1
|
Xu H, Feng R, Ye ML, Hu JC, Lu JY, Wang JY, Zuo HT, Zhao Y, Song JY, Jiang JD, Zhou YZ, Wang Y. Multiple Enzymes Expressed by the Gut Microbiota Can Transform Typhaneoside and Are Associated with Improving Hyperlipidemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411770. [PMID: 39840606 DOI: 10.1002/advs.202411770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Indexed: 01/23/2025]
Abstract
The mechanism of multiple enzymes mediated drug metabolism in gut microbiota is still unclear. This study explores multiple enzyme interaction process of typhactyloside (TYP) with gut microbiota and its lipid-lowering pharmacological activity. TYP, with bioavailability of only 2.78%, is an active component of Typha angustifolia L. and Pushen capsules which is clinically treated for hyperlipidemia. The metabolic process of TYP is identified, and key enzymes involved in TYP metabolism are validated through gene knockout and overexpression techniques. Through overexpressing α-rhamnosidase (Rha) in Escherichia coli, TYP is verified to metabolize into isorhamnetin-3-O-neohesperidin (M1) and isorhamnetin-3-O-glucoside (M2) after removing rhamnose through Rha. Besides, knockout of β-glucosidase (Glu) confirms that TYP generates M3 through Glu after removing glucose. Combined with molecular docking, M3 is transformed to generate 3,4-dihydroxyphenylacetic acid (M4), protocatechuic acid (M5), and 3-hydroxyphenylacetic acid (M6) through flavonoid reductase (Flr) and chalcone isomerase (Chi). In conclusion, multiple enzymes involved in TYP metabolism (Rha/Glu→Flr→Chi) are identified. Through in vivo experiments, combined use of M3 and M5 also shows excellent anti-hyperlipidemia efficacy. This is the first study on complex metabolism mechanism and pharmacological activity of natural flavonoids mediated by multiple enzymes, which provide insight to investigate analogous natural products.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jing-Yue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Heng-Tong Zuo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| | - Yun-Zhi Zhou
- Emergency General Hospital, National Research Center for Emergency Medicine, Beijing, 100028, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
2
|
Muller E, Shiryan I, Borenstein E. Multi-omic integration of microbiome data for identifying disease-associated modules. Nat Commun 2024; 15:2621. [PMID: 38521774 PMCID: PMC10960825 DOI: 10.1038/s41467-024-46888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Multi-omic studies of the human gut microbiome are crucial for understanding its role in disease across multiple functional layers. Nevertheless, integrating and analyzing such complex datasets poses significant challenges. Most notably, current analysis methods often yield extensive lists of disease-associated features (e.g., species, pathways, or metabolites), without capturing the multi-layered structure of the data. Here, we address this challenge by introducing "MintTea", an intermediate integration-based approach combining canonical correlation analysis extensions, consensus analysis, and an evaluation protocol. MintTea identifies "disease-associated multi-omic modules", comprising features from multiple omics that shift in concord and that collectively associate with the disease. Applied to diverse cohorts, MintTea captures modules with high predictive power, significant cross-omic correlations, and alignment with known microbiome-disease associations. For example, analyzing samples from a metabolic syndrome study, MintTea identifies a module with serum glutamate- and TCA cycle-related metabolites, along with bacterial species linked to insulin resistance. In another dataset, MintTea identifies a module associated with late-stage colorectal cancer, including Peptostreptococcus and Gemella species and fecal amino acids, in line with these species' metabolic activity and their coordinated gradual increase with cancer development. This work demonstrates the potential of advanced integration methods in generating systems-level, multifaceted hypotheses underlying microbiome-disease interactions.
