1
|
Banerjee A, Dass D, Mukherjee S, Kaul M, Harshithkumar R, Bagchi P, Mukherjee A. The ‘Oma’s of the Gammas—Cancerogenesis by γ-Herpesviruses. Viruses 2024; 16:1928. [PMCID: PMC11680331 DOI: 10.3390/v16121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt’s lymphoma, nasopharyngeal carcinoma, Hodgkin’s lymphoma, Kaposi’s sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis. These viral proteins can modulate several cellular pathways, including the NF-κB and JAK/STAT pathways, which play essential roles in cell survival and inflammation. Epigenetic modifications further contribute to EBV- and KSHV-mediated cancerogenesis. Both EBV and KSHV manipulate host cell DNA methylation, histone modification, and chromatin remodeling, the interplay of which contribute to the elevation of oncogene expression and the silencing of the tumor suppressor genes. Immune factors also play a pivotal role in the development of cancer. The γ-herpesviruses have evolved intricate immune evasion strategies, including the manipulation of the major histocompatibility complex (MHC) and the release of cytokines, allowing infected cells to evade immune detection and destruction. In addition, a compromised immune system, such as in HIV/AIDS patients, significantly increases the risk of cancers associated with EBV and KSHV. This review aims to provide a comprehensive overview of the genetic, epigenetic, and immune mechanisms by which γ-herpesviruses drive cancerogenesis, highlighting key molecular pathways and potential therapeutic targets.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Debashree Dass
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Soumik Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Mollina Kaul
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - R. Harshithkumar
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Parikshit Bagchi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
- AcSIR—Academy of Scientific & Innovative Research, Ghaziabad 201002, UP, India
| |
Collapse
|
2
|
Alsaadawe M, Radman BA, Long J, Alsaadawi M, Fang W, Lyu X. Epstein Barr virus: A cellular hijacker in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189218. [PMID: 39549877 DOI: 10.1016/j.bbcan.2024.189218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Numerous studies have demonstrated the importance of the Epstein-Barr Virus (EBV), which was initially identified in 1964 while studying Burkitt's lymphoma, in the development of a number of cancers, including nasopharyngeal carcinoma, Hodgkin's lymphoma, Burkitt's lymphoma, and EBV-associated gastric carcinoma. Gammaherpesvirus EBV is extremely common; by adulthood, over 90 % of people worldwide have been infected. Usually, the virus causes a permanent latent infection in B cells, epithelial cells, and NK/T cells. It then contributes to oncogenesis by inhibiting apoptosis and promoting unchecked cell proliferation through its latent proteins, which include EBNA-1, LMP1, and LMP2A. Tumor progression further accelerated by EBV's capacity to transition between latent and lytic phases, especially in cases of nasopharyngeal carcinoma. Although our understanding of the molecular underpinnings of EBV has advanced, there are still difficulties in identifying latent infections and creating targeted therapeutics. To tackle EBV-associated malignancies, current research efforts are concentrated on developing vaccines, developing better diagnostic tools, and developing targeted treatments. In order to improve treatment approaches and lower the incidence of EBV-related cancers worldwide, more research into the relationship between EBV and immune evasion and cancer formation is necessary.
