1
|
Rodriguez GB, Costa TM, Culot L, Sobral G. Fiddler crabs from highly disturbed beaches are more sensitive to human presence. AN ACAD BRAS CIENC 2024; 96:e20230675. [PMID: 38922255 DOI: 10.1590/0001-3765202420230675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/07/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of humans frequently modifies the behavior of animals, particularly their foraging patterns, compromising energetic demands. The fiddler crab Leptuca leptodactyla inhabits mangroves with high degrees of anthropogenic influence. Thus, we tested if populations living in highly anthropized mangroves respond differently from those living in more protected areas. We predict that individuals from touristy areas will be more tolerant to humans and will resume their activities sooner after disturbance. To do so, we conducted an experiment that consisted in the approach of an observer to the burrows, recording the response of individuals to the stimuli. The experiment took place in July 2022, in Ubatuba, São Paulo, Brazil. We analysed the duration and latency of various behaviors of a total of 80 adult males from two populations (high and low anthropogenic influence). Contrary to our predictions, individuals from the anthropized population were less tolerant, spending more time inside their burrows and taking longer to resume their activities. Therefore, fiddler crabs were not habituated to human presence. These results help us understand the learning process in invertebrates and their ability to select stimuli, contributing to understanding the impacts of human-wildlife interactions.
Collapse
Affiliation(s)
- Gabriel B Rodriguez
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade, Avenida 24 A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Tânia Márcia Costa
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus do Litoral Paulista, Departamento de Ciências Biológicas e Ambientais, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil
| | - Laurence Culot
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade, Avenida 24 A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Gisela Sobral
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade, Avenida 24 A, 1515, 13506-900 Rio Claro, SP, Brazil
- Universidade Federal de Rondonópolis, Instituto de Ciências Naturais e Exatas, Rodovia Rondonópolis-Guiratinga, 78740-393 Rondonópolis, MT, Brazil
| |
Collapse
|
2
|
Abstract
South America is a vast continent endowed with extraordinary biodiversity that offers abundant opportunities for neuroethological research. Although neuroethology is still emerging in the region, the number of research groups studying South American species to unveil the neural organization of natural behaviors has grown considerably during the last decade. In this Perspective, we provide an account of the roots and strategies that led to the present state of neuroethology in the Southern Cone of America, with a forward-looking vision of its role in education and its international recognition. Hopefully, our Perspective will serve to further promote the study of natural behaviors across South America, as well as in other scarcely explored regions of the world.
Collapse
Affiliation(s)
- Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular. CONICET, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Ana C Silva
- Universidad de la República, Facultad de Ciencias, Laboratorio de Neurociencias, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
3
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|
4
|
Context specificity of latent inhibition in the snail Cornu aspersum. Anim Cogn 2022; 25:1517-1526. [PMID: 35579765 PMCID: PMC9652167 DOI: 10.1007/s10071-022-01632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/01/2022]
Abstract
The present study was conducted to assess the context specificity of latent inhibition (LI) in the snail Cornu aspersum, using the appetitive Pavlovian Conditioning procedure of tentacle lowering. Snails experienced an odorous conditioned stimulus (CS) without any consequence before being conditioned with food. The conditioned stimulus preexposure occurred in the same context than the conditioning and the test context or in the different context. The study was performed in two replicas in which the photoperiod was defined by level of illumination and time of day (circadian replica) or was defined only by light (light replica). Both replicas showed that the CS preexposure in the same context as conditioning produced a delay in the acquisition of the conditioned response (CR). However, when the CS preexposure took place in a different context than the conditioning context, an equivalent level of CR as that observed in controls without preexposition to CS was shown. These results are congruent with context specificity of LI and they provide the first evidence of this phenomenon in terrestrial mollusks. Learning processes and theories involved in this phenomenon are also debated in the paper.
Collapse
|
5
|
The Sometimes Context-Specific Habituation: Theoretical Challenges to Associative Accounts. Animals (Basel) 2021; 11:ani11123365. [PMID: 34944141 PMCID: PMC8697894 DOI: 10.3390/ani11123365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary When a stimulus occurs repeatedly without significant consequences, animals tend to decrease their responses to that stimulus. This phenomenon, known as habituation, can be explained by a class of theories that posit that expected events are less effective in provoking their responses than unexpected events. According to Allan Wagner’s priming theory, one of the ways this expectation might happen is via associative learning between the stimulus and the context in which stimulation occurred. In this article, we summarize a few theoretical complexities that derive from this approach along with some relevant empirical questions that remain open to further research. Abstract A substantial corpus of experimental research indicates that in many species, long-term habituation appears to depend on context–stimulus associations. Some authors have recently emphasized that this type of outcome supports Wagner’s priming theory, which affirms that responding is diminished when the eliciting stimulus is predicted by the context where the animal encountered that stimulus in the past. Although we agree with both the empirical reality of the phenomenon as well as the principled adequacy of the theory, we think that the available evidence is more provocative than conclusive and that there are a few nontrivial empirical and theoretical issues that need to be worked out by researchers in the future. In this paper, we comment on these issues within the framework of a quantitative version of priming theory, the SOP model.
Collapse
|
6
|
Reyes-Jiménez D, Iglesias-Parro S, Abad MJF, Paredes-Olay C. Effects of pre-exposure and post-exposure of the context in habituation of the retraction response in earthworms (Lumbricidae). Behav Processes 2021; 193:104527. [PMID: 34601052 DOI: 10.1016/j.beproc.2021.104527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022]
Abstract
The context specificity of habituation has been demonstrated in earthworms. After the habituation of the retraction response to a light, a recovery of the response was observed when subjects are re-habituated in a different context. Some theories assume that an association between the context and the unconditioned stimulus could underlie this result. A series of experiments were conducted in order to test this issue. We assessed the potential disruptive effects of post-exposure (extinction effect) and pre-exposure of the context (latent inhibition effect) on the establishment of a context-US association. A recovery of response during subsequent rehabituation test was expected. The results of Experiment 1 showed that the extinction was effective, the post-exposure of the context after habituation produced a recovery of the retraction response. This result was replicated in Experiment 2 where the post-exposure condition was compared with a pre-exposure one. However, the pre-exposure to the context did not result in a recovery of the response in the rehabituation test, but also produced a general decrement on the response during the habituation training, that it has been interpreted as decrement in context's salience. In summary, these results suggest the involvement of associative and nonassociative processes in habituation learning.
