1
|
Santander T, Leslie S, Li LJ, Skinner HE, Simonson JM, Sweeney P, Deen KP, Miller MB, Brunye TT. Towards optimized methodological parameters for maximizing the behavioral effects of transcranial direct current stimulation. Front Hum Neurosci 2024; 18:1305446. [PMID: 39015825 PMCID: PMC11250584 DOI: 10.3389/fnhum.2024.1305446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) administers low-intensity direct current electrical stimulation to brain regions via electrodes arranged on the surface of the scalp. The core promise of tDCS is its ability to modulate brain activity and affect performance on diverse cognitive functions (affording causal inferences regarding regional brain activity and behavior), but the optimal methodological parameters for maximizing behavioral effects remain to be elucidated. Here we sought to examine the effects of 10 stimulation and experimental design factors across a series of five cognitive domains: motor performance, visual search, working memory, vigilance, and response inhibition. The objective was to identify a set of optimal parameter settings that consistently and reliably maximized the behavioral effects of tDCS within each cognitive domain. Methods We surveyed tDCS effects on these various cognitive functions in healthy young adults, ultimately resulting in 721 effects across 106 published reports. Hierarchical Bayesian meta-regression models were fit to characterize how (and to what extent) these design parameters differentially predict the likelihood of positive/negative behavioral outcomes. Results Consistent with many previous meta-analyses of tDCS effects, extensive variability was observed across tasks and measured outcomes. Consequently, most design parameters did not confer consistent advantages or disadvantages to behavioral effects-a domain-general model suggested an advantage to using within-subjects designs (versus between-subjects) and the tendency for cathodal stimulation (relative to anodal stimulation) to produce reduced behavioral effects, but these associations were scarcely-evident in domain-specific models. Discussion These findings highlight the urgent need for tDCS studies to more systematically probe the effects of these parameters on behavior to fulfill the promise of identifying causal links between brain function and cognition.
Collapse
Affiliation(s)
- Tyler Santander
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sara Leslie
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Luna J. Li
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Henri E. Skinner
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jessica M. Simonson
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick Sweeney
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kaitlyn P. Deen
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael B. Miller
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tad T. Brunye
- U. S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| |
Collapse
|
2
|
De Smet S, Razza LB, Pulopulos MM, De Raedt R, Baeken C, Brunoni AR, Vanderhasselt MA. Stress priming transcranial direct current stimulation (tDCS) enhances updating of emotional content in working memory. Brain Stimul 2024; 17:434-443. [PMID: 38565374 DOI: 10.1016/j.brs.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex has emerged as a valuable tool in psychiatric research. Understanding the impact of affective states, such as stress at the time of stimulation, on the efficacy of prefrontal tDCS is crucial for advancing tDCS interventions. Stress-primed tDCS, wherein stress is used as a priming agent, has the potential to modulate neural plasticity and enhance cognitive functions, particularly in emotional working memory. However, prior research using stress-primed tDCS focused solely on non-emotional working memory performance, yielding mixed results. In this sham-controlled study, we addressed this gap by investigating the effects of stress-primed bifrontal tDCS (active versus sham) on both non-emotional and emotional working memory performance. The study was conducted in 146 healthy individuals who were randomly assigned to four experimental groups. The Trier Social Stress Test (TSST) or a control variant of the test was used to induce a stress versus control state. The results showed that stress priming significantly enhanced the effects of tDCS on the updating of emotional content in working memory, as evidenced by improved accuracy. Notably, no significant effects of stress priming were found for non-emotional working memory performance. These findings highlight the importance of an individual's prior affective state in shaping their response to tDCS, especially in the context of emotional working memory.