Collapse
Affiliation(s)
- Moyed Alsaadawe
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Al-Qadisiyah Education Directorate, Ministry of Education, Al-Qadisiyah, Iraq
| | - Bakeel A Radman
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Biology, College of Science and Education, Albaydha University, Albaydha, Yemen
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mohenned Alsaadawi
- Education College of Pure Science, Al-Muthanna University, Al-Muthanna, Iraq
| | - Weiyi Fang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Qian ST, Zhao HY, Xie FF, Liu QS, Cai DL. Streptococcus anginosus in the development and treatment of precancerous lesions of gastric cancer. World J Gastrointest Oncol 2024; 16:3771-3780. [PMID: 39350992 PMCID: PMC11438778 DOI: 10.4251/wjgo.v16.i9.3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 09/09/2024] Open
Abstract
The microbiota is strongly association with cancer. Studies have shown significant differences in the gastric microbiota between patients with gastric cancer (GC) patients and noncancer patients, suggesting that the microbiota may play a role in the development of GC. Although Helicobacter pylori (H. pylori) infection is widely recognized as a primary risk factor for GC, recent studies based on microbiota sequencing technology have revealed that non-H. pylori microbes also have a significant impact on GC. A recent study discovered that Streptococcus anginosus (S. anginosus) is more prevalent in the gastric mucosa of patients with GC than in that of those without GC. S. anginosus infection can spontaneously induce chronic gastritis, mural cell atrophy, mucoid chemotaxis, and heterotrophic hyperplasia, which promote the development of precancerous lesions of GC (PLGC). S. anginosus also disrupts the gastric barrier function, promotes the proliferation of GC cells, and inhibits apoptosis. However, S. anginosus is underrepresented in the literature. Recent reports suggest that it may cause precancerous lesions, indicating its emerging pathogenicity. Modern novel molecular diagnostic techniques, such as polymerase chain reaction, genetic testing, and Ultrasensitive Chromosomal Aneuploidy Detection, can be used to gastric precancerous lesions via microbial markers. Therefore, we present a concise summary of the relationship between S. anginosus and PLGC. Our aim was to further investigate new methods of preventing and treating PLGC by exploring the pathogenicity of S. anginosus on PLGC.
Collapse
Affiliation(s)
- Su-Ting Qian
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Hao-Yu Zhao
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Fei-Fei Xie
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Qing-Sheng Liu
- Science and Education Section, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Dan-Li Cai
- Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 311122, Zhejiang Province, China
| |
Collapse
|
4
|
Stone TW, Darlington LG, Badawy AAB, Williams RO. The Complex World of Kynurenic Acid: Reflections on Biological Issues and Therapeutic Strategy. Int J Mol Sci 2024; 25:9040. [PMID: 39201726 PMCID: PMC11354734 DOI: 10.3390/ijms25169040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| | - L. Gail Darlington
- Worthing Hospital, University Hospitals Sussex NHS Foundation Trust, Worthing BN11 2DH, UK
| | - Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK;
| |
Collapse
|
5
|
Xiang X, Li XY. Infection with Epstein-Barr virus in gastric cancer patients and its impact on prognosis. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:509-516. [DOI: 10.11569/wcjd.v32.i7.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
6
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
7
|
Triantafillidis JK, Konstadoulakis MM, Papalois AE. Immunotherapy of gastric cancer: Present status and future perspectives. World J Gastroenterol 2024; 30:779-793. [PMID: 38516237 PMCID: PMC10950642 DOI: 10.3748/wjg.v30.i8.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
In this editorial, we comment on the article entitled "Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023)," which was published in the recent issue of the World Journal of Gastroenterology. We focused on the results of the authors' bibliometric analysis concerning gastric cancer immunotherapy, which they analyzed in depth by compiling the relevant publications of the last 20 years. Before that, we briefly describe the most recent data concerning the epidemiological parameters of gastric cancer (GC) in different countries, attempting to give an interpretation based on the etiological factors involved in the etiopathogenesis of the neoplasm. We then briefly discuss the conservative treatment (chemotherapy) of the various forms of this malignant neoplasm. We describe the treatment of resectable tumors, locally advanced neoplasms, and unresectable (advanced) cases. Special attention is given to modern therapeutic approaches with emphasis on immunotherapy, which seems to be the future of GC treatment, especially in combination with chemotherapy. There is also a thorough analysis of the results of the study under review in terms of the number of scientific publications, the countries in which the studies were conducted, the authors, and the scientific centers of origin, as well as the clinical studies in progress. Finally, an attempt is made to draw some con-clusions and to point out possible future directions.