Collapse
Affiliation(s)
- Efrat Muller
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Shiryan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
3
|
Iribarren C, Savolainen O, Sapnara M, Törnblom H, Simrén M, Magnusson MK, Öhman L. Temporal stability of fecal metabolomic profiles in irritable bowel syndrome. Neurogastroenterol Motil 2024; 36:e14741. [PMID: 38243381 DOI: 10.1111/nmo.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/15/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND The potential of the fecal metabolome to serve as a biomarker for irritable bowel syndrome (IBS) depends on its stability over time. Therefore, this study aimed to determine the temporal dynamics of the fecal metabolome, and the potential relationship with stool consistency, in patients with IBS and healthy subjects. METHODS Fecal samples were collected in two cohorts comprising patients with IBS and healthy subjects. For Cohort A, fecal samples collected during 5 consecutive days were analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS). For Cohort B, liquid chromatography-MS (LC-MS) was used to analyze fecal samples collected at week 0 (healthy and IBS) and at week 4 (patients only). Stool consistency was determined by the Bristol Stool Form scale. KEY RESULTS Fecal samples were collected from Cohort A (seven healthy subjects and eight IBS patients), and Cohort B (seven healthy subjects and 11 IBS patients). The fecal metabolome of IBS patients was stable short-term (Cohort A, 5 days and within the same day) and long-term (Cohort B, 4 weeks). A similar trend was observed over 5 days in the healthy subjects of Cohort A. The metabolome dissimilarity was larger between than within participants over time in both healthy subjects and IBS patients. Further analyses showed that patients had greater range of stool forms (types) than healthy subjects, with no apparent influence on metabolomic dynamics. CONCLUSION & INFERENCES The fecal metabolome is stable over time within IBS patients as well as healthy subjects. This supports the concept of a stable fecal metabolome in IBS despite fluctuations in stool consistency, and the use of single timepoint sampling to further explore how the fecal metabolome is related to IBS pathogenesis.
Collapse
Affiliation(s)
- Cristina Iribarren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Maria Sapnara
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Törnblom
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Órdenes P, Carril Pardo C, Elizondo-Vega R, Oyarce K. Current Research on Molecular Biomarkers for Colorectal Cancer in Stool Samples. BIOLOGY 2023; 13:15. [PMID: 38248446 PMCID: PMC10813333 DOI: 10.3390/biology13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024]
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers worldwide, with a high incidence and mortality rate when diagnosed late. Currently, the methods used in healthcare to diagnose CRC are the fecal occult blood test, flexible sigmoidoscopy, and colonoscopy. However, the lack of sensitivity and specificity and low population adherence are driving the need to implement other technologies that can identify biomarkers that not only help with early CRC detection but allow for the selection of more personalized treatment options. In this regard, the implementation of omics technologies, which can screen large pools of biological molecules, coupled with molecular validation, stands out as a promising tool for the discovery of new biomarkers from biopsied tissues or body fluids. This review delves into the current state of the art in the identification of novel CRC biomarkers that can distinguish cancerous tissue, specifically from fecal samples, as this could be the least invasive approach.
Collapse
Affiliation(s)
- Patricio Órdenes
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| | - Claudio Carril Pardo
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
| | - Karina Oyarce
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| |
Collapse
|
5
|
Chalova P, Tazky A, Skultety L, Minichova L, Chovanec M, Ciernikova S, Mikus P, Piestansky J. Determination of short-chain fatty acids as putative biomarkers of cancer diseases by modern analytical strategies and tools: a review. Front Oncol 2023; 13:1110235. [PMID: 37441422 PMCID: PMC10334191 DOI: 10.3389/fonc.2023.1110235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of non-digestible carbohydrates in the gastrointestinal tract. They can be seen as the major flow of carbon from the diet, through the microbiome to the host. SCFAs have been reported as important molecules responsible for the regulation of intestinal homeostasis. Moreover, these molecules have a significant impact on the immune system and are able to affect inflammation, cardiovascular diseases, diabetes type II, or oncological diseases. For this purpose, SCFAs could be used as putative biomarkers of various diseases, including cancer. A potential diagnostic value may be offered by analyzing SCFAs with the use of advanced analytical approaches such as gas chromatography (GC), liquid chromatography (LC), or capillary electrophoresis (CE) coupled with mass spectrometry (MS). The presented review summarizes the importance of analyzing SCFAs from clinical and analytical perspective. Current advances in the analysis of SCFAs focused on sample pretreatment, separation strategy, and detection methods are highlighted. Additionally, it also shows potential areas for the development of future diagnostic tools in oncology and other varieties of diseases based on targeted metabolite profiling.