Collapse
Affiliation(s)
- David Reyes-Jiménez
- Department of Psychology, Universidad de Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain.
| | - Sergio Iglesias-Parro
- Department of Psychology, Universidad de Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain.
| | - María J F Abad
- Department of Psychology, Universidad de Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain.
| | - Concepción Paredes-Olay
- Department of Psychology, Universidad de Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain.
| |
Collapse
|
7
|
Context-Specific Habituation: A Review. Animals (Basel) 2021; 11:ani11061767. [PMID: 34204791 PMCID: PMC8231551 DOI: 10.3390/ani11061767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Habituation reflects the ability to learn to ignore irrelevant stimuli, which form the vast majority of the sensory input impinging on any organism’s sensory systems at a given moment. However, although habituation is often described as one of the simplest forms of learning affected only by the stimulus features, such as frequency or intensity, in fact evidence exists showing that habituation can be specific for the context in which it takes place. This shows that habituation, in some cases, exhibits an associative nature, and that the underlying learning mechanism is more sophisticated than previously believed. Abstract Habituation consists of the progressive response decrement to a repeated stimulation, a response decline that is not accounted for by sensory or motor fatigue. Together with sensitization, habituation has been traditionally considered to be a prototypical example of non-associative learning, being affected only by the features of the stimulation, as for instance its intensity or frequency. However, despite this widespread belief, evidence exists showing that habituation can be specific to the context of the stimulation, thus suggesting that habituation can have an associative nature. Such an unexpected characteristic of habituation was in fact predicted by a theoretical model of associative learning proposed by Wagner in a series of works that appeared in the late 1970s. Here, we critically review the experimental data that since then have been accumulated in support of this hypothesis. What emerges from the literature is that context-specific habituation is common to several animal species and that the ability to form an association between the habituating stimulus and its context is independent of the complexity of the animal’s nervous system. Finally, context-specific habituation is observed for a variety of organism’s responses, ranging from visceral to motor and mental activities.
Collapse
|
8
|
SOP- habituation laboratory: An interactive tool for simulating the basic behavioral features of habituation. Behav Res Methods 2021; 53:2120-2126. [PMID: 33755933 DOI: 10.3758/s13428-021-01548-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 11/08/2022]
Abstract
This paper presents an open-source online tool for introducing psychology students to the major theoretical and empirical facts of habituation. The tool was designed in a way that combines theory and data through simulated experiments. The simulations exemplify how the priming theory of Allan R. Wagner accounts for the set of behavioral characteristics of habituation proposed by Richard F. Thompson and W. Alden Spencer in 1966. Through this interactive platform, the user can learn the basics of the theory and examine how it accounts for the empirical facts with different parameters. Instructions and commands are provided in three languages: English, Spanish, and Portuguese.
Collapse
|
9
|
Jessop AL, Ogawa Y, Bagheri ZM, Partridge JC, Hemmi JM. Photoreceptors and diurnal variation in spectral sensitivity in the fiddler crab Gelasimus dampieri. J Exp Biol 2020; 223:jeb230979. [PMID: 33097568 DOI: 10.1242/jeb.230979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022]
Abstract
Colour signals, and the ability to detect them, are important for many animals and can be vital to their survival and fitness. Fiddler crabs use colour information to detect and recognise conspecifics, but their colour vision capabilities remain unclear. Many studies have attempted to measure their spectral sensitivity and identify contributing retinular cells, but the existing evidence is inconclusive. We used electroretinogram (ERG) measurements and intracellular recordings from retinular cells to estimate the spectral sensitivity of Gelasimus dampieri and to track diurnal changes in spectral sensitivity. G. dampieri has a broad spectral sensitivity and is most sensitive to wavelengths between 420 and 460 nm. Selective adaptation experiments uncovered an ultraviolet (UV) retinular cell with a peak sensitivity shorter than 360 nm. The species' spectral sensitivity above 400 nm is too broad to be fitted by a single visual pigment and using optical modelling, we provide evidence that at least two medium-wavelength sensitive (MWS) visual pigments are contained within a second blue-green sensitive retinular cell. We also found a ∼25 nm diurnal shift in spectral sensitivity towards longer wavelengths in the evening in both ERG and intracellular recordings. Whether the shift is caused by screening pigment migration or changes in opsin expression remains unclear, but the observation shows the diel dynamism of colour vision in this species. Together, these findings support the notion that G. dampieri possesses the minimum requirement for colour vision, with UV and blue/green receptors, and help to explain some of the inconsistent results of previous research.
Collapse
Affiliation(s)
- Anna-Lee Jessop
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Yuri Ogawa
- Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Zahra M Bagheri
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Julian C Partridge
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
10
|
Maza FJ, Sztarker J, Cozzarin ME, Lepore MG, Delorenzi A. A crabs' high-order brain center resolved as a mushroom body-like structure. J Comp Neurol 2020; 529:501-523. [PMID: 32484921 DOI: 10.1002/cne.24960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
The hypothesis of a common origin for high-order memory centers in bilateral animals presents the question of how different brain structures, such as the vertebrate hippocampus and the arthropod mushroom bodies, are both structurally and functionally comparable. Obtaining evidence to support the hypothesis that crustaceans possess structures equivalent to the mushroom bodies that play a role in associative memories has proved challenging. Structural evidence supports that the hemiellipsoid bodies of hermit crabs, crayfish and lobsters, spiny lobsters, and shrimps are homologous to insect mushroom bodies. Although a preliminary description and functional evidence supporting such homology in true crabs (Brachyura) has recently been shown, other authors consider the identification of a possible mushroom body homolog in Brachyura as problematic. Here we present morphological and immunohistochemical data in Neohelice granulata supporting that crabs possess well-developed hemiellipsoid bodies that are resolved as mushroom bodies-like structures. Neohelice exhibits a peduncle-like tract, from which processes project into proximal and distal domains with different neuronal specializations. The proximal domains exhibit spines and en passant-like processes and are proposed here as regions mainly receiving inputs. The distal domains exhibit a "trauben"-like compartmentalized structure with bulky terminal specializations and are proposed here as output regions. In addition, we found microglomeruli-like complexes, adult neurogenesis, aminergic innervation, and elevated expression of proteins necessary for memory processes. Finally, in vivo calcium imaging suggests that, as in insect mushroom bodies, the output regions exhibit stimulus-specific activity. Our results support the shared organization of memory centers across crustaceans and insects.