Collapse
Affiliation(s)
- John K Triantafillidis
- Inflammatory Bowel Disease Unit, “Metropolitan General” Hospital, Holargos 15562, Attica, Greece. Hellenic Society for Gastrointestinal Oncology, 354 Iera Odos, Chaidari 12461, Attica, Greece
| | - Manousos M Konstadoulakis
- Second Department of Surgery, University of Athens School of Medicine, Aretaieion Hospital, Athens 11528, Attica, Greece
| | - Apostolos E Papalois
- Unit of Surgical Research and Training, Second Department of Surgery, University of Athens, School of Medicine, Aretaieion Hospital, Athens 11528, Attica, Greece
| |
Collapse
|
8
|
Kong W, Liu X, Zhu H, Zheng S, Yin G, Yu P, Shan Y, Ma S, Ying R, Jin H. Tremella fuciformis polysaccharides induce ferroptosis in Epstein-Barr virus-associated gastric cancer by inactivating NRF2/HO-1 signaling. Aging (Albany NY) 2024; 16:1767-1780. [PMID: 38244583 PMCID: PMC10866407 DOI: 10.18632/aging.205457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2023] [Indexed: 01/22/2024]
Abstract
Approximately 10% of gastric cancers are associated with Epstein-Barr virus (EBV). Tremella fuciformis polysaccharides (TFPs) are characterized by antioxidative and anti-inflammatory effects in different diseases. However, whether TFP improves EBV-associated gastric cancer (EBVaGC) has never been explored. The effects of TFP on EBV-infected GC cell viability were determined using a CCK-8 assay and flow cytometry. Western blotting and RT-qPCR were performed to explore the expression of ferroptosis-related proteins. The CCK-8 assay showed that TFP decreased EBV-infected GC cell viability in a dose- and time-dependent manner. Flow cytometry assays indicated that TFP significantly induced EBV-infected GC cell death. TFP also reduced the migratory capacity of EBV-infected GC cells. Furthermore, treatment with TFP significantly increased the mRNA levels of PTGS2 and Chac1 in EBV-infected GC cells. Western blot assays indicated that TFP suppressed the expression of NRF2, HO-1, GPX4 and xCT in EBV-infected GC cells. More importantly, overexpression of NRF2 could obviously rescue TFP-induced downregulation of GPX4 and xCT in EBV-infected GC cells. In summary, we showed novel data that TFP induced ferroptosis in EBV-infected GC cells by inhibiting NRF2/HO-1 signaling. The current findings may shed light on the potential clinical application of TFP in the treatment of EBVaGC.
Collapse
Affiliation(s)
- Wencheng Kong
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
- Zhejiang Province Key Laboratory of Anticancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, P.R. China
| | - Xinchun Liu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Hangzhang Zhu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Sixing Zheng
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Guang Yin
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Panpan Yu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Yuqiang Shan
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Shenglin Ma
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Rongchao Ying
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| | - Huicheng Jin
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, P.R. China
| |
Collapse
|
9
|
Zhang Y, Ji L, Wen H, Chu Y, Xing W, Tian G, Yao Y, Yang J. Pan-cancer analyses reveal the stratification of patient prognosis by viral composition in tumor tissues. Comput Biol Med 2023; 167:107586. [PMID: 37907029 DOI: 10.1016/j.compbiomed.2023.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
The associations between cancer and bacteria/fungi have been extensively studied, but the implications of cancer-associated viruses have not been thoroughly examined. In this study, we comprehensively characterized the cancer virome of tissue samples across 31 cancer types, as well as blood samples from 23 cancer types. Our findings demonstrated the presence of viral DNA at low abundances in both tissue and blood across major human cancers, with significant differences in viral community composition observed among various cancer types. Furthermore, Cox regression analyses conducted on four cancers, including Head and Neck squamous cell carcinoma (HNSC), Kidney renal clear cell carcinoma (KIRC), Stomach adenocarcinoma (STAD), and Uterine Corpus Endometrial Carcinoma (UCEC), revealed strong correlation between viral composition/abundance in tissues and patient survival. Additionally, we identified virus-associated prognostic signatures (VAPS) for these four cancers, and discerned differences in the interplay between VAPS and dominant bacteria in tissues among patients with varying survival risks. Notably, clinically relevant analyses revealed prognostic capacities of the VAPS in these four cancers. Taken together, our study provides novel insights into the role of viruses in tissue in the prognosis of multiple cancers and offers guidance on the use of tissue viruses to stratify prognosis for patients with cancer.