Collapse
Affiliation(s)
- Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
| | - Anton Tazky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Ludovit Skultety
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Lenka Minichova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Sona Ciernikova
- Biomedical Research Center of the Slovak Academy of Sciences, Cancer Research Institute, Bratislava, Slovakia
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| |
Collapse
|
6
|
Russo E, Gloria LD, Nannini G, Meoni G, Niccolai E, Ringressi MN, Baldi S, Fani R, Tenori L, Taddei A, Ramazzotti M, Amedei A. From adenoma to CRC stages: the oral-gut microbiome axis as a source of potential microbial and metabolic biomarkers of malignancy. Neoplasia 2023; 40:100901. [PMID: 37058886 PMCID: PMC10130693 DOI: 10.1016/j.neo.2023.100901] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Approximately 95% of Colorectal cancers (CRC) consist of adenocarcinomas originating from colonic Adenomatous polyps (AP). Increasing importance in CRC occurrence and progression has been attributed to the gut microbiota; however, a huge proportion of microorganisms inhabit the human digestive system. So, to comprehensively study the microbial spatial variations and their role in CRC progression, from AP to the different CRC phases, a holistic vision is imperative, including the simultaneous evaluation of multiple niches from the gastrointestinal system. Through an integrated approach, we identified potential microbial and metabolic biomarkers, able to discriminate human CRC from AP and/or also the different Tumor node metastasis (TNM) staging. In addition, as the microbiota contributes to the production of essential metabolic products detectable in fecal samples, we analysed and compared metabolites obtained from CRC and AP patients by using a Nuclear magnetic resonance (NMR) approach. METHODS In this observational study, saliva, tissue and stool samples from 61 patients, have been collected, including 46 CRC and 15 AP patients, age and sex-matched, undergoing surgery in 2018 at the Careggi University Hospital (Florence, Italy). First, the microbiota in the three-district between CRC and AP patients has been characterized, as well as in different CRC TNM stages. Subsequently, proton NMR spectroscopy has been used in combination with multivariate and univariate statistical approaches, to define the fecal metabolic profile of a restricted group of CRC and AP patients. RESULTS CRC patients display a different profile of tissue and fecal microbiota with respect to AP patients. Significant differences have been observed in CRC tissue microbial clades, with a rise of the Fusobacterium genus. In addition, significant taxa increase at the genus level has been observed in stool samples of CRC patients. Furthermore, Fusobacterium found in intestinal tissue has been positively correlated with fecal Parvimonas, for the first time. Moreover, as predicted by metagenomics pathway analysis, a significant increase of lactate (p=0.037) has been observed in the CRC fecal metabolic profiles, and positively correlated with Bifidobacterium (p=0.036). Finally, minor bacterial differences in CRC patients at stage T2 (TNM classification) have been detected, with a raise of the Spirochaetota phylum in CRC samples, with a slight increase of the Alphaproteobacteria class in fecal samples. CONCLUSION Our results suggest the importance of microbiota communities and oncometabolites in CRC development. Further studies on CRC/AP management with a focus on CRC assessment are needed to investigate novel microbial-related diagnostic tools aimed to improve therapeutic interventions.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" University of Florence, Florence, Italy.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy..