Collapse
Affiliation(s)
- Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium; Brain Stimulation and Cognition (BSC) Lab, Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Lais B Razza
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands
| | - Andre R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, 05508-000, São Paulo, Brazil; Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium
| |
Collapse
|
3
|
Ankri YLE, Braw YC, Meiron O. Stress and Right Prefrontal Transcranial Direct Current Stimulation (tDCS) Interactive Effects on Visual Working Memory and Learning. Brain Sci 2023; 13:1642. [PMID: 38137090 PMCID: PMC10741696 DOI: 10.3390/brainsci13121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Stress impacts prefrontal cortex (PFC) activity and modulates working memory performance. In a recent study, stimulating the dorsolateral PFC (dlPFC) using transcranial direct current stimulation (tDCS) interacted with social stress in modulating participants' working memory. More specifically, stress disrupted the enhancing effects of dlPFC tDCS on working memory performance. The current study aimed to further explore these initial findings by randomizing healthy females to four experimental conditions (N = 130); stimulation (right dlPFC tDCS vs. sham) and stress manipulation (social stress vs. control). Participants performed cognitive tasks (i.e., visual working memory task and a visual declarative memory task) at baseline and post-stimulation. They also completed self-report measures of stress and anxiety. A significant stimulation × stress interaction was evident in the declarative memory (One-Card Learning, OCL) task, while working memory performance was unaffected. Though tDCS stimulation and stress did not interact to affect working memory, further research is warranted as these initial findings suggest that immediate visual-memory learning may be affected by these factors. The limited number of earlier studies, as well as the variability in their designs, provides additional impetus for studying the interactive effects of stress and tDCS on human visual learning.
Collapse
Affiliation(s)
- Yael L. E. Ankri
- Department of Psychology, Ariel University, Ariel 4077625, Israel; (Y.L.E.A.); (Y.C.B.)
| | - Yoram C. Braw
- Department of Psychology, Ariel University, Ariel 4077625, Israel; (Y.L.E.A.); (Y.C.B.)
| | - Oded Meiron
- Faculty of Education, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Clinical Research Center for Brain Sciences, Herzog Medical Center, P.O. Box 3900, Jerusalem 9103702, Israel
| |
Collapse
|
4
|
Kho SK, Keeble DRT, Wong HK, Estudillo AJ. Investigating the role of the fusiform face area and occipital face area using multifocal transcranial direct current stimulation. Neuropsychologia 2023; 189:108663. [PMID: 37611740 DOI: 10.1016/j.neuropsychologia.2023.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
The functional role of the occipital face area (OFA) and the fusiform face area (FFA) in face recognition is inconclusive to date. While some research has shown that the OFA and FFA are involved in early (i.e., featural processing) and late (i.e., holistic processing) stages of face recognition respectively, other research suggests that both regions are involved in both early and late stages of face recognition. Thus, the current study aims to further examine the role of the OFA and the FFA using multifocal transcranial direct current stimulation (tDCS). In Experiment 1, we used computer-generated faces. Thirty-five participants completed whole face and facial features (i.e., eyes, nose, mouth) recognition tasks after OFA and FFA stimulation in a within-subject design. No difference was found in recognition performance after either OFA or FFA stimulation. In Experiment 2 with 60 participants, we used real faces, provided stimulation following a between-subjects design and included a sham control group. Results showed that FFA stimulation led to enhanced efficiency of facial features recognition. Additionally, no effect of OFA stimulation was found for either facial feature or whole face recognition. These results suggest the involvement of FFA in the recognition of facial features.
Collapse
Affiliation(s)
- Siew Kei Kho
- Department of Psychology, Bournemouth University, UK; School of Psychology, University of Nottingham, Malaysia.
| | | | - Hoo Keat Wong
- School of Psychology, University of Nottingham, Malaysia
| | - Alejandro J Estudillo
- Department of Psychology, Bournemouth University, UK; School of Psychology, University of Nottingham, Malaysia.
| |
Collapse
|
5
|
Schutter DJ, Smits F, Klaus J. Mind matters: A narrative review on affective state-dependency in non-invasive brain stimulation. Int J Clin Health Psychol 2023; 23:100378. [PMID: 36866122 PMCID: PMC9971283 DOI: 10.1016/j.ijchp.2023.100378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Variability in findings related to non-invasive brain stimulation (NIBS) have increasingly been described as a result of differences in neurophysiological state. Additionally, there is some evidence suggesting that individual differences in psychological states may correlate with the magnitude and directionality of effects of NIBS on the neural and behavioural level. In this narrative review, it is proposed that the assessment of baseline affective states can quantify non-reductive properties which are not readily accessible to neuroscientific methods. Particularly, affective-related states are theorized to correlate with physiological, behavioural and phenomenological effects of NIBS. While further systematic research is needed, baseline psychological states are suggested to provide a complementary cost-effective source of information for understanding variability in NIBS outcomes. Implementing measures of psychological state may potentially contribute to increasing the sensitivity and specificity of results in experimental and clinical NIBS studies.
