapped to the 1st scans via image registration, and enrolled into the SHCC and internal-control cohorts, respectively, while those of normal liver tissues from patients with hepatocellular cysts or haemangioma were enrolled in the external-control cohort. We extracted 1132 radiomics features from each VOI and analysed their discriminability between the SHCC and internal-control cohorts for intra-group classification and the SHCC and external-control cohorts for inter-group classification. Five radial basis-function, kernel-based support vector machine (SVM) models (four corresponding single-phase models and one integrated from the four-phase MR images) were established. Results Among the 124 subjects, the multiphase models yielded better performance on the testing set for intra-group and inter-group classification, with areas under the receiver operating characteristic curves of 0.93 (95% CI, 0.85–1.00) and 0.97 (95% CI, 0.92–1.00), accuracies of 86.67% and 94.12%, sensitivities of 87.50% and 94.12%, and specificities of 85.71% and 94.12%, respectively. Conclusion The combined multiphase MRI-based radiomics feature model revealed microscopic pre-hepatocellular carcinoma lesions. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05742-8.
Collapse
|
13
|
Wei J, Niu M, Yabo O, Zhou Y, Ma X, Yang X, Jiang H, Hui H, Cao H, Duan B, Li H, Ding D, Tian J. Advances in artificial intelligence techniques drive the application of radiomics in the clinical research of hepatocellular carcinoma. ILIVER 2022; 1:49-54. [DOI: 10.1016/j.iliver.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
14
|
Radiomics Analysis of Gd-EOB-DTPA Enhanced Hepatic MRI for Assessment of Functional Liver Reserve. Acad Radiol 2022; 29:213-218. [PMID: 34183230 DOI: 10.1016/j.acra.2021.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022]
Abstract
Rationale and Objectives To evaluate the effectiveness of radiomics analysis based on Gd-EOB-DTPA enhanced hepatic MRI for functional liver reserve assessment in HCC patients. Materials and Methods Radiomics features were extracted from Gd-EOB-DTPA enhanced MRI images in 60 HCC patients. Boruta algorithm was performed to select features associated with indocyanine green retention rate at 15 min (ICG R15). Prediction and classification model were built by performing Random Forest regression analysis. Pearson correlation analysis and AUC of ROC were used to assess performance of the two models. Results A total of 165 radiomics features were extracted. Six radiomics features were selected to build the prediction model. A Predicted value of ICG R15 for each patient was calculated by the prediction model. Pearson correlation analysis revealed that predicted values were significantly associated with actual values of ICG R15 (R value = 0.90, p < 0.001). Nine radiomics features were selected to build the classification model. AUC of ROC revealed favorable performance of the classification model for identifying patients with ICG R15 <10% (AUC: 0.906, 95%CI: 0.900-0.913), <15% (AUC: 0.954, 95%CI: 0.950-0.958), and <20% (AUC: 0.996, 95%CI: 0.995-0.996). Conclusion Radiomics analysis of Gd-EOB-DTPA enhanced hepatic MRI can be used for assessment of functional liver reserve in HCC patients.
Collapse
|
15
|
Xiang F, Liang X, Yang L, Liu X, Yan S. CT radiomics nomogram for the preoperative prediction of severe post-hepatectomy liver failure in patients with huge (≥ 10 cm) hepatocellular carcinoma. World J Surg Oncol 2021; 19:344. [PMID: 34895260 PMCID: PMC8667454 DOI: 10.1186/s12957-021-02459-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
Background This study aimed to establish a radiomics-based nomogram for predicting severe (grade B or C) post-hepatectomy liver failure (PHLF) in patients with huge (≥ 10 cm) hepatocellular carcinoma (HCC). Methods One hundred eighty-six patients with huge HCC (training dataset, n = 131 and test dataset, n = 55) that underwent curative hepatic resection were included in this study. The least absolute shrinkage and selection operator (LASSO) approach was applied to develop a radiomics signature for grade B or C PHLF prediction using the training dataset. A multivariable logistic regression model was used by incorporating radiomics signature and other clinical predictors to establish a radiomics nomogram. Decision tree analysis was performed to stratify the risk for severe PHLF. Results The radiomics signature consisting of nine features predicted severe PHLF with AUCs of 0.766 and 0.745 for the training and test datasets. The radiomics nomogram was generated by integrating the radiomics signature, the extent of resection and the model for end-stage liver disease (MELD) score. The nomogram exhibited satisfactory discrimination ability, with AUCs of 0.842 and 0.863 for the training and test datasets, respectively. Based on decision tree analysis, patients were divided into three risk classes: low-risk patients with radiomics score < -0.247 and MELD score < 10 or radiomics score ≥ − 0.247 but underwent partial resections; intermediate-risk patients with radiomics score < − 0.247 but MELD score ≥10; high-risk patients with radiomics score ≥ − 0.247 and underwent extended resections. Conclusions The radiomics nomogram could predict severe PHLF in huge HCC patients. A decision tree may be useful in surgical decision-making for huge HCC hepatectomy. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02459-0.