Collapse
Affiliation(s)
- Francisco Javier Maza
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Julieta Sztarker
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Profesor Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Eugenia Cozzarin
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Maria Grazia Lepore
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Alejandro Delorenzi
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Profesor Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Gonzalez H, Bloise L, Maza FJ, Molina VA, Delorenzi A. Memory built in conjunction with a stressor is privileged: Reconsolidation-resistant memories in the crab Neohelice. Brain Res Bull 2020; 157:108-118. [PMID: 32017969 DOI: 10.1016/j.brainresbull.2020.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
The dynamics of memory processes are conserved throughout evolution, a feature based on the hypothesis of a common origin of the high-order memory centers in bilateral animals. Reconsolidation is just one example. The possibility to interfere with long-term memory expression during reconsolidation has been proposed as potentially useful in clinical application to treat traumatic memories. However, several pieces of evidence in rodents show that either robust fear memories or stressful events applied before acquisition promote reconsolidation-resistant memories, i.e., memories that are resistant to the interfering effect of drugs on memory reconsolidation. Conceivably, the generation of these reconsolidation-resistant fear memories also occurs in humans. Is the induction of reconsolidation-resistant memories part of the dynamics of memory processes conserved throughout evolution? In the semiterrestrial crab Neohelice granulata, memory reconsolidation is triggered by a short reminder without reinforcement. Here, we show that an increase in the salience of the aversive stimulus augmented the memory strength; nonetheless, the protein synthesis inhibitor cycloheximide still disrupted the reconsolidation process. However, crabs stressed by a water-deprivation episode before a strong training session built up a memory that was now reconsolidation-resistant. We tested whether these reconsolidation-resistant effects can be challenged by changing parametric conditions of memory-reminder sessions; multiple memory reactivations without reinforcement were not able to trigger the labilization-reconsolidation of this resistant memory. Overall, the present findings suggest that generation of reconsolidation-resistant memories can be another part of the dynamics of memory processes conserved throughout evolution that protects privileged information from change.
Collapse
Affiliation(s)
- Heidi Gonzalez
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Leonardo Bloise
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Francisco J Maza
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Víctor A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| | - Alejandro Delorenzi
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| |
Collapse
|
12
|
Turatto M, Dissegna A, Chiandetti C. Context learning before birth: evidence from the chick embryo. Biol Lett 2019; 15:20190104. [PMID: 31266419 DOI: 10.1098/rsbl.2019.0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Learning contextual information to form associative memories with stimuli of interest is an important brain function in both human and non-human animals. Intuitively, one would expect that such a sophisticated cognitive skill develops postnatally, as the organism starts exploring the surrounding environment to search for significant contingencies among stimuli. Here we show, instead, that even before hatching, domestic chicks are capable of forming associative memories between discrete alerting sounds and the surrounding context, as attested by the fact that habituation of the freezing response to the sounds is affected by the context of stimulation. This finding indicates that, while in the egg, chicks recognize and learn the context in which they are stimulated. Hence, context learning in chicks is an innate brain function already active before birth, which can provide an immediate survival advantage to the newborns of this precocial avian species.
Collapse
Affiliation(s)
- Massimo Turatto
- 1 CIMeC - Center for Mind/Brain Sciences, University of Trento , Italy
| | - Andrea Dissegna
- 2 Department of Life Sciences, University of Trieste , Via Licio Giorgieri 5, I-34127 Trieste , Italy
| | - Cinzia Chiandetti
- 2 Department of Life Sciences, University of Trieste , Via Licio Giorgieri 5, I-34127 Trieste , Italy
| |
Collapse
|
13
|
Turatto M, Bonetti F, Chiandetti C, Pascucci D. Context-specific distractors rejection: contextual cues control long-term habituation of attentional capture by abrupt onsets. VISUAL COGNITION 2019. [DOI: 10.1080/13506285.2019.1580233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Massimo Turatto
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | | | | | - David Pascucci
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Vogel EH, Ponce FP, Wagner AR. The development and present status of the SOP model of associative learning. Q J Exp Psychol (Hove) 2018; 72:346-374. [PMID: 29741452 DOI: 10.1177/1747021818777074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Sometimes Opponent Processes (SOP) model in its original form was especially calculated to address how expected unconditioned stimulus (US) and conditioned stimulus (CS) are rendered less effective than their novel counterparts in Pavlovian conditioning. Its several elaborations embracing the essential notion have extended the scope of the model to integrate a much greater number of phenomena of Pavlovian conditioning. Here, we trace the development of the model and add further thoughts about its extension and refinement.
Collapse
Affiliation(s)
- Edgar H Vogel
- 1 Departamento de Psicología, Universidad de Talca, Talca, Chile
| | - Fernando P Ponce
- 1 Departamento de Psicología, Universidad de Talca, Talca, Chile
| | - Allan R Wagner
- 2 Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Tomsic D, Sztarker J, Berón de Astrada M, Oliva D, Lanza E. The predator and prey behaviors of crabs: from ecology to neural adaptations. J Exp Biol 2017; 220:2318-2327. [DOI: 10.1242/jeb.143222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Predator avoidance and prey capture are among the most vital of animal behaviors. They require fast reactions controlled by comparatively straightforward neural circuits often containing giant neurons, which facilitates their study with electrophysiological techniques. Naturally occurring avoidance behaviors, in particular, can be easily and reliably evoked in the laboratory, enabling their neurophysiological investigation. Studies in the laboratory alone, however, can lead to a biased interpretation of an animal's behavior in its natural environment. In this Review, we describe current knowledge – acquired through both laboratory and field studies – on the visually guided escape behavior of the crab Neohelice granulata. Analyses of the behavioral responses to visual stimuli in the laboratory have revealed the main characteristics of the crab's performance, such as the continuous regulation of the speed and direction of the escape run, or the enduring changes in the strength of escape induced by learning and memory. This work, in combination with neuroanatomical and electrophysiological studies, has allowed the identification of various giant neurons, the activity of which reflects most essential aspects of the crabs' avoidance performance. In addition, behavioral analyses performed in the natural environment reveal a more complex picture: crabs make use of much more information than is usually available in laboratory studies. Moreover, field studies have led to the discovery of a robust visually guided chasing behavior in Neohelice. Here, we describe similarities and differences in the results obtained between the field and the laboratory, discuss the sources of any differences and highlight the importance of combining the two approaches.