Collapse
Affiliation(s)
- Dennis J.L.G. Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Fenne Smits
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Brain Research & Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, The Netherlands
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Majdi A, Asamoah B, Mc Laughlin M. Reinterpreting published tDCS results in terms of a cranial and cervical nerve co-stimulation mechanism. Front Hum Neurosci 2023; 17:1101490. [PMID: 37415857 PMCID: PMC10320219 DOI: 10.3389/fnhum.2023.1101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation method that has been used to alter cognition in hundreds of experiments. During tDCS, a low-amplitude current is delivered via scalp electrodes to create a weak electric field in the brain. The weak electric field causes membrane polarization in cortical neurons directly under the scalp electrodes. It is generally assumed that this mechanism causes the observed effects of tDCS on cognition. However, it was recently shown that some tDCS effects are not caused by the electric field in the brain but rather via co-stimulation of cranial and cervical nerves in the scalp that also have neuromodulatory effects that can influence cognition. This peripheral nerve co-stimulation mechanism is not controlled for in tDCS experiments that use the standard sham condition. In light of this new evidence, results from previous tDCS experiments could be reinterpreted in terms of a peripheral nerve co-stimulation mechanism. Here, we selected six publications that reported tDCS effects on cognition and attributed the effects to the electric field in the brain directly under the electrode. We then posed the question: given the known neuromodulatory effects of cranial and cervical nerve stimulation, could the reported results also be understood in terms of tDCS peripheral nerve co-stimulation? We present our re-interpretation of these results as a way to stimulate debate within the neuromodulation field and as a food-for-thought for researchers designing new tDCS experiments.
Collapse
Affiliation(s)
- Alireza Majdi
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boateng Asamoah
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Moses TE, Gray E, Mischel N, Greenwald MK. Effects of neuromodulation on cognitive and emotional responses to psychosocial stressors in healthy humans. Neurobiol Stress 2023; 22:100515. [PMID: 36691646 PMCID: PMC9860364 DOI: 10.1016/j.ynstr.2023.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Physiological and psychological stressors can exert wide-ranging effects on the human brain and behavior. Research has improved understanding of how the sympatho-adreno-medullary (SAM) and hypothalamic-pituitary-adrenocortical (HPA) axes respond to stressors and the differential responses that occur depending on stressor type. Although the physiological function of SAM and HPA responses is to promote survival and safety, exaggerated psychobiological reactivity can occur in psychiatric disorders. Exaggerated reactivity may occur more for certain types of stressors, specifically, psychosocial stressors. Understanding stressor effects and how the body regulates these responses can provide insight into ways that psychobiological reactivity can be modulated. Non-invasive neuromodulation is one way that responding to stressors may be altered; research into these interventions may provide further insights into the brain circuits that modulate stress reactivity. This review focuses on the effects of acute psychosocial stressors and how neuromodulation might be effective in altering stress reactivity. Although considerable research into stress interventions focuses on treating pathology, it is imperative to first understand these mechanisms in non-clinical populations; therefore, this review will emphasize populations with no known pathology and consider how these results may translate to those with psychiatric pathologies.
