1
|
Ygael N, Zangen A. Modulation of Alcohol Use Disorder by Brain Stimulation. Curr Top Behav Neurosci 2024. [PMID: 39039357 DOI: 10.1007/7854_2024_487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Currently available therapeutic modalities for alcohol use disorder (AUD) produce limited effect sizes or long-term compliance. Recent methods that were developed to modulate brain activity represent potential novel treatment options. Various methods of brain stimulation, when applied repeatedly, can induce long-term neurobiological, behavioral, and cognitive modifications. Recent studies in alcoholic subjects indicate the potential of brain stimulation methods to reduce alcohol craving, consumption, and relapse. Specifically, deep brain stimulation (DBS) of the nucleus accumbens or non-surgical stimulation of the dorsolateral prefrontal cortex (PFC) or medial PFC and anterior cingulate cortex using transcranial magnetic stimulation (TMS) has shown clinical benefit. However, further preclinical and clinical research is needed to establish understanding of mechanisms and the treatment protocols of brain stimulation for AUD. While efforts to design comparable apparatus in rodents continue, preclinical studies can be used to examine targets for DBS protocols, or to administer temporal patterns of pulsus similar to those used for TMS, to more superficial targets through implanted electrodes. The clinical field will benefit from studies with larger sample sizes, higher numbers of stimulation sessions, maintenance sessions, and long follow-up periods. The effect of symptoms provocation before and during stimulation should be further studied. Larger studies may have the power to explore predictive factors for the clinical outcome and thereby to optimize patient selection and eventually even develop personalization of the stimulation parameters.
Collapse
Affiliation(s)
- Noam Ygael
- Department of Life Science and the Zelman Neuroscience Center, Ben-Gurion University, Beer Sheva, Israel
| | - Abraham Zangen
- Department of Life Science and the Zelman Neuroscience Center, Ben-Gurion University, Beer Sheva, Israel.
| |
Collapse
|
2
|
He Q, Geißler CF, Ferrante M, Hartwigsen G, Friehs MA. Effects of transcranial magnetic stimulation on reactive response inhibition. Neurosci Biobehav Rev 2024; 157:105532. [PMID: 38194868 DOI: 10.1016/j.neubiorev.2023.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Reactive response inhibition cancels impending actions to enable adaptive behavior in ever-changing environments and has wide neuropsychiatric implications. A canonical paradigm to measure the covert inhibition latency is the stop-signal task (SST). To probe the cortico-subcortical network underlying motor inhibition, transcranial magnetic stimulation (TMS) has been applied over central nodes to modulate SST performance, especially to the right inferior frontal cortex and the presupplementary motor area. Since the vast parameter spaces of SST and TMS enabled diverse implementations, the insights delivered by emerging TMS-SST studies remain inconclusive. Therefore, a systematic review was conducted to account for variability and synthesize converging evidence. Results indicate certain protocol specificity through the consistent perturbations induced by online TMS, whereas offline protocols show paradoxical effects on different target regions besides numerous null effects. Ancillary neuroimaging findings have verified and dissociated the underpinning network dynamics. Sources of heterogeneity in designs and risk of bias are highlighted. Finally, we outline best-practice recommendations to bridge methodological gaps and subserve the validity as well as replicability of future work.
Collapse
Affiliation(s)
- Qu He
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Christoph F Geißler
- Institute for Cognitive & Affective Neuroscience (ICAN), Trier University, Trier, Germany
| | - Matteo Ferrante
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany; Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maximilian A Friehs
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Psychology of Conflict Risk and Safety, University of Twente, the Netherlands; University College Dublin, School of Psychology, Dublin, Ireland.
| |
Collapse
|
3
|
Tang VM, Ibrahim C, Rodak T, Goud R, Blumberger DM, Voineskos D, Le Foll B. Managing substance use in patients receiving therapeutic repetitive transcranial magnetic stimulation: A scoping review. Neurosci Biobehav Rev 2023; 155:105477. [PMID: 38007879 DOI: 10.1016/j.neubiorev.2023.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is an invaluable treatment option for neuropsychiatric disorders. Co-occurring recreational and nonmedical substance use can be common in those presenting for rTMS treatment, and it is unknown how it may affect the safety and efficacy of rTMS for the treatment of currently approved neuropsychiatric indications. This scoping review aimed to map the literature on humans receiving rTMS and had a history of any type of substance use. The search identified 274 articles providing information on inclusion/exclusion criteria, withdrawal criteria, safety protocols, type of rTMS and treatment parameters, adverse events and effect on primary outcomes that related to substance use. There are neurophysiological effects of substance use on cortical excitability, although the relevance to clinical rTMS practice is unknown. The current literature supports the safety and feasibility of delivering rTMS to those who have co-occurring neuropsychiatric disorder and substance use. However, specific details on how varying degrees of substance use alters the safety, efficacy, and mechanisms of rTMS remains poorly described.
