1
|
Lewis-Sanders D, Bullich S, Olvera MJ, Vo J, Hwang YS, Mizrachi E, Stern SA. Conditioned overconsumption is dependent on reinforcer type in lean, but not obese, mice. Appetite 2024; 198:107355. [PMID: 38621593 PMCID: PMC11308659 DOI: 10.1016/j.appet.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Associative learning can drive many different types of behaviors, including food consumption. Previous studies have shown that cues paired with food delivery while mice are hungry will lead to increased consumption in the presence of those cues at later times. We previously showed that overconsumption can be driven in male mice by contextual cues, using chow pellets. Here we extended our findings by examining other parameters that may influence the outcome of context-conditioned overconsumption training. We found that the task worked equally well in males and females, and that palatable substances such as high-fat diet and Ensure chocolate milkshake supported learning and induced overconsumption. Surprisingly, mice did not overconsume when sucrose was used as the reinforcer during training, suggesting that nutritional content is a critical factor. Interestingly, we also observed that diet-induced obese mice did not learn the task. Overall, we find that context-conditioned overconsumption can be studied in lean male and female mice, and with multiple reinforcer types.
Collapse
Affiliation(s)
- Darielle Lewis-Sanders
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Sebastien Bullich
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Maria-Jose Olvera
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - John Vo
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Yang-Sun Hwang
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Elisa Mizrachi
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA
| | - Sarah A Stern
- Laboratory for Integrative Neural Circuits and Behavior, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, 33458, USA.
| |
Collapse
|
2
|
Lewis-Sanders D, Bullich S, Olvera MJ, Vo J, Hwang YS, Stern SA. Conditioned overconsumption is dependent on reinforcer type in lean, but not obese, mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573797. [PMID: 38260511 PMCID: PMC10802361 DOI: 10.1101/2023.12.31.573797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Associative learning can drive many different types of behaviors, including food consumption. Previous studies have shown that cues paired with food delivery while mice are hungry will lead increased consumption in the presence of those cues at later times. We previously showed that overconsumption can be driven in male mice by contextual cues, using chow pellets. Here we extended our findings by examining other parameters that may influence the outcome of context-conditioned overconsumption training. We found that the task worked equally well in males and females, and that palatable substances such as high-fat diet and Ensure chocolate milkshake supported learning and induced overconsumption. Surprisingly, mice did not overconsume when sucrose was used as the reinforcer during training, suggesting that nutritional content is a critical factor. Interestingly, we also observed that diet-induced obese mice did not learn the task. Overall, we find that context-conditioned overconsumption can be studied in lean males and female mice, and with multiple reinforcer types.
Collapse
|
3
|
Derman RC, Schneider K, Juarez S, Delamater AR. Sign-tracking is an expectancy-mediated behavior that relies on prediction error mechanisms. Learn Mem 2018; 25:550-563. [PMID: 30224558 PMCID: PMC6149955 DOI: 10.1101/lm.047365.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/29/2018] [Indexed: 01/04/2023]
Abstract
When discrete localizable stimuli are used during appetitive Pavlovian conditioning, "sign-tracking" and "goal-tracking" responses emerge. Sign-tracking is observed when conditioned responding is directed toward the CS, whereas goal-tracking manifests as responding directed to the site of expected reward delivery. These behaviors seem to rely on distinct, though overlapping neural circuitries, and, possibly, distinct psychological processes as well, and are thought to be related to addiction vulnerability. One currently popular view is that sign-tracking reflects an incentive motivational process, whereas goal-tracking reflects the influence of more top-down cognitive processes. To test these ideas, we used illness-induced outcome-devaluation and Kamin blocking procedures to determine whether these behaviors rely on similar or distinct underlying associative mechanisms. In Experiments 1 and 2 we showed that outcome-devaluation reduced sign-tracking responses, demonstrating that sign-tracking is controlled by reward expectancies. We also observed that post-CS goal-tracking in these animals is also devaluation sensitive. To test whether these two types of behaviors rely on similar or different prediction error mechanisms, we next tested whether Kamin blocking effects could be observed across these two classes of behaviors. In Experiment 3 we asked if sign-tracking to a lever CS could block the development of goal-tracking to a tone CS; whereas in Experiment 4, we examined whether goal-tracking to a tone CS could block sign-tracking to a lever CS. In both experiments blocking effects were observed suggesting that both sign- and goal-tracking emerge via a common prediction error mechanism. Collectively, the studies reported here suggest that the psychological mechanisms mediating sign- and goal-tracking are more similar than is commonly acknowledged.