Collapse
Affiliation(s)
- Yumeng Zhang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China; Geneis Beijing Co., Ltd., Beijing, 100102, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China
| | - Huakai Wen
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China
| | - Yuwen Chu
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China; School of Electrical & Information Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Weipeng Xing
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China; School of Electrical & Information Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China; Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China.
| |
Collapse
|
10
|
Zhu X, Li S. Ferroptosis, Necroptosis, and Pyroptosis in Gastrointestinal Cancers: The Chief Culprits of Tumor Progression and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300824. [PMID: 37436087 PMCID: PMC10502844 DOI: 10.1002/advs.202300824] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/29/2023] [Indexed: 07/13/2023]
Abstract
In recent years, the incidence of gastrointestinal cancers is increasing, particularly in the younger population. Effective treatment is crucial for improving patients' survival outcomes. Programmed cell death, regulated by various genes, plays a fundamental role in the growth and development of organisms. It is also critical for maintaining tissue and organ homeostasis and takes part in multiple pathological processes. In addition to apoptosis, there are other types of programmed cell death, such as ferroptosis, necroptosis, and pyroptosis, which can induce severe inflammatory responses. Notably, besides apoptosis, ferroptosis, necroptosis, and pyroptosis also contribute to the occurrence and development of gastrointestinal cancers. This review aims to provide a comprehensive summary on the biological roles and molecular mechanisms of ferroptosis, necroptosis, and pyroptosis, as well as their regulators in gastrointestinal cancers and hope to open up new paths for tumor targeted therapy in the near future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General SurgeryCancer Hospital of Dalian University of TechnologyCancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangLiaoning Province110042China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor SurgeryCancer Hospital of Dalian University of TechnologyCancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangLiaoning Province110042China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with EngineeringShenyangLiaoning Province110042China
| |
Collapse
|
11
|
Liu T, Zhou X, Zhang Z, Qin Y, Wang R, Qin Y, Huang Y, Mo Y, Huang T. The role of EBV-encoded miRNA in EBV-associated gastric cancer. Front Oncol 2023; 13:1204030. [PMID: 37388232 PMCID: PMC10301731 DOI: 10.3389/fonc.2023.1204030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Epstein-Barr virus (human herpesvirus 4, EBV) is a linear double-stranded DNA virus that infects over 90% of the population worldwide. However, our understanding of EBV's contribution to tumorigenesis of EBV-associated GC (EBVaGC) remains incomplete. Recent advancements in EBVaGC research have highlighted that EBV-encoded microRNAs (miRNAs) play prominent roles in critical cellular processes such as migration, cell cycle, apoptosis, cell proliferation, immune response, and autophagy. Notably, the largest group of EBV-encoded miRNAs, known as BamHI-A rightward transcripts (BARTs), exhibit bidirectional effects in EBVaGC. For instance, they present both anti-apoptotic and pro-apoptotic functions and enhance chemosensitivity while also conferring resistance to 5-fluorouracil. Despite these findings, the comprehensive mechanisms through which miRNAs contribute to EBVaGC are yet to be fully elucidated. In this work, we summarize the current evidence of the roles of miRNA in EBVaGC, particularly with the application of multi-omic techniques. Additionally, we discuss the application of miRNA in EBVaGC in retrospective analyses and provide novel perspectives on the use of miRNA in EBVaGC in translational medicine.
Collapse
Affiliation(s)
- Ting Liu
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yutao Qin
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yanning Qin
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuqi Huang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tingting Huang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| |
Collapse
|