Collapse
Affiliation(s)
- Victor M Tang
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Canada.
| | - Christine Ibrahim
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Terri Rodak
- CAMH Mental Health Sciences Library, Department of Education, Centre for Addiction and Mental Health, Canada
| | - Rachel Goud
- Addictions Division, Centre for Addiction and Mental Health, Canada
| | - Daniel M Blumberger
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada
| | - Daphne Voineskos
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Poul Hansen Family Centre for Depression, Krembil Research Institute, Toronto Western Hospital, University Health Network, Canada
| | - Bernard Le Foll
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Canada; CAMH Mental Health Sciences Library, Department of Education, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Poul Hansen Family Centre for Depression, Krembil Research Institute, Toronto Western Hospital, University Health Network, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Canada
| |
Collapse
|
4
|
Dai P, Wang ZX, Yu HX, Liu CB, Liu SH, Zhang H. The Effect of Continuous Theta Burst Stimulation over the Right Dorsolateral Prefrontal Cortex on Cognitive Function and Emotional Regulation in Patients with Cerebral Small Vessel Disease. Brain Sci 2023; 13:1309. [PMID: 37759910 PMCID: PMC10526451 DOI: 10.3390/brainsci13091309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVES Cognitive impairment in cerebral small vessel disease (CSVD) is a common cause of vascular dementia and is often accompanied by mental disorders. The purpose of this study was to investigate the effect of continuous theta burst stimulation (cTBS) over the right dorsolateral prefrontal cortex (DLPFC) on the cognitive function and Hamilton depression (HAMD) scores in patients with CSVD. METHODS A total of 30 CSVD patients who met the inclusion criteria were randomly assigned to either the sham or cTBS group. The patients in both groups received routine cognitive function training. All the patients were under treatment for 14 sessions, with one session per day (each cTBS conditioning session consisted of three-pulse bursts at 50 Hz repeated at 5 Hz, 80% MT, and 600 pulses). Before and after the treatment, the patients in both groups were evaluated using the Montreal Cognitive Assessment (MoCA), Stroop Color-Word Test (SCWT), Trail Marking Test (TMT), Digital Span Test (DST), and HAMD test. The time to complete the SCWT and TMT were recorded. The scores of the MoCA, DST and HAMD test were recorded. RESULTS The HAMD scores in the cTBS group decreased significantly compared to the control (p < 0.05). There were no significant differences in the MoCA (including the MoCA subitems) or DST scores or in the SCWT or TMT completion times between the two groups (p > 0.05). For the HAMD scores and the MoCA subitem visuospatial/executive scores, the SCWT-B and SCWT-C completion times in the two groups both improved significantly before and after treatment (p < 0.05). For the MoCA scores, the DST-backward scores and the TMT-B completion times in the cTBS group improved significantly before and after treatment (p < 0.05). There was no significant difference in the SCWT-A, TMT-A completion times and MoCA subitems naming, attention, language, abstraction, delayed recall, and orientation scores either before or after treatment in the two groups or between the two groups (p > 0.05). CONCLUSIONS In this study, cTBS over the right DLPFC decreased the HAMD scores significantly in patients with CSVD but had no significant improvement or impairment effects on cognitive function. cTBS over the right DLPFC could be used to treat CSVD patients with depression symptoms.
Collapse
Affiliation(s)
- Pei Dai
- School of Rehabilitation, Capital Medical University, China Rehabilitation Research Center, Beijing 100068, China
| | - Zhao-Xia Wang
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Hui-Xian Yu
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Chang-Bin Liu
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Si-Hao Liu
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, China Rehabilitation Research Center, Beijing 100068, China
| |
Collapse
|
5
|
Sahlem GL, Kim B, Baker NL, Wong BL, Caruso MA, Campbell LA, Kaloani I, Sherman BJ, Ford TJ, Musleh AH, Kim JP, Williams NR, Manett AJ, Kratter IH, Short EB, Killeen TK, George MS, McRae-Clark AL. A Preliminary Investigation Of Repetitive Transcranial Magnetic Stimulation Applied To The Left Dorsolateral Prefrontal Cortex In Treatment Seeking Participants With Cannabis Use Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.10.23292461. [PMID: 37503294 PMCID: PMC10370231 DOI: 10.1101/2023.07.10.23292461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Cannabis use disorder (CUD) is a common and consequential disorder. When applied to the dorsolateral prefrontal cortex (DLPFC), repetitive transcranial magnetic stimulation (rTMS) reduces craving across substance use disorders and may have a therapeutic clinical effect when applied in serial sessions. The present study sought to preliminarily determine whether serial sessions of rTMS applied to the DLPFC had a therapeutic effect in CUD. Methods This study was a two-site, phase-2, double-blind, randomized-controlled-trial. Seventy-two treatment-seeking participants (37.5% Women, mean age 30.2±9.9SD) with ≥moderate-CUD were randomized to active or sham rTMS (Beam-F3, 10Hz, 20-total-sessions, with cannabis cues) while undergoing a three-session motivational enhancement therapy intervention. The primary outcome was the change in craving between pre- and post-treatment (Marijuana Craving Questionnaire Short-Form-MCQ-SF). Secondary outcomes included the number of weeks of abstinence and the number of days-per-week of cannabis use during 4-weeks of follow-up. Results There were no significant differences in craving between conditions. Participants who received active rTMS reported numerically, but not significantly, more weeks of abstinence in the follow-up period than those who received sham rTMS (15.5%-Active; 9.3%-Sham; rate ratio = 1.66 [95% CI: 0.84, 3.28]; p=0.14). Participants who received active rTMS reported fewer days-per-week of cannabis use over the final two-weeks of the follow-up period (Active vs. Sham: -0.72; Z=-2.33, p=0.02). Conclusions This trial suggests rTMS is safe and feasible in individuals with CUD and may have a therapeutic effect on frequency of cannabis use, though further study is needed with additional rTMS-sessions and a longer follow-up period.