Collapse
Affiliation(s)
| | | | | | - Mark K. Greenwald
- Corresponding author. Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
| |
Collapse
|
8
|
Smits FM, Geuze E, de Kort GJ, Kouwer K, Geerlings L, van Honk J, Schutter DJ. Effects of Multisession Transcranial Direct Current Stimulation on Stress Regulation and Emotional Working Memory: A Randomized Controlled Trial in Healthy Military Personnel. Neuromodulation 2022:S1094-7159(22)00721-8. [DOI: 10.1016/j.neurom.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 10/16/2022]
|
9
|
Cranial Electrotherapy Stimulation (CES) Does Not Reliably Influence Emotional, Physiological, Biochemical, or Behavioral Responses to Acute Stress. JOURNAL OF COGNITIVE ENHANCEMENT 2022. [DOI: 10.1007/s41465-022-00248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Caulfield KA, Indahlastari A, Nissim NR, Lopez JW, Fleischmann HH, Woods AJ, George MS. Electric Field Strength From Prefrontal Transcranial Direct Current Stimulation Determines Degree of Working Memory Response: A Potential Application of Reverse-Calculation Modeling? Neuromodulation 2022; 25:578-587. [PMID: 35670064 DOI: 10.1111/ner.13342] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) for working memory is an enticing treatment, but there is mixed evidence to date. OBJECTIVES We tested the effects of electric field strength from uniform 2 mA dosing on working memory change from prestimulation to poststimulation. Second, we statistically evaluated a reverse-calculation method of individualizing tDCS dose and its effect on normalizing electric field at the cortex. MATERIALS AND METHODS We performed electric field modeling on a data set of 28 healthy older adults (15 women, mean age = 73.7, SD = 7.3) who received ten sessions of active 2 mA tDCS (N = 14) or sham tDCS (N = 14) applied over bilateral dorsolateral prefrontal cortices (DLPFC) in a triple-blind design. We evaluated the relationship between electric field strength and working memory change on an N-back task in conditions of above-median, high electric field from active 2 mA (N = 7), below-median, low electric field from active 2 mA (N = 7), and sham (N = 14) at regions of interest (ROI) at the left and right DLPFC. We then determined the individualized reverse-calculation dose to produce the group average electric field and measured the electric field variance between uniform 2 mA doses vs individualized reverse-calculation doses at the same ROIs. RESULTS Working memory improvements from pre- to post-tDCS were significant for the above-median electric field from active 2 mA condition at the left DLPFC (mixed ANOVA, p = 0.013). Furthermore, reverse-calculation modeling significantly reduced electric field variance at both ROIs (Levene's test; p < 0.001). CONCLUSIONS Higher electric fields at the left DLPFC from uniform 2 mA doses appear to drive working memory improvements from tDCS. Individualized doses from reverse-calculation modeling significantly reduce electric field variance at the cortex. Taken together, using reverse-calculation modeling to produce the same, high electric fields at the cortex across participants may produce more effective future tDCS treatments for working memory.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nicole R Nissim
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - James W Lopez
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Holly H Fleischmann
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Mark S George
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
11
|
Braley MS, Thornton AE, Loken Thornton W. Anxiety symptoms and theory of mind in older and younger adults: curvilinearity moderated by age group. Aging Ment Health 2022; 27:829-837. [PMID: 35475407 DOI: 10.1080/13607863.2022.2060183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVES Theory of mind (ToM), the ability to reason about mental states, declines in later life. While anxiety symptoms may predict ToM abilities, the nature of associations requires more elucidation. Further, it is unknown whether age group moderates associational patterns. We examined associations between anxiety symptoms (linear and curvilinear) and cognitive ToM (C-ToM) and affective ToM (A-ToM); and moderation by age group (older vs. younger adults). METHODS In a sample of healthy younger (n = 90, Mage = 20.17 years) and older adults (n = 87, Mage = 71.52), we used hierarchical regressions with polynomial and interaction terms to assess the association between anxiety symptoms and ToM in younger and older adults. RESULTS Anxiety symptoms were associated with C-ToM but not A-ToM. Age group interacted linearly with anxiety (β = -1.64, p = .02), and with anxiety's quadratic polynomial (β = .84, p = .04). The inverted-U shaped association in younger adults (highest C-ToM at moderate anxiety) contrasted with older adults' linear decline in C-ToM with increasing anxiety. CONCLUSION We highlight the importance of anxiety symptoms for predicting ToM, and clarify that associations vary by age. Elucidating associations may be critical to developing interventions that improve social wellbeing.
