1
|
Blinch J, Trovinger C, DeWinne CR, de Cellio Martins G, Ifediora CN, Nourollahimoghadam M, Harry JR, Palmer TB. Tradeoffs of estimating reaction time with absolute and relative thresholds. Behav Res Methods 2024; 56:4695-4715. [PMID: 37626277 DOI: 10.3758/s13428-023-02211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
Measuring the duration of cognitive processing with reaction time is fundamental to several subfields of psychology. Many methods exist for estimating movement initiation when measuring reaction time, but there is an incomplete understanding of their relative performance. The purpose of the present study was to identify and compare the tradeoffs of 19 estimates of movement initiation across two experiments. We focused our investigation on estimating movement initiation on each trial with filtered kinematic and kinetic data. Nine of the estimates involved absolute thresholds (e.g., acceleration 1000 back to 200 mm/s2, micro push-button switch), and the remaining ten estimates used relative thresholds (e.g., force extrapolation, 5% of maximum velocity). The criteria were the duration of reaction time, immunity to the movement amplitude, responsiveness to visual feedback during movement execution, reliability, and the number of manually corrected trials (efficacy). The three best overall estimates, in descending order, were yank extrapolation, force extrapolation, and acceleration 1000 to 200 mm/s2. The sensitive micro push-button switch, which was the simplest estimate, had a decent overall score, but it was a late estimate of movement initiation. The relative thresholds based on kinematics had the six worst overall scores. An issue with the relative kinematic thresholds was that they were biased by the movement amplitude. In summary, we recommend measuring reaction time on each trial with one of the three best overall estimates of movement initiation. Future research should continue to refine existing estimates while also exploring new ones.
Collapse
Affiliation(s)
- Jarrod Blinch
- Department of Kinesiology & Sport Management, Texas Tech University, Box 43011, Lubbock, TX, 79409, USA.
| | - Coby Trovinger
- Department of Kinesiology & Sport Management, Texas Tech University, Box 43011, Lubbock, TX, 79409, USA
| | - Callie R DeWinne
- Department of Kinesiology & Sport Management, Texas Tech University, Box 43011, Lubbock, TX, 79409, USA
| | | | - Chelsea N Ifediora
- Department of Kinesiology & Sport Management, Texas Tech University, Box 43011, Lubbock, TX, 79409, USA
| | - Maryam Nourollahimoghadam
- Department of Kinesiology & Sport Management, Texas Tech University, Box 43011, Lubbock, TX, 79409, USA
| | - John R Harry
- Department of Kinesiology & Sport Management, Texas Tech University, Box 43011, Lubbock, TX, 79409, USA
| | - Ty B Palmer
- Department of Kinesiology & Sport Management, Texas Tech University, Box 43011, Lubbock, TX, 79409, USA
| |
Collapse
|
2
|
Klapp ST, Maslovat D. Working memory involvement in action planning does not include timing initiation structure. PSYCHOLOGICAL RESEARCH 2024; 88:1413-1425. [PMID: 38874596 DOI: 10.1007/s00426-024-01986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
A fundamental limitation in the type of information that can be retained in working memory is identified in this theoretical / review article. The analysis is based on studies of skilled motor performance that were not initially conceived in terms of working memory. Findings from a long history of experimentation involving reaction time (RT) prior to making a brief motor response indicate that although the parameters representing the goal to be achieved by the response can be retained in working memory, the control code that implements timing of action components cannot. This lack of working memory requires that the "timing code" must be compiled immediately prior to the moment that it is to be utilized; it is not possible to be fully ready to respond earlier. This compiling process increases RT and may also underlie both the psychological refractory period effect and the difficulty of generating concurrent motor actions with independent timing. These conclusions extend, but do not conflict with, other models of working memory.