Collapse
Affiliation(s)
- Gregory L. Sahlem
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Bohye Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Nathaniel L. Baker
- Departments of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brendan L. Wong
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Margaret A. Caruso
- Departments of Psychiatry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lauren A. Campbell
- Departments of Psychiatry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Irakli Kaloani
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Brian J. Sherman
- Departments of Psychiatry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tiffany J. Ford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Ahmad H. Musleh
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Jane P. Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Nolan R. Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Andrew J. Manett
- Departments of Psychiatry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ian H. Kratter
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Edward B. Short
- Departments of Psychiatry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Terese K. Killeen
- Departments of Psychiatry, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark S. George
- Departments of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| | - Aimee L. McRae-Clark
- Departments of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
6
|
Dougherty JW, Baron D. Substance Use and Addiction in Athletes: The Case for Neuromodulation and Beyond. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16082. [PMID: 36498156 PMCID: PMC9735488 DOI: 10.3390/ijerph192316082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Substance use, misuse and use disorders continue to be major problems in society as a whole and athletes are certainly not exempt. Substance use has surrounded sports since ancient times and the pressures associated with competition sometimes can increase the likelihood of use and subsequent misuse. The addiction field as a whole has very few answers to how to prevent and secondarily treat substance use disorders and the treatments overall do not necessarily agree with the role of being an athlete. With concerns for side effects that may affect performance coupled with organizational rules and high rates of recidivism in the general population, newer treatments must be investigated. Prevention strategies must continue to be improved and more systems need to be in place to find and treat any underlying causes leading to these behaviors. This review attempts to highlight some of the data regarding the field of substance misuse and addiction in the athletic population as well as explore possible future directions for treatment including Neuromodulation methods and Ketamine. There is a need for more rigorous, high-quality studies to look at addiction as a whole and in particular how to approach this vulnerable subset of the population.
Collapse
Affiliation(s)
- John W. Dougherty
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Baron
- Office of the President, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
7
|
Shang CY, Chou TL, Hsieh CY, Gau SSF. A Counting Stroop Functional Magnetic Resonance Imaging Study on the Effects of ORADUR-Methylphenidate in Drug-Naive Children with Attention-Deficit/Hyperactivity Disorder. J Child Adolesc Psychopharmacol 2022; 32:467-475. [PMID: 36251766 PMCID: PMC9700368 DOI: 10.1089/cap.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: Methylphenidate is effective in reducing the clinical symptoms of patients with attention-deficit/hyperactivity disorder (ADHD). ORADUR®-methylphenidate is a new extended-release preparation of methylphenidate. This study aimed at identifying brain regions with activation changes and their correlations with neuropsychological functions after treatment with ORADUR-methylphenidate in children with ADHD. Methods: We recruited drug-naive children with ADHD and age- and sex-matched typically developing (TD) children. They were all scanned with the functional magnetic resonance imaging (fMRI) during the counting Stroop task at baseline, and those with ADHD had the second fMRI assessment after 8-week treatment with ORADUR-methylphenidate. The Rapid Visual Information Processing (RVP) and Conners' Continuous Performance Test (CCPT) were used to assess the attention performance of the ADHD (before and after treatment) and TD groups. Results: ORADUR-methylphenidate significantly decreased inattention (Cohen d = 2.17) and hyperactivity-impulsivity (Cohen d = 0.98) symptoms. We found less activation in the right inferior frontal gyrus (rIFG) in the pre-treatment ADHD children than TD children and greater treatment-induced activation in the dorsal anterior cingulate cortex (dACC) and the right dorsolateral prefrontal cortex (rDLPFC). There was no significant difference between the post-treatment ADHD and TD groups. However, the treatment-related activations in the dACC, rDLPFC, and rIFG were significantly correlated with CCPT and RVP measures. Conclusions: Our findings indicated that ORADUR-methylphenidate increased brain activations in the dACC, rDLPFC, and rIFG in children with ADHD, associated with improved focused attention, reduced impulsivity, and enhanced inhibition control. Activities of these brain regions might be biomarkers for the treatment effectiveness of methylphenidate for ADHD. Clinical Trials Registration: ClinicalTrials.gov number, NCT02450890.