Collapse
Affiliation(s)
- Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Martín Berón de Astrada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Damián Oliva
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, CP1878, CONICET, Argentina
| | - Estela Lanza
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| |
Collapse
|
16
|
Different dimensions of the prediction error as a decisive factor for the triggering of the reconsolidation process. Neurobiol Learn Mem 2016; 136:210-219. [PMID: 27815213 DOI: 10.1016/j.nlm.2016.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022]
Abstract
The reconsolidation process is the mechanism by which strength and/or content of consolidated memories are updated. Prediction error (PE) is the difference between the prediction made and current events. It is proposed as a necessary condition to trigger the reconsolidation process. Here we analyzed deeply the role of the PE in the associative memory reconsolidation in the crab Neohelice granulata. An incongruence between the learned temporal relationship between conditioned and unconditioned stimuli (CS-US) was enough to trigger the reconsolidation process. Moreover, after a partial reinforced training, a PE of 50% opened the possibility to labilize the consolidated memory with a reminder which included or not the US. Further, during an extinction training a small PE in the first interval between CSs was enough to trigger reconsolidation. Overall, we highlighted the relation between training history and different reactivation possibilities to recruit the process responsible of memory updating.
Collapse
|
17
|
Visual motion processing subserving behavior in crabs. Curr Opin Neurobiol 2016; 41:113-121. [PMID: 27662055 DOI: 10.1016/j.conb.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/07/2016] [Accepted: 09/05/2016] [Indexed: 11/23/2022]
Abstract
Motion vision originated during the Cambrian explosion more than 500 million years ago, likely triggered by the race for earliest detection between preys and predators. To successfully evade a predator's attack a prey must react quickly and reliably, which imposes a common constrain to the implementation of escape responses among different species. Thus, neural circuits subserving fast escape responses are usually straightforward and contain giant neurons. This review summarizes knowledge about a small group of motion-sensitive giant neurons thought to be central in guiding the escape performance of crabs to visual stimuli. The flexibility of the escape behavior contrasts with the stiffness of the optomotor response, indicating a task-dependent early segregation of visual pathways.
Collapse
|
18
|
Maza FJ, Locatelli FF, Delorenzi A. Neural correlates of expression-independent memories in the crab Neohelice. Neurobiol Learn Mem 2016; 131:61-75. [PMID: 26988613 DOI: 10.1016/j.nlm.2016.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 11/26/2022]
Abstract
The neural correlates of memory have been usually examined considering that memory retrieval and memory expression are interchangeable concepts. However, our studies in the crab Neohelice (Chasmagnathus) granulata and in other memory models have shown that memory expression is not necessary for memory to be re-activated and become labile. In order to examine putative neural correlates of memory in the crab Neohelice, we contrast changes induced by training in both animal's behavior and neuronal responses in the medulla terminalis using in vivo Ca(2+) imaging. Disruption of long-term memory by the amnesic agents MK-801 or scopolamine (5μg/g) blocks the learning-induced changes in the Ca(2+) responses in the medulla terminalis. Conversely, treatments that lead to an unexpressed but persistent memory (weak training protocol or scopolamine 0.1μg/g) do not block these learning-induced neural changes. The present results reveal a set of changes in the neural activity induced by training that correlates with memory persistence but not with the probability of this memory to be expressed in the long-term. In addition, the study constitutes the first in vivo evidence in favor of a role of the medulla terminalis in learning and memory in crustaceans, and provides a physiological evidence indicating that memory persistence and the probability of memory to be expressed might involve separate components of memory traces.
Collapse
Affiliation(s)
- F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F F Locatelli
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| |
Collapse
|
19
|
Ponce FP, Vogel EH, Wagner AR. The incremental stimulus intensity effect in the habituation of the eyeblink response in humans. LEARNING AND MOTIVATION 2015. [DOI: 10.1016/j.lmot.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
|
21
|
|
22
|
Conditioned avoidance responses survive contingency degradation in the garden slug, Lehmannia valentiana. Learn Behav 2014; 42:305-12. [PMID: 24946946 DOI: 10.3758/s13420-014-0147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Joint presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US) strengthen the contingency between them, whereas presentations of one stimulus without the other degrade this contingency. For example, the CS can be presented without the US either before conditioning (CS-no US and then CS-US; latent inhibition) or after conditioning (CS-US and then CS-no US; extinction). In vertebrate subjects and several invertebrate species, a time lapse usually results in a return of the conditioned response, or spontaneous recovery. However, in land mollusks, spontaneous recovery from extinction has only recently been reported, and response recovery after latent inhibition has not been reported. In two experiments, using conditioned aversion to a food odor as a measure of learning and memory retention, we observed contingency degradation via latent inhibition (Experiment 1) and extinction (Experiment 2) in the common garden slug, Lehmannia valentiana. In both situations, the contingency degradation procedure successfully attenuated conditioned responding, and delaying testing by several days resulted in recovery of the conditioned response. This suggests that the CS-US association survived the degradation manipulation and was retained over an interval of several days.
Collapse
|
23
|
Alvarez B, Morís J, Luque D, Loy I. Extinction, spontaneous recovery and reinstatement in the garden snail, Helix aspersa. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Barreiro KA, Suárez LD, Lynch VM, Molina VA, Delorenzi A. Memory expression is independent of memory labilization/reconsolidation. Neurobiol Learn Mem 2013; 106:283-91. [DOI: 10.1016/j.nlm.2013.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/25/2013] [Accepted: 10/12/2013] [Indexed: 01/10/2023]
|
25
|
|
26
|
A Multidisciplinary Approach to Learning and Memory in the Crab Neohelice (Chasmagnathus) granulata. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Abstract
During extinction animals experience that the previously learned association between a conditioned stimulus (CS) and an unconditioned stimulus (US) no longer holds true. Accordingly, the conditioned response (CR) to the CS decreases. This decrease of the CR can be reversed by presentation of the US alone following extinction, a phenomenon termed reinstatement. Reinstatement and two additional phenomena, spontaneous recovery and renewal, indicate that the original CS-US association is not lost through extinction but can be reactivated through different processes. In honeybees (Apis mellifera), spontaneous recovery, i.e., the time-dependent return of the CR, has been demonstrated, suggesting that also in these insects the original CS-US association is not lost during extinction. To support this notion, we ask whether honeybees show reinstatement after extinction. In vertebrates reinstatement is context-dependent, so we examined whether the same holds true for honeybees. We demonstrate reinstatement in restrained honeybees and show that reinstatement is context-dependent. Furthermore, we show that an alteration of the color of light illuminating the experimental setup suffices to indicate a contextual change. We conclude that in honeybees the initially formed CS-US memory is not lost after extinction. Rather, honeybees might learn about the context during extinction. This enables them to adequately retrieve one of the two opposing memories about the CS that have been formed after extinction.