Collapse
Affiliation(s)
- Stuart T Klapp
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Dana Maslovat
- School of Human Kinetics, University of Ottawa, 125 University Private, Ottawa, ON, K1N 1A2, Canada.
| |
Collapse
|
3
|
Khan MA, Kurniawan A, Khan MER, Khan MCM, Smith KL, Scharoun Benson S, Carlsen AN, Lawrence GP. The influence of foreperiod duration on the preparation and control of sequential aiming movements. Q J Exp Psychol (Hove) 2024; 77:242-256. [PMID: 36847427 PMCID: PMC10798029 DOI: 10.1177/17470218231162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Reaction time (RT) and movement times (MTs) to the first target are typically longer for two-target sequential movements compared to one-target movements. While this one-target advantage has been shown to be dependent on the availability of advance information about the numbers of targets, there has been no systematic investigation of how foreperiod duration (i.e., interval between presentation of the target(s) and stimulus) influences the planning and execution of sequential movements. Two experiments were performed to examine how the one-target advantage is influenced by the availability and timing of advance target information. In Experiment 1, participants performed one- and two-target movements in two separate blocks. In Experiment 2, target conditions were randomised from trial to trial. The interval between target(s) appearing and stimulus tone (i.e., foreperiod) was varied randomly (0, 500, 1,000, 1,500, and 2,000 ms). The results of Experiment 1 revealed that while the one-target advantage in RT was not influenced by foreperiod duration, the one-target advantage in MT increased as foreperiod duration increased. The variability of endpoints at the first target was greater in the two- compared to one-target condition. In Experiment 2, the one-target advantage in both RT and MT increased as the length of the foreperiod increased. However, there was no difference in limb trajectory variability between target conditions. The implication of these findings for theories of motor planning and execution of multiple segment movements is discussed.
Collapse
Affiliation(s)
- Michael A Khan
- Department of Kinesiology, Trent University, Peterborough, Ontario, Canada
| | - Aryan Kurniawan
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Madison ER Khan
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Michaela CM Khan
- Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristy L Smith
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Sara Scharoun Benson
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Anthony N Carlsen
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Gavin P Lawrence
- Institute for the Psychology of Elite Performance, School of Human and Behavioural Sciences, Bangor University, Bangor, UK
| |
Collapse
|
4
|
Castellucci GA, Kovach CK, Tabasi F, Christianson D, Greenlee JD, Long MA. A frontal cortical network is critical for language planning during spoken interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554639. [PMID: 37693383 PMCID: PMC10491113 DOI: 10.1101/2023.08.26.554639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Many brain areas exhibit activity correlated with language planning, but the impact of these dynamics on spoken interaction remains unclear. Here we use direct electrical stimulation to transiently perturb cortical function in neurosurgical patient-volunteers performing a question-answer task. Stimulating structures involved in speech motor function evoked diverse articulatory deficits, while perturbations of caudal inferior and middle frontal gyri - which exhibit preparatory activity during conversational turn-taking - led to response errors. Perturbation of the same planning-related frontal regions slowed inter-speaker timing, while faster responses could result from stimulation of sites located in other areas. Taken together, these findings further indicate that caudal inferior and middle frontal gyri constitute a critical planning network essential for interactive language use.
Collapse
|
5
|
Slowed reaction times in cognitive fatigue are not attributable to declines in motor preparation. Exp Brain Res 2022; 240:3033-3047. [PMID: 36227342 DOI: 10.1007/s00221-022-06444-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/13/2022] [Indexed: 11/04/2022]
Abstract
Cognitive fatigue (CF) can result from sustained mental effort, is characterized by subjective feelings of exhaustion and cognitive performance deficits, and is associated with slowed simple reaction time (RT). This study determined whether declines in motor preparation underlie this RT effect. Motor preparation level was indexed using simple RT and the StartReact effect, wherein a prepared movement is involuntarily triggered at short latency by a startling acoustic stimulus (SAS). It was predicted that if decreased motor preparation underlies CF-associated RT increases, then an attenuated StartReact effect would be observed following cognitive task completion. Subjective fatigue assessment and a simple RT task were performed before and after a cognitively fatiguing task or non-fatiguing control intervention. On 25% of RT trials, a SAS replaced the go-signal to assess the StartReact effect. CF inducement was verified by significant declines in cognitive performance (p = 0.003), along with increases in subjective CF (p < 0.001) and control RT (p = 0.018) following the cognitive fatigue intervention, but not the control intervention. No significant pre-to-post-test changes in SAS RT were observed, indicating that RT increases resulting from CF are not substantially associated with declines in motor preparation, and instead may be attributable to other stages of processing during a simple RT task.