| |
Collapse
|
7
|
Abbes S, Baldi S, Sellami H, Amedei A, Keskes L. Molecular methods for colorectal cancer screening: Progress with next-generation sequencing evolution. World J Gastrointest Oncol 2023; 15:425-442. [PMID: 37009313 PMCID: PMC10052664 DOI: 10.4251/wjgo.v15.i3.425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Currently, colorectal cancer (CRC) represents the third most common malignancy and the second most deadly cancer worldwide, with a higher incidence in developed countries. Like other solid tumors, CRC is a heterogeneous genomic disease in which various alterations, such as point mutations, genomic rearrangements, gene fusions or chromosomal copy number alterations, can contribute to the disease development. However, because of its orderly natural history, easily accessible onset location and high lifetime incidence, CRC is ideally suited for preventive intervention, but the many screening efforts of the last decades have been compromised by performance limitations and low penetrance of the standard screening tools. The advent of next-generation sequencing (NGS) has both facilitated the identification of previously unrecognized CRC features such as its relationship with gut microbial pathogens and revolutionized the speed and throughput of cataloguing CRC-related genomic alterations. Hence, in this review, we summarized the several diagnostic tools used for CRC screening in the past and the present, focusing on recent NGS approaches and their revolutionary role in the identification of novel genomic CRC characteristics, the advancement of understanding the CRC carcinogenesis and the screening of clinically actionable targets for personalized medicine.
Collapse
Affiliation(s)
- Salma Abbes
- Laboratory of Parasitic and Fungal Molecular Biology, University of Sfax, Sfax 3029, Tunisia
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Hayet Sellami
- Drosophila Research Unit-Parasitology and Mycologie Laboratory, University of Sfax, Sfax 3029, Tunisia
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- SOD of Interdisciplinary Internal Medicine, Careggi University Hospital, Florence 50134, Italy
| | - Leila Keskes
- Laboratory of Human Molecular Genetic, University of Sfax, Sfax 3029, Tunisia
| |
Collapse
|
8
|
WANG C, HUANG T, WANG X. Ligation level of inferior mesenteric artery in rectal cancer: a meta-analysis. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2023. [DOI: 10.23736/s0393-3660.22.04868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Vignoli A, Meoni G, Ghini V, Di Cesare F, Tenori L, Luchinat C, Turano P. NMR-Based Metabolomics to Evaluate Individual Response to Treatments. Handb Exp Pharmacol 2023; 277:209-245. [PMID: 36318327 DOI: 10.1007/164_2022_618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this chapter is to highlight the various aspects of metabolomics in relation to health and diseases, starting from the definition of metabolic space and of how individuals tend to maintain their own position in this space. Physio-pathological stimuli may cause individuals to lose their position and then regain it, or move irreversibly to other positions. By way of examples, mostly selected from our own work using 1H NMR on biological fluids, we describe the effects on the individual metabolomic fingerprint of mild external interventions, such as diet or probiotic administration. Then we move to pathologies (such as celiac disease, various types of cancer, viral infections, and other diseases), each characterized by a well-defined metabolomic fingerprint. We describe the effects of drugs on the disease fingerprint and on its reversal to a healthy metabolomic status. Drug toxicity can be also monitored by metabolomics. We also show how the individual metabolomic fingerprint at the onset of a disease may discriminate responders from non-responders to a given drug, or how it may be prognostic of e.g., cancer recurrence after many years. In parallel with fingerprinting, profiling (i.e., the identification and quantification of many metabolites and, in the case of selected biofluids, of the lipoprotein components that contribute to the 1H NMR spectral features) can provide hints on the metabolic pathways that are altered by a disease and assess their restoration after treatment.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Di Cesare
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy. .,Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Sesto Fiorentino, Italy.