Collapse
Affiliation(s)
- Fei Xiang
- Department of Hepatobiliary Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaoyuan Liang
- Department of Hepatobiliary Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lili Yang
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xingyu Liu
- Department of Hepatobiliary Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Sheng Yan
- Department of Hepatobiliary Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
16
|
Wang Q, Wang A, Sparrelid E, Zhang J, Zhao Y, Ma K, Brismar TB. Predictive value of gadoxetic acid-enhanced MRI for posthepatectomy liver failure: a systematic review. Eur Radiol 2021; 32:1792-1803. [PMID: 34562137 PMCID: PMC8831250 DOI: 10.1007/s00330-021-08297-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022]
Abstract
Objectives Effective and non-invasive biomarkers to predict and avoid posthepatectomy liver failure (PHLF) are urgently needed. This systematic review aims to evaluate the efficacy of gadoxetic acid–enhanced MRI-derived parameters as an imaging biomarker in preoperative prediction of PHLF. Methods A systematic literature search was performed in the databases of PubMed/Medline, Web of Science, Embase, and Cochrane Library up to 11 December 2020. Studies evaluating the incidence of PHLF on patients who underwent hepatectomy with preoperative liver function assessment using gadoxetic acid–enhanced MRI were included. Data was extracted using pre-designed tables. The Quality In Prognostic Studies (QUIPS) tool was adopted to evaluate the risk of bias. Results A total of 15 studies were identified for qualitative synthesis and most studies were marked as low to moderate risk of bias in each domain of QUIPS. The most commonly used parameter was relative liver enhancement or its related parameters. The reported incidence of PHLF ranged from 3.9 to 40%. The predictive sensitivity and specificity of gadoxetic acid–enhanced MRI parameters varied from 75 to 100% and from 54 to 93% in ten reported studies. A majority of the studies revealed that the gadoxetic acid–enhanced MRI parameter was a predictor for PHLF. Conclusions Gadoxetic acid–enhanced MRI showed a high predictive capacity for PHLF and represents a promising imaging biomarker in prediction of PHLF. Multicenter, prospective trials with large sample size and reliable, unified liver function parameters are required to validate the efficacy of individual liver function parameters. Key Points • There is an obvious heterogeneity of the published studies, not only in variance of MRI liver function parameters but also in indication and extent of the liver resection. • Signal intensity (SI)–based parameters derived from gadoxetic acid–enhanced MRI are the commonly used method for PHLF prediction. • Gadoxetic acid–enhanced MRI-derived parameters showed high predictive efficacy for PHLF and can potentially serve as a predictor for the incidence of PHLF. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08297-8.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Anrong Wang
- Department of Hepatobiliary Surgery, People's Hospital of Dianjiang County, Chongqing, China
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jiaxing Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Ying Zhao
- Experimental Cancer Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kuansheng Ma
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Torkel B Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
- Department of Radiology, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
| |
Collapse
|
17
|
Gong XQ, Tao YY, Wu Y, Liu N, Yu X, Wang R, Zheng J, Liu N, Huang XH, Li JD, Yang G, Wei XQ, Yang L, Zhang XM. Progress of MRI Radiomics in Hepatocellular Carcinoma. Front Oncol 2021; 11:698373. [PMID: 34616673 PMCID: PMC8488263 DOI: 10.3389/fonc.2021.698373] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. Although the diagnostic scheme of HCC is currently undergoing refinement, the prognosis of HCC is still not satisfactory. In addition to certain factors, such as tumor size and number and vascular invasion displayed on traditional imaging, some histopathological features and gene expression parameters are also important for the prognosis of HCC patients. However, most parameters are based on postoperative pathological examinations, which cannot help with preoperative decision-making. As a new field, radiomics extracts high-throughput imaging data from different types of images to build models and predict clinical outcomes noninvasively before surgery, rendering it a powerful aid for making personalized treatment decisions preoperatively. OBJECTIVE This study reviewed the workflow of radiomics and the research progress on magnetic resonance imaging (MRI) radiomics in the diagnosis and treatment of HCC. METHODS A literature review was conducted by searching PubMed for search of relevant peer-reviewed articles published from May 2017 to June 2021.The search keywords included HCC, MRI, radiomics, deep learning, artificial intelligence, machine