Collapse
|
6
|
Soghoyan G, Aksiotis V, Rusinova A, Myachykov A, Tumyalis A. An adaptive paradigm for detecting the individual duration of the preparatory period in the choice reaction time task. PLoS One 2022; 17:e0273234. [PMID: 36083888 PMCID: PMC9462575 DOI: 10.1371/journal.pone.0273234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
According to the sequential stage model, the selection and the execution of a motor response are two distinct independent processes. Here, we propose a new adaptive paradigm for identifying the individual duration of the response preparatory period based on the motor reaction time (RT) data. The results are compared using the paradigm with constant values of the preparatory period. Two groups of participants performed on either an easy (Group 1) or a hard (Group 2) response selection task with two types of stimuli based on the preparatory period parameters: (1) stimuli with a constant preparatory period duration of 0 or 1200 ms and (2) stimuli with adaptive preparatory period durations. Our analysis showed an increase in the duration of the response selection process as a function of increasing task complexity when using both paradigms with constant and adaptive values of the preparatory period duration. We conclude that the adaptive paradigm proposed in the current paper has several important advantages over the constant paradigm in terms of measuring the response accuracy while being equally efficiently in capturing other critical response parameters.
Collapse
Affiliation(s)
- Gurgen Soghoyan
- Center for Bioelectric Interfaces, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow, Russian Federation
| | - Vladislav Aksiotis
- Center for Bioelectric Interfaces, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow, Russian Federation
| | - Anna Rusinova
- Center for Bioelectric Interfaces, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow, Russian Federation
| | - Andriy Myachykov
- Department of Psychology, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow, Russian Federation
| | - Alexey Tumyalis
- Center for Bioelectric Interfaces, Institute for Cognitive Neuroscience, Higher School of Economics University, Moscow, Russian Federation
| |
Collapse
|
7
|
Castellucci GA, Guenther FH, Long MA. A Theoretical Framework for Human and Nonhuman Vocal Interaction. Annu Rev Neurosci 2022; 45:295-316. [PMID: 35316612 PMCID: PMC9909589 DOI: 10.1146/annurev-neuro-111020-094807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vocal communication is a critical feature of social interaction across species; however, the relation between such behavior in humans and nonhumans remains unclear. To enable comparative investigation of this topic, we review the literature pertinent to interactive language use and identify the superset of cognitive operations involved in generating communicative action. We posit these functions comprise three intersecting multistep pathways: (a) the Content Pathway, which selects the movements constituting a response; (b) the Timing Pathway, which temporally structures responses; and (c) the Affect Pathway, which modulates response parameters according to internal state. These processing streams form the basis of the Convergent Pathways for Interaction framework, which provides a conceptual model for investigating the cognitive and neural computations underlying vocal communication across species.
Collapse
Affiliation(s)
- Gregg A. Castellucci
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
| | - Frank H. Guenther
- Departments of Speech, Language & Hearing Sciences and Biomedical Engineering, Boston University, Boston, MA, USA
| | - Michael A. Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
8
|
Sadler CM, Maslovat D, Cressman EK, Dutil C, Carlsen AN. Response Preparation of a Secondary Reaction Time Task is Influenced by Movement Phase within a Continuous Visuomotor Tracking Task. Eur J Neurosci 2022; 56:3645-3659. [PMID: 35445463 DOI: 10.1111/ejn.15675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
The simultaneous performance of two motor tasks is challenging. Currently, it is unclear how response preparation of a secondary task is impacted by the performance of a continuous primary task. The purpose of the present experiment was to investigate whether the position of the limb performing the primary cyclical tracking task impacts response preparation of a secondary reaction time task. Participants (n=20) performed a continuous tracking task with their left hand that involved cyclical and targeted wrist flexion and extension. Occasionally, a probe reaction time task requiring isometric wrist extension was performed with the right hand in response to an auditory stimulus (80 dB or 120 dB) that was triggered when the left hand passed through one of ten locations identified within the movement cycle. On separate trials, transcranial magnetic stimulation was applied over the left primary motor cortex and triggered at the same 10 stimulus locations to assess corticospinal excitability associated with the probe reaction time task. Results revealed that probe reaction times were significantly longer and motor evoked potential amplitudes were significantly larger when the left hand was in the middle of a movement cycle compared to an endpoint, suggesting that response preparation of a secondary probe reaction time task was modulated by the phase of movement within the continuous primary task. These results indicate that primary motor task requirements can impact preparation of a secondary task, reinforcing the importance of considering primary task characteristics in dual-task experimental design.