Collapse
Affiliation(s)
- Chi-Yung Shang
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Hsieh
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Department of Psychology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Address correspondence to: Susan Shur-Fen Gau, MD, PhD, Department of Psychiatry, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 10002, Taiwan
| |
Collapse
|
8
|
Elmaghraby R, Sun Q, Ozger C, Shekunov J, Romanowicz M, Croarkin PE. A Systematic Review of the Safety and Tolerability of Theta Burst Stimulation in Children and Adolescents. Neuromodulation 2022; 25:494-503. [PMID: 35670061 PMCID: PMC8617062 DOI: 10.1111/ner.13455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Theta burst stimulation (TBS) is often used in clinical practice and research protocols for adults with neuropsychiatric disorders. There are substantial knowledge gaps related to the application of TBS in children and adolescents. This systematic review examined the safety and tolerability of TBS in children and adolescents. MATERIALS AND METHODS A systematic review of human TBS studies in children and adolescents was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The following inclusion criteria were applied: 1) articles in English language only; 2) studies that included child and adolescent participants (up to 21 years of age); 3) studies that administered intermittent TBS or continuous TBS or both to participants; 4) studies that had an outcome measure; and 5) availability of full text material. The primary outcome measures were tolerability and safety. When feasible, the clinical effects were reviewed. RESULTS Twenty relevant articles met the criteria for inclusion. The reported adverse events were mild and similar to what is noted in adult studies. The most common symptom was headache. One case report described a seizure induced by TBS. Collectively, the studies were heterogeneous but the methodologic quality of randomized trials was high. CONCLUSIONS TBS interventions in children may have similar safety, tolerability, and feasibility as compared to adults. However, long-term, follow-up studies of TBS are lacking. Future dose-ranging studies with systematic assessment of adverse events will be important in the translation of findings with TBS from adults to youth.
Collapse
Affiliation(s)
- Rana Elmaghraby
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Qi Sun
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Can Ozger
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Julia Shekunov
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Magdalena Romanowicz
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
9
|
Ngetich R, Jin D, Li W, Song B, Zhang J, Jin Z, Li L. Enhancing Visuospatial Working Memory Performance Using Intermittent Theta-Burst Stimulation Over the Right Dorsolateral Prefrontal Cortex. Front Hum Neurosci 2022; 16:752519. [PMID: 35370586 PMCID: PMC8968997 DOI: 10.3389/fnhum.2022.752519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Noninvasive brain stimulation provides a promising approach for the treatment of neuropsychiatric conditions. Despite the increasing research on the facilitatory effects of this kind of stimulation on the cognitive processes, the majority of the studies have used the standard stimulation approaches such as the transcranial direct current stimulation and the conventional repetitive transcranial magnetic stimulation (rTMS) which seem to be limited in robustness and the duration of the transient effects. However, a recent specialized type of rTMS, theta-burst stimulation (TBS), patterned to mimic the natural cross-frequency coupling of the human brain, may induce robust and longer-lasting effects on cortical activity. Here, we aimed to investigate the effects of the intermittent TBS (iTBS), a facilitatory form of TBS, over the right DLPFC (rDLPFC), a brain area implicated in higher-order cognitive processes, on visuospatial working memory (VSWM) performance. Therefore, iTBS was applied over either the rDLPFC or the vertex of 24 healthy participants, in two separate sessions. We assessed VSWM performance using 2-back and 4-back visuospatial tasks before iTBS (at the baseline (BL), and after the iTBS. Our results indicate that the iTBS over the rDLPFC significantly enhanced VSWM performance in the 2-back task, as measured by the discriminability index and the reaction time. However, the 4-back task performance was not significantly modulated by iTBS. These findings demonstrate that the rDLPFC plays a critical role in VSWM and that iTBS is a safe and effective approach for investigating the causal role of the specific brain areas.
Collapse
|
10
|
rTMS Reduces Craving and Alcohol Use in Patients with Alcohol Use Disorder: Results of a Randomized, Sham-Controlled Clinical Trial. J Clin Med 2022; 11:jcm11040951. [PMID: 35207224 PMCID: PMC8878126 DOI: 10.3390/jcm11040951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Current evidence-based treatments for alcohol use disorder (AUD) are moderately effective. Studies testing repetitive transcranial magnetic stimulation (rTMS) in AUD commonly apply a limited number of rTMS sessions with different rTMS settings, showing inconsistent effects on craving for alcohol. This study tested the efficacy of a robust rTMS protocol on craving and alcohol use. (2) Methods: In a single-blind randomized controlled trial in recently detoxified patients with AUD, ten days of high-frequency rTMS over the right dorsolateral prefrontal cortex on top of treatment as usual (n = 14) was compared with sham rTMS (n = 16). Outcome measures were alcohol craving and use over a follow-up period of one year. Analysis was performed by means of repeated measures multivariate analysis of variance. (3) Results: The results showed a main group-by-time interaction effect on craving (Wilks’ Λ = 0.348, F (12, 17) = 2.654, p = 0.032) and an effect of group on alcohol use (Wilk’s Λ = 0.44, F (6, 23) = 4.9, p = 0.002), with lower alcohol craving and use in the group with active rTMS compared to the control group. Differences in craving between groups were most prominent three months after treatment. At 12 months follow-up, there was no effect of rTMS on craving or abstinence. (4) Conclusions: This small-scale randomized controlled trial showed the efficacy of high-frequency rTMS over the right dlPFC diminished alcohol craving and use in recently detoxified patients with AUD during the first months after detoxification. These findings suggest that rTMS might be an effective add-on in treating patients with AUD and warrant replication in future large-scale studies.