| |
Collapse
|
10
|
Alvandi E, Wong WKM, Joglekar MV, Spring KJ, Hardikar AA. Short-chain fatty acid concentrations in the incidence and risk-stratification of colorectal cancer: a systematic review and meta-analysis. BMC Med 2022; 20:323. [PMID: 36184594 PMCID: PMC9528142 DOI: 10.1186/s12916-022-02529-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The beneficial role of gut microbiota and bacterial metabolites, including short-chain fatty acids (SCFAs), is well recognized, although the available literature around their role in colorectal cancer (CRC) has been inconsistent. METHODS We performed a systematic review and meta-analysis to examine the associations of fecal SCFA concentrations to the incidence and risk of CRC. Data extraction through Medline, Embase, and Web of Science was carried out from database conception to June 29, 2022. Predefined inclusion/exclusion criteria led to the selection of 17 case-control and six cross-sectional studies for quality assessment and analyses. Studies were categorized for CRC risk or incidence, and RevMan 5.4 was used to perform the meta-analyses. Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated using a random-effects model. Studies lacking quantitation were included in qualitative analyses. RESULTS Combined analysis of acetic, propionic, and butyric acid revealed significantly lower concentrations of these SCFAs in individuals with a high-risk of CRC (SMD = 2.02, 95% CI 0.31 to 3.74, P = 0.02). Additionally, CRC incidence was higher in individuals with lower levels of SCFAs (SMD = 0.45, 95% CI 0.19 to 0.72, P = 0.0009), compared to healthy individuals. Qualitative analyses identified 70.4% of studies reporting significantly lower concentrations of fecal acetic, propionic, butyric acid, or total SCFAs in those at higher risk of CRC, while 66.7% reported significantly lower concentrations of fecal acetic and butyric acid in CRC patients compared to healthy controls. CONCLUSIONS Overall, lower fecal concentrations of the three major SCFAs are associated with higher risk of CRC and incidence of CRC.
Collapse
Affiliation(s)
- Ehsan Alvandi
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Translational Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Translational Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia
| | - Kevin J Spring
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
- South-West Sydney Clinical Campuses, UNSW Medicine & Health, Sydney, NSW, Australia.
- Liverpool Clinical School, School of Medicine, Western Sydney University, Liverpool, NSW, Australia.
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
- Translational Health Research Institute, Western Sydney University, Campbelltown, NSW, Australia.
- Department of Science and Environment, Roskilde University Copenhagen, Roskilde, Denmark.
| |
Collapse
|
11
|
Lacticaseibacillus rhamnosus Fmb14 prevents purine induced hyperuricemia and alleviate renal fibrosis through gut-kidney axis. Pharmacol Res 2022; 182:106350. [PMID: 35843568 DOI: 10.1016/j.phrs.2022.106350] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Hyperuricemia is a critical threat to human health, and conventional medical treatment only aims to treat acute gouty arthritis. Purine diet-mediated chronic hyperuricemia and related syndromes are neglected in clinical therapeutics. In this study, the prevention ability of Lacticaseibacillus rhamnosus Fmb14, screened from Chinese yogurt, was evaluated in chronic purine-induced hyperuricemia (CPH) mice. After 12 weeks of Fmb14 administration, serum uric acid (SUA) in CPH mice decreased by 36.8 %, from 179.1 to 113.2 µmol/L, and the mortality rate decreased from 30 % to 10 %. The prevention role of Fmb14 in CPH was further investigated, and the reduction of uric acid by Fmb14 was attributed to the reduction of XOD (xanthine oxidase) in the liver and URAT1 in the kidney, as well the promotion of ABCG2 in the colon. Fmb14 administration Increased ZO-1 and Occludin expression in the colon and decreased fibrosis degree in the kidney indicated that Fmb14 administration had preventive effects through the gut-kidney axis in CPH. In specific, Fmb14 administration upregulated the diversity of gut microbiota, increased short-chain fatty acids (SCFA) by 35 % in colon materials and alleviated the inflammatory response by reducing biomarkers levels of IL-1β, IL-18 and TNF-α at 11.6 %, 21.7 % and 26.5 % in serum, compared to CPH group, respectively. Additionally, 16 S rRNA sequencing showed 31.5 % upregulation of Prevotella, 20.5 % and 21.6 % downregulation of Ruminococcus and Suterella at the genus level, which may be a new gut microbial marker in hyperuricemia. In conclusion, Fmb14 ameliorated CPH through the gut-kidney axis, suggesting a new strategy to prevent hyperuricemia.
Collapse
|