learning, neural network, texture analysis, diagnosis, histopathology, microvascular invasion, surgical resection, radiofrequency, recurrence, relapse, transarterial chemoembolization, targeted therapy, immunotherapy, therapeutic response, and prognosis. RESULTS Radiomics features on MRI can be used as biomarkers to determine the differential diagnosis, histological grade, microvascular invasion status, gene expression status, local and systemic therapeutic responses, and prognosis of HCC patients. CONCLUSION Radiomics is a promising new imaging method. MRI radiomics has high application value in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yao–Kun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Yu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ran Wang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Nian Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Hua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-Dong Li
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Gang Yang
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Qin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
18
|
Liu W, Liu X, Peng M, Chen GQ, Liu PH, Cui XW, Jiang F, Dietrich CF. Artificial intelligence for hepatitis evaluation. World J Gastroenterol 2021; 27:5715-5726. [PMID: 34629796 PMCID: PMC8473592 DOI: 10.3748/wjg.v27.i34.5715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/28/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, increasing attention has been paid to the application of artificial intelligence (AI) to the diagnosis of diverse hepatic diseases, which comprises traditional machine learning and deep learning. Recent studies have shown the possible value of AI based data mining in predicting the incidence of hepatitis, classifying the different stages of hepatitis, diagnosing or screening for hepatitis, forecasting the progression of hepatitis, and predicting response to antiviral drugs in chronic hepatitis C patients. More importantly, AI based on radiology has been proven to be useful in predicting hepatitis and liver fibrosis as well as grading hepatocellular carcinoma (HCC) and differentiating it from benign liver tumors. It can predict the risk of vascular invasion of HCC, the risk of hepatic encephalopathy secondary to hepatitis B related cirrhosis, and the risk of liver failure after hepatectomy in HCC patients. In this review, we summarize the application of AI in hepatitis, and identify the challenges and future perspectives.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xue Liu
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Mei Peng
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Gong-Quan Chen
- Department of Medical Ultrasound, Minda Hospital of Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Peng-Hua Liu
- Department of Medical Ultrasound, The First Affiliated Hospital of Shaoyang University, Shaoyang 422000, Hunan Province, China
| | - Xin-Wu Cui
- Sino-German Tongji-Caritas Research Center of Ultrasound in Medicine, Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fan Jiang
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin, Kliniken Hirslanden Beau Site, Salem und Permanence, Bern 3626, Switzerland
| |
Collapse
|
19
|
Abstract
BACKGROUND Radiomics is an emerging field that extracts high-throughput imaging data from different types of images to build models and predict clinical outcomes ina non-invasive manner. This field currently is in the initial growth phase and lacks standardized evaluation criteria but remains a very promising tool for the future todevelop suitable biomarkers for diagnosis, prognosis, and treatment response assessments. The analysis of hepatocellular carcinoma by radiomics will contribute toearly diagnosis and treatment of tumors and improve survival and cure rates. AIM Herein, we aimed to provide an up-to-date overview of the principles of radiomics specifically regarding hepatocellular carcinoma (HCC) and discuss the current challenges and future advancements of radiomics for HCC.
Collapse
Affiliation(s)
- Aysegul Sagir Kahraman
- Department of Radiology, Turgut Ozal Medical Center, Inonu University School of Medicine, 244280, Malatya, Turkey.
- Liver Transplantation Institute, Inonu University, 244280, Malatya, Turkey.
| |
Collapse
|
20
|
Vigano L, Sollini M, Ieva F, Fiz F, Torzilli G. Chemotherapy-Associated Liver Injuries: Unmet Needs and New Insights for Surgical Oncologists. Ann Surg Oncol 2021; 28:4074-4079. [PMID: 33929618 DOI: 10.1245/s10434-021-10069-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Luca Vigano
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| | - Martina Sollini
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Francesca Ieva
- MOX laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy.,CADS - Center for Analysis, Decisions and Society, Human Technopole, Milan, Italy
| | - Francesco Fiz
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Guido Torzilli
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|