Collapse
|
11
|
Padula CB, Tenekedjieva LT, McCalley DM, Al-Dasouqi H, Hanlon CA, Williams LM, Kozel FA, Knutson B, Durazzo TC, Yesavage JA, Madore MR. Targeting the Salience Network: A Mini-Review on a Novel Neuromodulation Approach for Treating Alcohol Use Disorder. Front Psychiatry 2022; 13:893833. [PMID: 35656355 PMCID: PMC9152026 DOI: 10.3389/fpsyt.2022.893833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Alcohol use disorder (AUD) continues to be challenging to treat despite the best available interventions, with two-thirds of individuals going on to relapse by 1 year after treatment. Recent advances in the brain-based conceptual framework of addiction have allowed the field to pivot into a neuromodulation approach to intervention for these devastative disorders. Small trials of repetitive transcranial magnetic stimulation (rTMS) have used protocols developed for other psychiatric conditions and applied them to those with addiction with modest efficacy. Recent evidence suggests that a TMS approach focused on modulating the salience network (SN), a circuit at the crossroads of large-scale networks associated with AUD, may be a fruitful therapeutic strategy. The anterior insula or dorsal anterior cingulate cortex may be particularly effective stimulation sites given emerging evidence of their roles in processes associated with relapse.
Collapse
Affiliation(s)
- Claudia B Padula
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Lea-Tereza Tenekedjieva
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel M McCalley
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States.,Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| | - Hanaa Al-Dasouqi
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Leanne M Williams
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - F Andrew Kozel
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Timothy C Durazzo
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Jerome A Yesavage
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Michelle R Madore
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Repetitive Transcranial Magnetic Stimulation for Comorbid Major Depressive Disorder and Alcohol Use Disorder. Brain Sci 2021; 12:brainsci12010048. [PMID: 35053792 PMCID: PMC8773947 DOI: 10.3390/brainsci12010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Major depressive disorder (MDD) and alcohol use disorder (AUD) are leading causes of disability, and patients are frequently affected by both conditions. This comorbidity is known to confer worse outcomes and greater illness severity. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation method that has demonstrated antidepressant effects. However, the study of rTMS for patients with MDD and commonly associated comorbidities, such as AUD, has been largely overlooked, despite significant overlap in clinical presentation and neurobiological mechanisms. This narrative review aims to highlight the interrelated aspects of the literature on rTMS for MDD and rTMS for AUD. First, we summarize the available evidence on the effectiveness of rTMS for each condition, both most studied through stimulation of the dorsolateral prefrontal cortex (DLPFC). Second, we describe common symptom constructs that can be modulated by rTMS, such as executive dysfunction, that are transdiagnostic across these disorders. Lastly, we describe promising approaches in the personalization and optimization of rTMS that may be applicable to both AUD and MDD. By bridging the gap between research efforts in MDD and AUD, rTMS is well positioned to be developed as a treatment for the many patients who have both conditions concurrently.
Collapse
|
13
|
Ghin F, Beste C, Stock AK. Neurobiological mechanisms of control in alcohol use disorder - moving towards mechanism-based non-invasive brain stimulation treatments. Neurosci Biobehav Rev 2021; 133:104508. [PMID: 34942268 DOI: 10.1016/j.neubiorev.2021.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) is characterized by excessive habitual drinking and loss of control over alcohol intake despite negative consequences. Both of these aspects foster uncontrolled drinking and high relapse rates in AUD patients. Yet, common interventions mostly focus on the phenomenological level, and prioritize the reduction of craving and withdrawal symptoms. Our review provides a mechanistic understanding of AUD and suggests alternative therapeutic approaches targeting the mechanisms underlying dysfunctional alcohol-related behaviours. Specifically, we explain how repeated drinking fosters the development of rigid drinking habits and is associated with diminished cognitive control. These behavioural and cognitive effects are then functionally related to the neurobiochemical effects of alcohol abuse. We further explain how alterations in fronto-striatal network activity may constitute the neurobiological correlates of these alcohol-related dysfunctions. Finally, we discuss limitations in current pharmacological AUD therapies and suggest non-invasive brain stimulation (like TMS and tDCS interventions) as a potential addition/alternative for modulating the activation of both cortical and subcortical areas to help re-establish the functional balance between controlled and automatic behaviour.