Collapse
Affiliation(s)
- McKenzie S Braley
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Allen E Thornton
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
12
|
Bulubas L, Goerigk S, Gomes JS, Brem AK, Carvalho JB, Pinto BS, Elkis H, Gattaz WF, Padberg F, Brunoni AR, Valiengo L. Cognitive outcomes after tDCS in schizophrenia patients with prominent negative symptoms: Results from the placebo-controlled STARTS trial. Schizophr Res 2021; 235:44-51. [PMID: 34304146 DOI: 10.1016/j.schres.2021.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022]
Abstract
Cognitive deficits and negative symptoms in schizophrenia are associated with poor functional outcomes and limited in terms of treatment. The Schizophrenia Treatment With Electric Transcranial Stimulation (STARTS) trial has shown efficacy of transcranial direct current stimulation (tDCS) for improving negative symptoms. In this secondary analysis, we investigate its effects on cognitive performance. In STARTS, a double-blinded, sham-controlled, randomized clinical trial, patients were treated with twice-daily, 20-min, 2-mA fronto-temporal tDCS over 5 days or sham-tDCS. In 90 patients, we evaluated the cognitive performance up to 12 weeks post-treatment. We found that active-tDCS showed no beneficial effects over sham-tDCS in any of the tests. Based on a 5-factor cognitive model, improvements of executive functions and delayed memory were observed in favor of sham-tDCS. Overall, the applied active-tDCS protocol, primarily designed to improve negative symptoms, did not promote cognitive improvement. We discuss possible protocol modification potentially required to increase tDCS effects on cognition. ClinicalTrials.gov identifier: NCT02535676.
Collapse
Affiliation(s)
- Lucia Bulubas
- Department of Psychiatry and Psychotherapy, LMU Hospital, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Stephan Goerigk
- Department of Psychiatry and Psychotherapy, LMU Hospital, Munich, Germany; Department of Psychological Methodology and Assessment, LMU, Munich, Germany; Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - July S Gomes
- Schizophrenia Program, Dep. of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland; Department of Neuropsychology, Lucerne Psychiatry, Switzerland; Division of Interventional Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Juliana B Carvalho
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bianca S Pinto
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Helio Elkis
- Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, LMU Hospital, Munich, Germany
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Leandro Valiengo
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Schlatter S, Guillot A, Schmidt L, Mura M, Trama R, Di Rienzo F, Lilot M, Debarnot U. Combining proactive transcranial stimulation and cardiac biofeedback to substantially manage harmful stress effects. Brain Stimul 2021; 14:1384-1392. [PMID: 34438047 DOI: 10.1016/j.brs.2021.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous studies have identified the dorsolateral prefrontal cortex (dlPFC) as a core region in cognitive emotional regulation. Transcranial direct current stimulations of the dlPFC (tDCS) and heart-rate variability biofeedback (BFB) are known to regulate emotional processes. However, the effect of these interventions applied either alone or concomitantly during an anticipatory stress remains unexplored. OBJECTIVE The study investigated the effect of anodal tDCS and BFB, alone or combined, on psychophysiological stress responses and cognitive functioning. METHODS Following a stress anticipation induction, 80 participants were randomized into four groups and subjected to a 15-min intervention: neutral video viewing (ctrl), left dlPFC anodal tDCS (tdcs), heart-rate variability biofeedback (bfb), or a combined treatment (bfb + tdcs). Participants were then immediately confronted with the stressor, which was followed by an assessment of executive functions. Psychophysiological stress responses were assessed throughout the experiment (heart rate, heart-rate variability, salivary cortisol). RESULTS The tdcs did not modulate stress responses. Compared with both ctrl and tdcs interventions, bfb reduced physiological stress and improved executive functions after the stressor. The main finding revealed that bfb + tdcs was the most effective intervention, yielding greater reduction in psychological and physiological stress responses than bfb. CONCLUSIONS Combining preventive tDCS with BFB is a relevant interventional approach to reduce psychophysiological stress responses, hence offering a new and non-invasive treatment of stress-related disorders. Biofeedback may be particularly useful for preparing for an important stressful event when performance is decisive.
Collapse
Affiliation(s)
- Sophie Schlatter
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622, Villeurbanne, France; Centre Lyonnais d'Enseignement par Simulation en Santé (CLESS, high fidelity medical simulation centre), SAMSEI, Lyon, France.
| | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622, Villeurbanne, France.
| | - Laura Schmidt
- Université Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France; Centre Lyonnais d'Enseignement par Simulation en Santé (CLESS, high fidelity medical simulation centre), SAMSEI, Lyon, France.
| | - Mathilde Mura
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622, Villeurbanne, France.
| | - Robin Trama
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622, Villeurbanne, France.
| | - Franck Di Rienzo
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622, Villeurbanne, France.
| | - Marc Lilot
- Université Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France; Hospices Civils de Lyon, Departments of Anaesthesia and Intensive Care, University Claude Bernard Lyon 1, Lyon, France; Centre Lyonnais d'Enseignement par Simulation en Santé (CLESS, high fidelity medical simulation centre), SAMSEI, Lyon, France.