Collapse
|
9
|
Response triggering by an acoustic stimulus increases with stimulus intensity and is best predicted by startle reflex activation. Sci Rep 2021; 11:23612. [PMID: 34880317 PMCID: PMC8655082 DOI: 10.1038/s41598-021-02825-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
In a simple reaction time task, the presentation of a startling acoustic stimulus has been shown to trigger the prepared response at short latency, known as the StartReact effect. However, it is unclear under what conditions it can be assumed that the loud stimulus results in response triggering. The purpose of the present study was to examine how auditory stimulus intensity and preparation level affect the probability of involuntary response triggering and the incidence of activation in the startle reflex indicator of sternocleidomastoid (SCM). In two reaction time experiments, participants were presented with an irrelevant auditory stimulus of varying intensities at various time points prior to the visual go-signal. Responses were independently categorized as responding to either the auditory or visual stimulus and those with or without SCM activation (i.e., SCM+/−). Both the incidence of response triggering and proportion of SCM+ trials increased with stimulus intensity and presentation closer to the go-signal. Data also showed that participants reacted to the auditory stimulus at a much higher rate on trials where the auditory stimulus elicited SCM activity versus those that did not, and a logistic regression analysis confirmed that SCM activation is a reliable predictor of response triggering for all conditions.
Collapse
|
10
|
Rothwell J, Antal A, Burke D, Carlsen A, Georgiev D, Jahanshahi M, Sternad D, Valls-Solé J, Ziemann U. Central nervous system physiology. Clin Neurophysiol 2021; 132:3043-3083. [PMID: 34717225 PMCID: PMC8863401 DOI: 10.1016/j.clinph.2021.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
This is the second chapter of the series on the use of clinical neurophysiology for the study of movement disorders. It focusses on methods that can be used to probe neural circuits in brain and spinal cord. These include use of spinal and supraspinal reflexes to probe the integrity of transmission in specific pathways; transcranial methods of brain stimulation such as transcranial magnetic stimulation and transcranial direct current stimulation, which activate or modulate (respectively) the activity of populations of central neurones; EEG methods, both in conjunction with brain stimulation or with behavioural measures that record the activity of populations of central neurones; and pure behavioural measures that allow us to build conceptual models of motor control. The methods are discussed mainly in relation to work on healthy individuals. Later chapters will focus specifically on changes caused by pathology.
Collapse
Affiliation(s)
- John Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK,Corresponding author at: Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, (J. Rothwell)
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Germany
| | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney 2050, Australia
| | - Antony Carlsen
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dagmar Sternad
- Departments of Biology, Electrical & Computer Engineering, and Physics, Northeastern University, Boston, MA 02115, USA
| | - Josep Valls-Solé
- Institut d’Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
11
|
Rosenbaum DA. The Ultimate Tool: The Body, Planning of Physical Actions, and the Role of Mental Imagery in Choosing Motor Acts. Top Cogn Sci 2021; 13:777-799. [PMID: 34291879 DOI: 10.1111/tops.12561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
The ultimate tool, it could be said, is the brain and body. Therefore, a way to understand tool use is to study the brain's control of the body. A more manageable aim is to use the tools of cognitive science to explore the planning of physical actions. Here, I focus on two kinds of physical acts which directly or indirectly involve tool use: producing finger-press sequences, and walking and reaching for objects. The main question is how people make choices between finger-press sequences, and how people make choices between walk-and-reach sequences. Are the choices made with reference to motor imagery, in which case the longer the sequences are the longer it takes to choose between them, or are shortcuts taken which rely on distinctive features of the alternatives? The reviewed experiments favor the latter alternative. The general view of action planning emerging from this work is one in which action features are highlighted and held in memory, not just to choose between potential actions but also to control the unfolding of long actions over time. Speculations are offered about tool use.
Collapse
|