Collapse
Affiliation(s)
- Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany; Biopsychology, Faculty of Psychology, TU Dresden, Dresden, Germany.
| |
Collapse
|
14
|
McNeill AM, Monk RL, Qureshi A, Heim D. Intoxication without anticipation: Disentangling pharmacological from expected effects of alcohol. J Psychopharmacol 2021; 35:1398-1410. [PMID: 34694191 DOI: 10.1177/02698811211050567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The pharmacological effects of alcohol on executive function, craving and subsequent alcohol-seeking have been well documented. Yet, insufficient methodological controls within existing alcohol administration paradigms have meant that the relative importance of alcohol's pharmacological and anticipatory effects remains in need of further elucidation. AIM The objective of this study is to disentangle alcohol's pharmacological effects from its anticipatory effects on alcohol-related cognitions and subsequent consumption. METHODS Inhibitory control, attentional bias and craving were assessed pre- and post-consumption in 100 participants who were randomly allocated to one of four beverage conditions in a two by two design: (1) alcohol aware (alcohol with participant knowledge (pharmacological/anticipation effects)), (2) alcohol blind (alcohol without participant knowledge; in a novel grain alcohol masking condition (pharmacological/no anticipation effects)), (3) placebo (no alcohol but participants were deceived (anticipation/non-pharmacological effects)) and (4) pure control (no alcohol with participant knowledge (no anticipation/non-pharmacological effects)). RESULTS Findings suggest that the pharmacological effects of alcohol result in greater inhibitory control impairments compared with anticipated effects. Anticipatory but not the pharmacological effects of alcohol were found to increase attentional bias. Both pharmacology and anticipation resulted in increased craving, though higher levels of craving were observed due to alcohol's pharmacology. Furthermore, alcohol pharmacology resulted in heightened ad libitum consumption; however, anticipation did not. Changes in craving partially mediated the relationship between initial intoxication and subsequent drinking, while inhibitory control impairments did not. CONCLUSIONS Successive alcohol consumption appears driven primarily by the pharmacological effects of alcohol which are exerted via changes in craving.
Collapse
Affiliation(s)
- Adam M McNeill
- School of Social Sciences, Birmingham City University, Birmingham, UK
| | - Rebecca L Monk
- Department of Psychology, Edge Hill University, Ormskirk, UK.,Liverpool Centre for Alcohol Research, Liverpool Health Partners, Liverpool, UK
| | - Adam Qureshi
- Department of Psychology, Edge Hill University, Ormskirk, UK.,Liverpool Centre for Alcohol Research, Liverpool Health Partners, Liverpool, UK
| | - Derek Heim
- Department of Psychology, Edge Hill University, Ormskirk, UK.,Liverpool Centre for Alcohol Research, Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
15
|
Elevated ad libitum alcohol consumption following continuous theta burst stimulation to the left-dorsolateral prefrontal cortex is partially mediated by changes in craving. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 22:160-170. [PMID: 34410618 PMCID: PMC8791868 DOI: 10.3758/s13415-021-00940-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/19/2023]
Abstract
Previous research indicates that following alcohol intoxication, activity in prefrontal cortices is reduced, linking to changes in associated cognitive processes, such as inhibitory control, attentional bias (AB), and craving. While these changes have been implicated in alcohol consumption behaviour, it has yet to be fully illuminated how these frontal regions and cognitive processes interact to govern alcohol consumption behaviour. The current preregistered study applied continuous theta burst transcranial magnetic stimulation (cTBS) to examine directly these relationships while removing the wider pharmacological effects of alcohol. A mixed design was implemented, with cTBS stimulation to right and left dorsolateral prefrontal cortex (DLPFC), the medial orbital frontal cortex (mOFC) and Vertex, with measures of inhibitory control, AB, and craving taken both pre- and post-stimulation. Ad libitum consumption was measured using a bogus taste task. Results suggest that rDLPFC stimulation impaired inhibitory control but did not significantly increase ad libitum consumption. However, lDLPFC stimulation heightened craving and increased consumption, with findings indicating that changes in craving partially mediated the relationship between cTBS stimulation of prefrontal regions and ad libitum consumption. Medial OFC stimulation and AB findings were inconclusive. Overall, results implicate the left DLPFC in the regulation of craving, which appears to be a prepotent cognitive mechanism by which alcohol consumption is driven and maintained.
Collapse
|
16
|
Antonelli M, Fattore L, Sestito L, Di Giuda D, Diana M, Addolorato G. Transcranial Magnetic Stimulation: A review about its efficacy in the treatment of alcohol, tobacco and cocaine addiction. Addict Behav 2021; 114:106760. [PMID: 33316590 DOI: 10.1016/j.addbeh.2020.106760] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022]
Abstract
Substance Use Disorder (SUD) is a chronic and relapsing disease characterized by craving, loss of control, tolerance and physical dependence. At present, the combination of pharmacotherapy and psychosocial intervention is the most effective management strategy in preventing relapse to reduce dropout rates and promote abstinence in SUD patients. However, only few effective medications are available. Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique that modulates the cellular activity of the cerebral cortex through a magnetic pulse applied on selected brain areas. Recently, the efficacy of TMS has been investigated in various categories of SUD patients. The present review analyzes the application of repetitive TMS in patients with alcohol, tobacco, and cocaine use disorder. Although the number of clinical studies is still limited, repetitive TMS yields encouraging results in these patients, suggesting a possible role of TMS in the treatment of SUD.