Collapse
Affiliation(s)
- Jenny Aino Plath
- Freie Universität Berlin, FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
| | | | | |
Collapse
|
28
|
Dissociation between memory reactivation and its behavioral expression: Scopolamine interferes with memory expression without disrupting long-term storage. Neurobiol Learn Mem 2012; 98:235-45. [DOI: 10.1016/j.nlm.2012.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 08/01/2012] [Accepted: 08/12/2012] [Indexed: 11/18/2022]
|
29
|
Excitotoxic perirhinal cortex lesions leave stimulus-specific habituation of suppression to lights intact. Behav Brain Res 2012; 229:365-71. [PMID: 22289200 DOI: 10.1016/j.bbr.2012.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 11/22/2022]
|
30
|
Hemmi JM, Tomsic D. The neuroethology of escape in crabs: from sensory ecology to neurons and back. Curr Opin Neurobiol 2012; 22:194-200. [DOI: 10.1016/j.conb.2011.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/17/2011] [Accepted: 11/27/2011] [Indexed: 11/30/2022]
|
31
|
Raderschall CA, Magrath RD, Hemmi JM. Habituation under natural conditions: model predators are distinguished by approach direction. ACTA ACUST UNITED AC 2012; 214:4209-16. [PMID: 22116764 DOI: 10.1242/jeb.061614] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Habituation is an active process that allows animals to learn to identify repeated, harmless events, and so could help individuals deal with the trade-off between reducing the risk of predation and minimizing escape costs. Safe habituation requires an accurate distinction between dangerous and harmless events, but in natural environments such an assessment is challenging because sensory information is often noisy and limited. What, then, comprises the information animals use to recognize objects that they have previously learned to be harmless? We tested whether the fiddler crab Uca vomeris distinguishes objects purely by their sensory signature or whether identification also involves more complex attributes such as the direction from which an object approaches. We found that crabs habituated their escape responses after repeated presentations of a dummy predator consistently approaching from the same compass direction. Females habituated both movement towards the burrow and descent into the burrow, whereas males only habituated descent into the burrow. The crabs were more likely to respond again when a physically identical dummy approached them from a new compass direction. The crabs distinguished between the two dummies even though both dummies were visible for the entire duration of the experiment and there was no difference in the timing of the dummies' movements. Thus, the position or approach direction of a dummy encodes important information that allows animals to identify an event and habituate to it. These results argue against the traditional notion that habituation is a simple, non-associative learning process, and instead suggest that habituation is very selective and uses information to distinguish between objects that is not available from the sensory signature of the object itself.
Collapse
Affiliation(s)
- Chloé A Raderschall
- ARC Centre of Excellence in Vision Science, Centre of Visual Sciences, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
32
|
Klappenbach M, Maldonado H, Locatelli F, Kaczer L. Opposite actions of dopamine on aversive and appetitive memories in the crab. Learn Mem 2012; 19:73-83. [PMID: 22267303 DOI: 10.1101/lm.024430.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The understanding of how the reinforcement is represented in the central nervous system during memory formation is a current issue in neurobiology. Several studies in insects provide evidence of the instructive role of biogenic amines during the learning and memory process. In insects it was widely accepted that dopamine (DA) mediates aversive reinforcements. However, the idea of DA being exclusively involved in aversive memory has been challenged in recent studies. Here, we study the involvement of DA during aversive and appetitive memories in the crab Chasmagnathus. We found that DA-receptor antagonists impair aversive memory consolidation, in agreement with previous reports in insects, while administration of DA facilitates memory formation after a weak training protocol. In contrast, DA treatment during appetitive training was found to impair formation of long-term appetitive memory. In addition, as a first step in elucidating the neuroanatomical correlates of DA action on memory, we mapped dopaminergic neurons in the central nervous system of the crab. Results of the current study, together with those obtained in a previous work about the role of octopamine (OA), suggest that both amines (DA and OA) play a dual action in memory processes. On the one hand, DA and OA mediate the aversive and the appetitive signals, respectively, throughout training, while on the other hand, they interfere with the formation of memory of the opposite sign (DA in appetitive and OA in aversive). Our results support a new understanding about the way appetitive and aversive stimuli are processed during memory formation to ensure adaptive behavior.
Collapse
Affiliation(s)
- Martín Klappenbach
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Pabellón II, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| | | | | | | |
Collapse
|
33
|
Food odor, visual danger stimulus, and retrieval of an aversive memory trigger heat shock protein HSP70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neuroscience 2011; 201:239-51. [PMID: 22100787 DOI: 10.1016/j.neuroscience.2011.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 01/21/2023]
Abstract
Although some of the neuronal substrates that support memory process have been shown in optic ganglia, the brain areas activated by memory process are still unknown in crustaceans. Heat shock proteins (HSPs) are synthesized in the CNS not only in response to traumas but also after changes in metabolic activity triggered by the processing of different types of sensory information. Indeed, the expression of citosolic/nuclear forms of HSP70 (HSC/HSP70) has been repeatedly used as a marker for increases in neural metabolic activity in several processes, including psychophysiological stress, fear conditioning, and spatial learning in vertebrates. Previously, we have shown that, in the crab Chasmagnathus, two different environmental challenges, water deprivation and heat shock, trigger a rise in the number of glomeruli of the olfactory lobes (OLs) expressing HSC/HSP70. In this study, we initially performed a morphometric analysis and identified a total of 154 glomeruli in each OL of Chasmagnathus. Here, we found that crabs exposed to food odor stimuli also showed a significant rise in the number of olfactory glomeruli expressing HSC/HSP70. In the crab Chasmagnathus, a powerful memory paradigm based on a change in its defensive strategy against a visual danger stimulus (VDS) has been extensively studied. Remarkably, the iterative presentation of a VDS caused an increase as well. This increase was triggered in animals visually stimulated using protocols that either build up a long-term memory or generate only short-term habituation. Besides, memory reactivation was sufficient to trigger the increase in HSC/HSP70 expression in the OL. Present and previous results strongly suggest that, directly or indirectly, an increase in arousal is a sufficient condition to bring about an increase in HSC/HSP70 expression in the OL of Chasmagnathus.