Collapse
Affiliation(s)
- Rifka C Derman
- Department of Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kevin Schneider
- Neuroscience and Cognitive Science, University of Maryland, Maryland, 20742, USA
| | - Shaina Juarez
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Andrew R Delamater
- Department of Psychology, Brooklyn College and Graduate Center of the City University of New York, Brooklyn, New York 11210, USA
| |
Collapse
|
4
|
Kawai N, Nakajima S. US postexposure effect on conditioned flavor preference in the rat. PSYCHOLOGICAL RECORD 2017. [DOI: 10.1007/bf03395241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Neurons in the pigeon caudolateral nidopallium differentiate Pavlovian conditioned stimuli but not their associated reward value in a sign-tracking paradigm. Sci Rep 2016; 6:35469. [PMID: 27762287 PMCID: PMC5071861 DOI: 10.1038/srep35469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/30/2016] [Indexed: 11/08/2022] Open
Abstract
Animals exploit visual information to identify objects, form stimulus-reward associations, and prepare appropriate behavioral responses. The nidopallium caudolaterale (NCL), an associative region of the avian endbrain, contains neurons exhibiting prominent response modulation during presentation of reward-predicting visual stimuli, but it is unclear whether neural activity represents valuation signals, stimulus properties, or sensorimotor contingencies. To test the hypothesis that NCL neurons represent stimulus value, we subjected pigeons to a Pavlovian sign-tracking paradigm in which visual cues predicted rewards differing in magnitude (large vs. small) and delay to presentation (short vs. long). Subjects' strength of conditioned responding to visual cues reliably differentiated between predicted reward types and thus indexed valuation. The majority of NCL neurons discriminated between visual cues, with discriminability peaking shortly after stimulus onset and being maintained at lower levels throughout the stimulus presentation period. However, while some cells' firing rates correlated with reward value, such neurons were not more frequent than expected by chance. Instead, neurons formed discernible clusters which differed in their preferred visual cue. We propose that this activity pattern constitutes a prerequisite for using visual information in more complex situations e.g. requiring value-based choices.
Collapse
|
6
|
Abstract
Most processes or forms of learning have been treated almost as special creations, each as an independent process unrelated to others. This review offers an evolutionary cladogram linking nearly one hundred forms of learning and showing the paths through which they evolved. Many processes have multiple forms. There are at least five imprinting processes, eleven varieties of Pavlovian conditioning, ten of instrumental conditioning, and eight forms of mimicry and imitation. Song learning evolved independently in at least six groups of animals, and movement imitation in three (great apes, cetaceans and psittacine birds). The cladogram also involves at least eight new processes: abstract concept formation, percussive mimicry, cross-modal imitation, apo-conditioning, hybrid conditioning, proto-pantomime, prosodic mimicry, and image-mediated learning. At least eight of the processes evolved from more than one source. Multiple sources are of course consistent with modern evolutionary theory, as seen in some obligate symbionts, and gene-swapping organisms. Song learning is believed to have evolved from two processes: auditory imprinting and skill learning. Many single words evolved from three sources: vocal mimicry, discrimination learning, and abstract concept formation.
Collapse
Affiliation(s)
- Bruce R Moore
- Department of Psychology, Dalhousie University, Halifax, NS, Canada B3H 4J1.
| |
Collapse
|
7
|
Ploog BO, Zeigler HP. Key-peck probability and topography in a concurrent variable-interval variable-interval schedule with food and water reinforcers. J Exp Anal Behav 1997; 67:109-29. [PMID: 9037783 PMCID: PMC1284584 DOI: 10.1901/jeab.1997.67-109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The relation between variables that modulate the probability and the topography of key pecks was examined using a concurrent variable-interval variable-interval schedule with food and water reinforcers. Measures of response probability (response rates, time allocation) and topography (peck duration, gape amplitude) were obtained in 5 water- and food-deprived pigeons. Key color signaled reinforcer type. During baseline, response rates and time allocations were greater to the food key than to the water key, and food-key pecks had larger gapes and shorter durations. Relative probability measures (for the food key) were increased by prewatering and decreased by prefeeding. Deprivation effects upon topography measures were apparent only when food- and water-key pecks were analyzed separately. Food-key gape amplitudes increased with prewatering and decreased with prefeeding. The clearest effect occurred with prewatering. There were no consistent effects upon water-key gapes. The key color-reinforcer relation was reversed for 3 pigeons to determine how response topography was modulated during the transition from food- to water-key pecks. Reacquisition was faster for the probability than for the topography measures. Analysis of gape-amplitude distributions during reversal indicated that response-form modulation proceeded through the generation of intermediate gape sizes.
Collapse
Affiliation(s)
- B O Ploog
- Department of Psychology & Counselor Education, Central Missouri State University, Warrensburg 64093, USA
| | | |
Collapse
|
8
|
|
9
|
Stanhope KJ. Effect of intertrial unconditioned stimulus (US) presentations upon responding to a conditioned stimulus predictive of either the same or a different appetitive US. LEARNING AND MOTIVATION 1990. [DOI: 10.1016/0023-9690(90)90009-d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|