Collapse
Affiliation(s)
- Mariangela Antonelli
- Alcohol Use Disorder and Alcohol Related Disease Unit, Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy
| | - Luisa Sestito
- Alcohol Use Disorder and Alcohol Related Disease Unit, Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | - Daniela Di Giuda
- Institute of Nuclear Medicine, Catholic University of Rome, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Marco Diana
- G. Minardi' Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Italy
| | - Giovanni Addolorato
- Alcohol Use Disorder and Alcohol Related Disease Unit, Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy; Internal Medicine Unit, Columbus-Gemelli Hospital, Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
17
|
Ngetich R, Zhou J, Zhang J, Jin Z, Li L. Assessing the Effects of Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex on Human Cognition: A Systematic Review. Front Integr Neurosci 2020; 14:35. [PMID: 32848648 PMCID: PMC7417340 DOI: 10.3389/fnint.2020.00035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/03/2020] [Indexed: 01/11/2023] Open
Abstract
Theta burst stimulation is increasingly growing in popularity as a non-invasive method of moderating corticospinal networks. Theta burst stimulation uses gamma frequency trains applied at the rhythm of theta, thus, mimicking theta–gamma coupling involved in cognitive processes. The dorsolateral prefrontal cortex has been found to play a crucial role in numerous cognitive processes. Here, we include 25 studies for review to determine the cognitive effects of continuous theta burst stimulation over the dorsolateral prefrontal cortex; 20 of these studies are healthy participant and five are patient (pharmacotherapy-resistant depression) studies. Due to the heterogeneous nature of the included studies, only a descriptive approach is used and meta-analytics ruled out. The cognitive effect is measured on various cognitive domains: attention, working memory, planning, language, decision making, executive function, and inhibitory and cognitive control. We conclude that continuous theta burst stimulation over the dorsolateral prefrontal cortex mainly inhibits cognitive performance. However, in some instances, it can lead to improved performance by inhibiting the effect of distractors or other competing irrelevant cognitive processes. To be precise, continuous theta burst stimulation over the right dorsolateral prefrontal cortex impaired attention, inhibitory control, planning, and goal-directed behavior in decision making but also improved decision making by reducing impulsivity. Conversely, continuous theta burst stimulation over the left dorsolateral prefrontal cortex impaired executive function, working, auditory feedback regulation, and cognitive control but accelerated the planning, decision-making process. These findings constitute a useful contribution to the literature on the cognitive effects of continuous theta burst stimulation over the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Ronald Ngetich
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Zhou
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjun Zhang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenlan Jin
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
18
|
Repetitive Transcranial Magnetic Stimulation as a Potential Tool to Reduce Sexual Arousal: A Proof of Concept Study. J Sex Med 2020; 17:1553-1559. [DOI: 10.1016/j.jsxm.2020.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 11/23/2022]
|
19
|
Mostafavi SA, Khaleghi A, Mohammadi MR. Noninvasive brain stimulation in alcohol craving: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109938. [PMID: 32234509 DOI: 10.1016/j.pnpbp.2020.109938] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alcohol dependence (AD) is characterized by a set of physical and behavioral symptoms, which may include withdrawal, tolerance and craving. Recently, noninvasive brain stimulation (NIBS) methods, namely transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), have been investigated as possible new therapeutic approaches for adjusting the pathological neuroplasticity involved in alcohol dependence. Therefore, we conducted a systematic review and meta-analysis on the therapeutic uses of tDCS and rTMS in AD patients. METHODS A systematic search was performed on Scopus, Web of Science, PubMed, Cochrane library and ProQuest. Search terms presented the diagnoses of interest (alcohol dependence, alcohol craving, alcohol use disorders and hazardous drinkers) and the intervention of interest (NIBS, TMS, rTMS, TBS, tDCS, tACS and transcranial). Original articles reporting the use of tDCS or rTMS to treat AD were screened and studied by two researchers independently based on PRISMA guidelines. Next, in the meta-analysis step, random-effects model was utilized to measure the pooled effect size. RESULTS We found 34 eligible studies including 11 tDCS trials and 23 rTMS trials. Three of these studies were case-reports, four were open label trials and the remaining 27 were controlled trials which assessed tDCS/rTMS effects on the three cognitive, behavioral and biological dimensions in AD. The pooled standardized mean differences for the effects of tDCS and rTMS on alcohol cravings were - 0.13 [-0.34, 0.08] and - 0.43 [-1.02, 0.17], respectively. CONCLUSION There is no evidence for a positive effect of tDCS/rTMS on various dimensions of AD. We need more randomized, double blind, sham controlled trials with enough follow-up periods to evaluate the efficacy of tDCS/rTMS for alcohol dependence treatment.