Collapse
|
34
|
Smal L, Suárez LD, Delorenzi A. Enhancement of long-term memory expression by a single trial during consolidation. Neurosci Lett 2011; 487:36-40. [DOI: 10.1016/j.neulet.2010.09.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 08/24/2010] [Accepted: 09/25/2010] [Indexed: 11/26/2022]
|
35
|
Angiotensin modulates long-term memory expression but not long-term memory storage in the crab Chasmagnathus. Neurobiol Learn Mem 2010; 94:509-20. [DOI: 10.1016/j.nlm.2010.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
|
36
|
Burnovicz A, Hermitte G. Conditioning of an autonomic response in Crustacea. Physiol Behav 2010; 101:168-75. [DOI: 10.1016/j.physbeh.2010.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
|
37
|
Suárez LD, Smal L, Delorenzi A. Updating contextual information during consolidation as result of a new memory trace. Neurobiol Learn Mem 2010; 93:561-71. [PMID: 20188846 DOI: 10.1016/j.nlm.2010.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 02/17/2010] [Accepted: 02/21/2010] [Indexed: 01/15/2023]
Abstract
Reconsolidation studies have led to the hypothesis that memory, when labile, would be modified in order to incorporate new information. This view has reinstated original propositions suggesting that short-term memory provides the organism with an opportunity to evaluate and rearrange information before storing it, since it is concurrent with the labile state of consolidation. The Chasmagnathus associative memory model is used here to test whether during consolidation it is possible to change some attribute of recently acquired memories. In addition, it is tested whether these changes in behavioral memory features can be explained as modifications on the consolidating memory trace or as a consequence of a new memory trace. We show that short-term memory is, unlike long-term memory, not context specific. During this short period after learning, behavioral memory can be updated in order to incorporate new contextual information. We found that, during this period, the cycloheximide retrograde amnesic effect can be reverted by a single trial in a new context. Finally, by means of memory sensitivity to cycloheximide during consolidation and reconsolidation, we show that the learning of a new context (CS) during this short-term memory period builds up a new memory trace that sustains the behavioral memory update.
Collapse
Affiliation(s)
- Luis Daniel Suárez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE - CONICET, Argentina
| | | | | |
Collapse
|
38
|
Hepp Y, Pérez-Cuesta LM, Maldonado H, Pedreira ME. Extinction memory in the crab Chasmagnathus: recovery protocols and effects of multi-trial extinction training. Anim Cogn 2009; 13:391-403. [PMID: 19813034 DOI: 10.1007/s10071-009-0288-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
A decline in the frequency or intensity of a conditioned behavior following the withdrawal of the reinforcement is called experimental extinction. However, the experimental manipulation necessary to trigger memory reconsolidation or extinction is to expose the animal to the conditioned stimulus in the absence of reinforcement. Recovery protocols were used to reveal which of these two processes was developed. By using the crab contextual memory model (a visual danger stimulus associated with the training context), we investigated the dynamics of extinction memory in Chasmagnathus. Here, we reveal the presence of three recovery protocols that restore the original memory: the old memory comes back 4 days after the extinction training, or when a weak training is administered later, or once the VDS is presented in a novel context 24 h after the extinction session. Another objective was to evaluate whether the administration of multi-trial extinction training could trigger an extinction memory in Chasmagnathus. The results evince that the extinction memory appears only when the total re-exposure time is around 90 min independently of the number of trials employed to accumulate it. Thus, it is feasible that the mechanisms described for the case of the extinction memory acquired through a single training trial are valid for multi-trial extinction protocols. Finally, these results are in agreement with those reports obtained with models phylogenetically far apart from the crab. Behind this attempt is the idea that in the domain of studies on memory, some principles of behavior organization and basic mechanisms have universal validity.
Collapse
Affiliation(s)
- Yanil Hepp
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, IFIByNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | | | | | | |
Collapse
|
39
|
Hemmi JM, Merkle T. High stimulus specificity characterizes anti-predator habituation under natural conditions. Proc Biol Sci 2009; 276:4381-8. [PMID: 19776070 DOI: 10.1098/rspb.2009.1452] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habituation is one of the most fundamental learning processes that allow animals to adapt to dynamic environments. It is ubiquitous and often thought of as a simple form of non-associative learning. Very little is known, though, about the rules that govern habituation and their significance under natural conditions. Questions about how animals incorporate habituation into their daily behaviour and how they can assure only to habituate to non-relevant stimuli are still unanswered. Animals under threat of predation should be particularly selective about which stimuli they habituate to, since ignoring a real threat could be fatal. In this study, we tested the response of fiddler crabs, Uca vomeris, to repeatedly approaching dummy predators to find out whether these animals habituate to potential predators and to test the selectivity of the habituation process. The crabs habituated to model predators, even though they were confronted with real predators during the same habituation process. They showed remarkable selectivity towards the stimulus: a simple change in the approach distance of the stimulus led to a recovery in their responses. The results strongly indicate that in the context of predator avoidance, habituation under natural conditions is highly selective and a stimulus is not defined just by its current sensory signature, but also its spatio-temporal history.
Collapse
Affiliation(s)
- Jan M Hemmi
- ARC Centre of Excellence in Vision Science, The Australian National University, Building 46, Canberra ACT 2601, Australia.
| | | |
Collapse
|
40
|
Giles AC, Rankin CH. Behavioral and genetic characterization of habituation using Caenorhabditis elegans. Neurobiol Learn Mem 2009; 92:139-46. [DOI: 10.1016/j.nlm.2008.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 11/24/2022]
|
41
|
Baratti CM, Boccia MM, Blake MG. Pharmacological effects and behavioral interventions on memory consolidation and reconsolidation. Braz J Med Biol Res 2009; 42:148-54. [PMID: 19274341 DOI: 10.1590/s0100-879x2009000200001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/05/2009] [Indexed: 01/02/2023] Open
Abstract
In this article, we will review some behavioral, pharmacological and neurochemical studies from our laboratory on mice, which might contribute to our understanding of the complex processes of memory consolidation and reconsolidation. We discuss the post-training (memory consolidation) and post-reactivation (memory reconsolidation) effects of icv infusions of hemicholinium, a central inhibitor of acetylcholine synthesis, of intraperitoneal administration of L-NAME, a non-specific inhibitor of nitric oxide synthase, of intrahippocampal injections of an inhibitor of the transcription factor NF-kappaB, and the exposure of mice to a new learning situation on retention performance of an inhibitory avoidance response. All treatments impair long-term memory consolidation and retrieval-induced memory processes different from extinction, probably in accordance with the 'reconsolidation hypothesis'.