| | - Ursula Debarnot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69 622, Villeurbanne, France; Institut Universitaire de France, France.
| |
Collapse
|
14
|
Wischnewski M, Mantell KE, Opitz A. Identifying regions in prefrontal cortex related to working memory improvement: A novel meta-analytic method using electric field modeling. Neurosci Biobehav Rev 2021; 130:147-161. [PMID: 34418436 DOI: 10.1016/j.neubiorev.2021.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Altering cortical activity using transcranial direct current stimulation (tDCS) has been shown to improve working memory (WM) performance. Due to large inter-experimental variability in the tDCS montage configuration and strength of induced electric fields, results have been mixed. Here, we present a novel meta-analytic method relating behavioral effect sizes to electric field strength to identify brain regions underlying largest tDCS-induced WM improvement. Simulations on 69 studies targeting left prefrontal cortex showed that tDCS electric field strength in lower dorsolateral prefrontal cortex (Brodmann area 45/47) relates most strongly to improved WM performance. This region explained 7.8 % of variance, equaling a medium effect. A similar region was identified when correlating WM performance and electric field strength of right prefrontal tDCS studies (n = 18). Maximum electric field strength of five previously used tDCS configurations were outside of this location. We thus propose a new tDCS montage which maximizes the tDCS electric field strength in that brain region. Our findings can benefit future tDCS studies that aim to affect WM function.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States.
| | - Kathleen E Mantell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Suen PJC, Doll S, Batistuzzo MC, Busatto G, Razza LB, Padberg F, Mezger E, Bulubas L, Keeser D, Deng ZD, Brunoni AR. Association between tDCS computational modeling and clinical outcomes in depression: data from the ELECT-TDCS trial. Eur Arch Psychiatry Clin Neurosci 2021; 271:101-110. [PMID: 32279145 PMCID: PMC8100980 DOI: 10.1007/s00406-020-01127-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation intervention investigated for the treatment of depression. Clinical results have been heterogeneous, partly due to the variability of electric field (EF) strength in the brain owing to interindividual differences in head anatomy. Therefore, we investigated whether EF strength was correlated with behavioral changes in 16 depressed patients using simulated electric fields in real patient data from a controlled clinical trial. We hypothesized that EF strength in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC), brain regions implicated in depression pathophysiology, would be associated with changes in depression, mood and anxiety scores. SimNIBS were used to simulate individual electric fields based on the MRI structural T1-weighted brain scans of depressed subjects. Linear regression models showed, at the end of the acute treatment phase, that simulated EF strength was inversely associated with negative affect in the bilateral ACC (left: β = - 160.463, CI [- 291.541, - 29.385], p = 0.021; right: β = - 189.194, CI [- 289.479, - 88.910], p = 0.001) and DLPFC (left: β = - 93.210, CI [- 154.960, - 31.461], p = 0.006; right: β = - 82.564, CI [- 142.867, - 22.262], p = 0.011) and with depression scores in the left ACC (β = - 156.91, CI [- 298.51, - 15.30], p = 0.033). No association between positive affect or anxiety scores, and simulated EF strength in the investigated brain regions was found. To conclude, our findings show preliminary evidence that EF strength simulations might be associated with further behavioral changes in depressed patients, unveiling a potential mechanism of action for tDCS. Further studies should investigate whether individualization of EF strength in key brain regions impact clinical response.
Collapse
Affiliation(s)
- Paulo J. C. Suen
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sarah Doll
- Department of Psychology, University of Münster, Münster, Germany
| | | | - Geraldo Busatto
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA) and Laboratory of Psychiatric Neuroimaging, Department and Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Lais B. Razza
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Service of Interdisciplinary Neuromodulation, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Instituto de Psiquiatria, R Dr Ovidio Pires de Campos 785, 2o andar, Ala Sul, São Paulo, CEP 05403-000, Brazil
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany,Department of Clinical Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Andre R. Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Service of Interdisciplinary Neuromodulation, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Instituto de Psiquiatria, R Dr Ovidio Pires de Campos 785, 2o andar, Ala Sul, São Paulo, CEP 05403-000, Brazil,Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo and Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, São Paulo 05508-000, Brazil
| |
Collapse
|