Collapse
Affiliation(s)
- Seyed-Ali Mostafavi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khaleghi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Mohammadi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Qureshi AW, Bretherton L, Marsh B, Monk RL. Stimulation of the dorsolateral prefrontal cortex impacts conflict resolution in Level-1 visual perspective taking. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:565-574. [PMID: 32378060 PMCID: PMC7266805 DOI: 10.3758/s13415-020-00786-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Theory of mind is the ability to understand others' beliefs, mental states, and knowledge. Perspective-taking is a key part of this capacity, and while previous research has suggested that calculating another's perspective is relatively straightforward, executive function is required to resolve the conflict between the self and that other perspective. Previous studies have shown that theory of mind is selectively impaired by transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC). However, it has been hitherto unclear as to which specific aspect of perspective-taking is impacted. The current study administered rTMS (N = 31 adult participants) to the DLPFC (active condition) and vertex (control condition) in a within-subjects design. Participants completed a L1 VPT task after each stimulation session, and focus (relative performance on self-perspective trials compared with other perspective trials) and conflict indices (relative ability to resolve competing self/other perspectives) were calculated. Results showed that stimulation of the DLPFC selectively impaired the conflict index, suggesting that the DLPFC may be causally related with the resolution of conflict between self and other perspectives, and that self-other interference may rely on domain-general processes.
Collapse
Affiliation(s)
- Adam W Qureshi
- Department of Psychology, Edge Hill University, Ormskirk, L39 4PY, England.
| | - Laura Bretherton
- Department of Psychology, Edge Hill University, Ormskirk, L39 4PY, England
| | - Bethany Marsh
- Department of Psychology, Edge Hill University, Ormskirk, L39 4PY, England
| | - Rebecca L Monk
- Department of Psychology, Edge Hill University, Ormskirk, L39 4PY, England
| |
Collapse
|
21
|
Philip NS, Sorensen DO, McCalley DM, Hanlon CA. Non-invasive Brain Stimulation for Alcohol Use Disorders: State of the Art and Future Directions. Neurotherapeutics 2020; 17:116-126. [PMID: 31452080 PMCID: PMC7007491 DOI: 10.1007/s13311-019-00780-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alcohol use disorders remain one of the leading causes of mortality and morbidity across the world, yet despite this impact, there are few treatment options for patients suffering from these disorders. To this end, non-invasive brain stimulation, most commonly utilizing technologies including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), has recently emerged as promising potential treatments for alcohol use disorders. Enthusiasm for these interventions is fueled by their non-invasive nature, generally favorable safety profile, and ability to target and modulate brain regions implicated in substance use disorders. In this paper, we describe the underlying principles behind these commonly used stimulation technologies, summarize existing experiments and randomized controlled trials, and provide an integrative summary with suggestions for future areas of research. Currently available data generally supports the use of non-invasive brain stimulation as a near-term treatment for alcohol use disorder, with important caveats regarding the use of stimulation in this patient population.
Collapse
Affiliation(s)
- Noah S Philip
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, 830 Chalkstone Avenue, Providence, Rhode Island, 02908, USA.
- Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA.
| | - David O Sorensen
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, 830 Chalkstone Avenue, Providence, Rhode Island, 02908, USA
| | - Daniel M McCalley
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina, 29412, USA
| | - Colleen A Hanlon
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina, 29412, USA
| |
Collapse
|
22
|
Stein ER, Gibson BC, Votaw VR, Wilson AD, Clark VP, Witkiewitz K. Non-invasive brain stimulation in substance use disorders: implications for dissemination to clinical settings. Curr Opin Psychol 2019; 30:6-10. [PMID: 30684906 DOI: 10.1016/j.copsyc.2018.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
With expanding knowledge of how neural circuitry is disrupted in substance use disorders (SUD), non-invasive brain stimulation (NIBS) techniques have emerged as potential strategies to directly modulate those neural circuits. There is some evidence supporting the two most common forms of NIBS, transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), in the treatment of SUD. Yet results of recent studies have been mixed and critical methodological issues must be addressed before strong conclusions can be drawn. This review highlights recent evidence of NIBS for SUD, addressing the impact of stimulation on relevant clinical and cognitive outcomes in substance-using populations. Additionally, we aim to bring a clinical perspective to the opportunities and challenges of implementing neuromodulation in SUD treatment.
Collapse
Affiliation(s)
- Elena R Stein
- Department of Psychology, University of New Mexico, United States.
| | | | - Victoria R Votaw
- Department of Psychology, University of New Mexico, United States
| | - Adam D Wilson
- Department of Psychology, University of New Mexico, United States
| | - Vincent P Clark
- Department of Psychology, University of New Mexico, United States
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, United States
| |
Collapse
|