Collapse
Affiliation(s)
- C M Baratti
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | |
Collapse
|
42
|
Tomsic D, de Astrada MB, Sztarker J, Maldonado H. Behavioral and neuronal attributes of short- and long-term habituation in the crab Chasmagnathus. Neurobiol Learn Mem 2009; 92:176-82. [PMID: 19186214 DOI: 10.1016/j.nlm.2009.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/02/2008] [Accepted: 01/10/2009] [Indexed: 11/26/2022]
Abstract
Investigations using invertebrate species have led to a considerable progress in our understanding of the mechanisms underlying learning and memory. In this review we describe the main behavioral and neuronal findings obtained by studying the habituation of the escape response to a visual danger stimulus in the crab Chasmagnathus granulatus. Massed training with brief intertrial intervals lead to a rapid reduction of the escape response that recovers after a short term. Conversely, few trials of spaced training renders a slower escape reduction that endures for many days. As predicted by Wagner's associative theory of habituation, long-term habituation in the crab proved to be determined by an association between the contextual environment of the training and the unconditioned stimulus. By performing intracellular recordings in the brain of the intact animal at the same time it was learning, we identified a group of neurons that remarkably reflects the short- and long-term behavioral changes. Thus, the visual memory abilities of crabs, their relatively simple and accessible nervous system, and the recording stability that can be achieved with their neurons provide an opportunity for uncovering neurophysiological and molecular events that occur in identifiable neurons during learning.
Collapse
Affiliation(s)
- Daniel Tomsic
- Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, IFIBYNE-CONICET, Pabellon 2 Ciudad Universitaria, Ing. Güiraldes 2160, Buenos Aires 1428, Argentina.
| | | | | | | |
Collapse
|
43
|
Merlo E, Romano A. Memory extinction entails the inhibition of the transcription factor NF-kappaB. PLoS One 2008; 3:e3687. [PMID: 18997870 PMCID: PMC2577885 DOI: 10.1371/journal.pone.0003687] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 10/17/2008] [Indexed: 11/25/2022] Open
Abstract
In contextual memories, an association between a positive or negative reinforcement and the contextual cues where the reinforcement occurs is formed. The re-exposure to the context without reinforcement can lead to memory extinction or reconsolidation, depending on the number of events or duration of a single event of context re-exposure. Extinction involves the temporary waning of the previously acquired conditioned response. The molecular processes underlying extinction and the mechanisms which determine if memory will reconsolidate or extinguish after retrieval are not well characterized, particularly the role of transcription factors and gene expression. Here we studied the participation of a transcription factor, NF-kappaB, in memory extinction. In the crab context-signal memory, the activation of NF-kappaB plays a critical role in consolidation and reconsolidation, memory processes that are well characterized in this model. The administration of a NF-kappaB inhibitor, sulfasalazine prior to extinction session impeded spontaneous recovery. Moreover, reinstatement experiments showed that the original memory was not affected and that NF-kappaB inhibition by sulfasalazine impaired spontaneous recovery strengthening the ongoing memory extinction process. Interestingly, in animals with fully consolidated memory, a brief re-exposure to the training context induced neuronal NF-kappaB activation and reconsolidation, while prolonged re-exposure induced NF-kappaB inhibition and memory extinction. These data constitutes a novel insight into the molecular mechanisms involved in the switch between memory reconsolidation and extinction. Moreover, we propose the inhibition of NF-kappaB as the engaged mechanism underlying extinction, supporting a novel approach for the pharmacological enhancement of this memory process. The accurate description of the molecular mechanisms that support memory extinction is potentially useful for developing new strategies and drug candidates for therapeutic treatments of the maladaptive memory disorders such as post-traumatic stress, phobias, and drug addiction.
Collapse
Affiliation(s)
- Emiliano Merlo
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, Pab. II, Buenos Aires, Argentina
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, Pab. II, Buenos Aires, Argentina
| |
Collapse
|
44
|
Effect on memory of acute administration of naturally secreted fibrils and synthetic amyloid-beta peptides in an invertebrate model. Neurobiol Learn Mem 2008; 89:407-18. [DOI: 10.1016/j.nlm.2007.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/31/2007] [Accepted: 08/24/2007] [Indexed: 12/12/2022]
|
45
|
Sztarker J, Tomsic D. Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:587-96. [PMID: 18389255 DOI: 10.1007/s00359-008-0333-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 03/23/2008] [Accepted: 03/24/2008] [Indexed: 11/28/2022]
Abstract
When confronted with predators, animals are forced to take crucial decisions such as the timing and manner of escape. In the case of the crab Chasmagnathus, cumulative evidence suggests that the escape response to a visual danger stimulus (VDS) can be accounted for by the response of a group of lobula giant (LG) neurons. To further investigate this hypothesis, we examined the relationship between behavioral and neuronal activities within a variety of experimental conditions that affected the level of escape. The intensity of the escape response to VDS was influenced by seasonal variations, changes in stimulus features, and whether the crab perceived stimuli monocularly or binocularly. These experimental conditions consistently affected the response of LG neurons in a way that closely matched the effects observed at the behavioral level. In other words, the intensity of the stimulus-elicited spike activity of LG neurons faithfully reflected the intensity of the escape response. These results support the idea that the LG neurons from the lobula of crabs are deeply involved in the decision for escaping from VDS.
Collapse
Affiliation(s)
- Julieta Sztarker
- Laboratorio de Neurobiología de la Memoria, Depto Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
46
|
Medan V, Oliva D, Tomsic D. Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus. J Neurophysiol 2007; 98:2414-28. [PMID: 17715192 DOI: 10.1152/jn.00803.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the grapsid crab Chasmagnathus, a visual danger stimulus elicits a strong escape response that diminishes rapidly on stimulus repetition. This behavioral modification can persist for several days as a result of the formation of an associative memory. We have previously shown that a generic group of large motion-sensitive neurons from the lobula of the crab respond to visual stimuli and accurately reflect the escape performance. Additional evidence indicates that these neurons play a key role in visual memory and in the decision to initiate an escape. Although early studies recognized that the group of lobula giant (LG) neurons consisted of different classes of motion-sensitive cells, a distinction between these classes has been lacking. Here, we recorded in vivo the responses of individual LG neurons to a wide range of visual stimuli presented in different segments of the animal's visual field. Physiological characterizations were followed by intracellular dye injections, which permitted comparison of the functional and morphological features of each cell. All LG neurons consisted of large tangential arborizations in the lobula with axons projecting toward the midbrain. Functionally, these cells proved to be more sensitive to single objects than to flow field motion. Despite these commonalities, clear differences in morphology and physiology allowed us to identify four distinct classes of LG neurons. These results will permit analysis of the role of each neuronal type for visually guided behaviors and will allow us to address specific questions on the neuronal plasticity of LGs that underlie the well-recognized memory model of the crab.
Collapse
Affiliation(s)
- Violeta Medan
- Laboratorio de Neurobiología de la Memoria, Departamento Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
47
|
Oliva D, Medan V, Tomsic D. Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). ACTA ACUST UNITED AC 2007; 210:865-80. [PMID: 17297146 DOI: 10.1242/jeb.02707] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Behavioral responses to looming stimuli have been studied in many vertebrate and invertebrate species, but neurons sensitive to looming have been investigated in very few animals. In this paper we introduce a new experimental model using the crab Chasmagnathus granulatus, which allows investigation of the processes of looming detection and escape decision at both the behavioral and neuronal levels. By analyzing the escape response of the crab in a walking simulator device we show that: (i) a robust and reliable escape response can be elicited by computer-generated looming stimuli in all tested animals; (ii) parameters such as distance, speed, timing and directionality of the escape run, are easy to record and quantify precisely in the walking device; (iii) although the magnitude of escape varies between animals and stimulus presentations, the timing of the response is remarkably consistent and does not habituate at 3 min stimulus intervals. We then study the response of neurons from the brain of the crab by means of intracellular recordings in the intact animal and show that: (iv) two subclasses of previously identified movement detector neurons from the lobula (third optic neuropil) exhibit robust and reliable responses to the same looming stimuli that trigger the behavioral response; (v) the neurons respond to the object approach by increasing their rate of firing in a way that closely matches the dynamics of the image expansion. Finally, we compare the neuronal with the behavioral response showing that: (vi) differences in the neuronal responses to looming, receding or laterally moving stimuli closely reflect the behavioral differences to such stimuli; (vii) during looming, the crab starts to run soon after the looming-sensitive neurons begin to increase their firing rate. The increase in the running speed during stimulus approach faithfully follows the increment in the firing rate, until the moment of maximum stimulus expansion. Thereafter, the neurons abruptly stop firing and the animal immediately decelerates its run. The results are discussed in connection with studies of responses to looming stimuli in the locust.
Collapse
Affiliation(s)
- Damián Oliva
- Laboratorio de Neurobiología de la Memoria, Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires 1428, Argentina
| | | | | |
Collapse
|
48
|
Romano A, Freudenthal R, Merlo E, Routtenberg A. Evolutionarily-conserved role of the NF-kappaB transcription factor in neural plasticity and memory. Eur J Neurosci 2007; 24:1507-16. [PMID: 17004915 DOI: 10.1111/j.1460-9568.2006.05022.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
NF-kappaB is an evolutionarily conserved family of transcription factors (TFs) critically involved in basic cellular mechanisms of the immune response, inflammation, development and apoptosis. In spite of the fact that it is expressed in the central nervous system, particularly in areas involved in memory processing, and is activated by signals such as glutamate and Ca2+, its role in neural plasticity and memory has only recently become apparent. A surprising feature of this molecule is its presence within the synapse. An increasing number of reports have called attention to the role of this TF in processes that require long-term regulation of the synaptic function underlying memory and neural plasticity. Here we review the evidence regarding a dual role for NF-kappaB, as both a signalling molecule after its activation at the synapse and a transcriptional regulator upon reaching the nucleus. The specific role of this signal, as well as the general transcriptional mechanism, in the process of memory formation is discussed. Converging lines of evidence summarized here point to a pivotal role for the NF-kappaB transcription factor as a direct signalling mechanism in the regulation of gene expression involved in long-term memory.
Collapse
Affiliation(s)
- Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBINE-CONICET, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
49
|
Pérez-Cuesta LM, Hepp Y, Pedreira ME, Maldonado H. Memory is not extinguished along with CS presentation but within a few seconds after CS-offset. Learn Mem 2007; 14:101-8. [PMID: 17272655 PMCID: PMC1838540 DOI: 10.1101/lm.413507] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prior work with the crab's contextual memory model showed that CS-US conditioned animals undergoing an unreinforced CS presentation would either reconsolidate or extinguish the CS-US memory, depending on the length of the reexposure to the CS. Either memory process is only triggered once the CS is terminated. Based on these results, the following questions are raised. First, when is extinction memory acquired, if not along extinction training, and how long does it take? Second, can acquisition and consolidation of extinction memory be pharmacologically dissected? Here we address these questions performing three series of experiments: a first one aimed to study systematically the relationship between extinction and increasing periods of unreinforced CS presentations, a second one to determine the time boundaries of the extinction memory acquisition, and the third one to assay the requirement for protein synthesis and NMDA-like receptors of acquisition and consolidation of extinction memory. Our results confirm that it is CS-offset and not the mere retrieval (CS-onset) that triggers acquisition of extinction memory and that it is completed in less than 45 sec after CS-offset. In addition, protein synthesis is required for consolidation but not for acquisition of this memory and, conversely, NMDA-like receptor activity is required for its acquisition but not for its consolidation. Finally, we offer an interpretative scheme of our results and we discuss to what extent it could apply to multitrial extinction.
Collapse
Affiliation(s)
- Luis María Pérez-Cuesta
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
| | - Yanil Hepp
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
| | - María Eugenia Pedreira
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
| | - Héctor Maldonado
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
- Corresponding author.E-mail ; fax 54-11-45763384
| |
Collapse
|
50
|
Kaczer L, Pedetta S, Maldonado H. Aggressiveness and memory: subordinate crabs present higher memory ability than dominants after an agonistic experience. Neurobiol Learn Mem 2006; 87:140-8. [PMID: 16973384 DOI: 10.1016/j.nlm.2006.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/01/2006] [Accepted: 08/04/2006] [Indexed: 11/30/2022]
Abstract
A relationship between aggressiveness and memory has been proposed in several studies with different animal species. Here, we study this possibility in the crab Chasmagnathus granulatus, using the context-signal memory model (CSM) that involves an association between the learning context and a visual danger stimulus. Each experiment consisted of an agonistic phase and a memory one. During the former, matched pairs of male crabs were staged in two 10-min encounters and the dominant or subordinate condition of each member of the dyad was determined. During the memory phase, crabs were trained to acquire CSM and tested 24 h later. Results showed that the agonistic encounter, staged 48 h before the acquisition of CSM, can modulate memory according to the dominance condition of the fighter; in such a way that memory retention of subordinates results higher than that of dominants. By contrast, when the memory phase preceded the agonist one, forthcoming dominants and subordinates did not differ in their memory ability. The memory modulation would not be linked to a dominance status but to a persistent dominance relationship fully reconstructed in each encounter between the same opponents. Therefore, the crab's CSM would not depend directly on predetermined intrinsic properties, but on the outcome of the fight, which would be determined in turn by the relative aggressiveness of the fighters. The finding that the agonistic episode modulates memory opens the possibility of using this episodic interference to probe the function of diverse phases of CSM.
Collapse
Affiliation(s)
- Laura Kaczer
- Laboratorio de Neurobiología de la Memoria, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | |
Collapse
|