1
|
Santana de Andrade JC, Benchimol M, de Souza W. Stimulation of microvesicle secretion in Trichomonas vaginalis. Exp Parasitol 2024; 259:108722. [PMID: 38395187 DOI: 10.1016/j.exppara.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Trichomonas vaginalis is an extracellular flagellate protozoan and the etiological agent of human trichomoniasis, a sexually transmitted infection (STI) with a high incidence. Several reports have shown that this protozoan releases microvesicles into the culture medium, which show high potential in modulating cell-to-cell communication and the host response to infections. However, the biogenesis of these vesicles has not been analyzed in detail. In the present study, high-resolution ion scanning microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the surface of control cells and cells incubated in the presence of Ca2+ alone or with A 23187 calcium ionophore. Two different strains of T. vaginalis were analyzed. Most control cells displayed relatively smooth surfaces, whereas cells incubated with Ca2+ had many surface projections of variable shape and size (from 40 nm to around 1 μm). Quantitative analyses were performed directly in the scanning electron microscope and showed a significant increase in the number of cells with surface projections after incubation in the presence of calcium. TEM showed that treated cells presented several cytoplasmic multivesicular structures, suggesting membrane fusion and exosomes in the extracellular medium. The amount and size of the released vesicles were quantitatively analyzed using light scattering and TEM on negatively stained samples. The observations show that incubation of both parasite strains in the presence of Ca2+ significantly increased the release of microvesicles into the extracellular medium in a time-dependent process. Sequential incubation in the presence of Ca2+ and the calcium ionophore A23187 increases the presence of vesicles on the parasite surface only at a short incubation time (5 min). Transmission electron microscopy showed that at least part of the vesicles are originated from cytoplasmic multivesicular structures. This information contributes to a better understanding of the biogenesis of extracellular vesicles secreted by T. vaginalis.
Collapse
Affiliation(s)
- Júlio César Santana de Andrade
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Pesquisa em Medicina de Precisão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil; BIOTRANS-CAXIAS, Universidade do Grande Rio. UNIGRANRIO, Rio de Janeiro, 96200-000, Brazil.
| | - Marlene Benchimol
- BIOTRANS-CAXIAS, Universidade do Grande Rio. UNIGRANRIO, Rio de Janeiro, 96200-000, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Pesquisa em Medicina de Precisão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil.
| |
Collapse
|
2
|
Karvonen K. Preparation of Borrelia-Infected Mammalian Cells for Helium Ion Microscopy. Methods Mol Biol 2024; 2742:123-129. [PMID: 38165620 DOI: 10.1007/978-1-0716-3561-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Preparation of mammalian cells for a Borrelia burgdorferi infection can be cumbersome especially if investigating possible cell entry processes. The initial steps of infection or entry into cells by a pathogen often involve attachment to the cell surface and plasma membrane changes. To topologically investigate with great resolution and detail these interactions of the pathogen and the mammalian cell, helium ion microscopy (HIM) can be employed. Here we describe a protocol used to define a specific multiplicity of infection (MOI) of Borrelia burgdorferi on a human chondrosarcoma cell line (SW1353) so that fine detail structures on the mammalian cell can be observed and quantified by HIM.
Collapse
Affiliation(s)
- Kati Karvonen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, yväskylä, Finland.
| |
Collapse
|
3
|
Davoudpour Y, Kümmel S, Musat N, Richnow HH, Schmidt M. Tracking deuterium uptake in hydroponically grown maize roots using correlative helium ion microscopy and Raman micro-spectroscopy. PLANT METHODS 2023; 19:71. [PMID: 37452400 PMCID: PMC10347822 DOI: 10.1186/s13007-023-01040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Investigations into the growth and self-organization of plant roots is subject to fundamental and applied research in various areas such as botany, agriculture, and soil science. The growth activity of the plant tissue can be investigated by isotope labeling experiments with heavy water and subsequent detection of the deuterium in non-exchangeable positions incorporated into the plant biomass. Commonly used analytical methods to detect deuterium in plants are based on mass-spectrometry or neutron-scattering and they either suffer from elaborated sample preparation, destruction of the sample during analysis, or low spatial resolution. Confocal Raman micro-spectroscopy (CRM) can be considered a promising method to overcome the aforementioned challenges. The substitution of hydrogen with deuterium results in the measurable shift of the CH-related Raman bands. By employing correlative approaches with a high-resolution technique, such as helium ion microscopy (HIM), additional structural information can be added to CRM isotope maps and spatial resolution can be further increased. For that, it is necessary to develop a comprehensive workflow from sample preparation to data processing. RESULTS A workflow to prepare and analyze roots of hydroponically grown and deuterium labeled Zea mays by correlative HIM-CRM micro-analysis was developed. The accuracy and linearity of deuterium detection by CRM were tested and confirmed with samples of deuterated glucose. A set of root samples taken from deuterated Zea mays in a time-series experiment was used to test the entire workflow. The deuterium content in the roots measured by CRM was close to the values obtained by isotope-ratio mass spectrometry. As expected, root tips being the most actively growing root zone had incorporated the highest amount of deuterium which increased with increasing time of labeling. Furthermore, correlative HIM-CRM analysis allowed for obtaining the spatial distribution pattern of deuterium and lignin in root cross-sections. Here, more active root zones with higher deuterium incorporation showed less lignification. CONCLUSIONS We demonstrated that CRM in combination with deuterium labeling can be an alternative and reliable tool for the analysis of plant growth. This approach together with the developed workflow has the potential to be extended to complex systems such as plant roots grown in soil.
Collapse
Affiliation(s)
- Yalda Davoudpour
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
4
|
Iachina I, Brewer JR, Rubahn HG, Fiutowski J. Helium Ion Microscopy and Sectioning of Spider Silk. SCANNING 2023; 2023:2936788. [PMID: 37260614 PMCID: PMC10228223 DOI: 10.1155/2023/2936788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Focused ion beams have recently emerged as a powerful tool for ultrastructural imaging of biological samples. In this article, we show that helium ion microscopy (HIM), in combination with ion milling, can be used to visualize the inner structure of both major and minor ampullate silk fibers of the orb-web weaving spider Nephila madagascariensis. The internal nanofibrils were imaged in pristine silk fibers, with little or no damage to the sample structure observed. Furthermore, a method to cut/rupture the fibers using He+ ions combined with internal sample tension is presented. This showed that the stretching and rupturing of spider silk is a highly dynamic process with considerable material reorganization.
Collapse
Affiliation(s)
- Irina Iachina
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Denmark
- Department of Biochemisty and Molecular Biology, University of Southern Denmark, Denmark
| | - Jonathan R. Brewer
- Department of Biochemisty and Molecular Biology, University of Southern Denmark, Denmark
| | | | - Jacek Fiutowski
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Denmark
| |
Collapse
|
5
|
Schmidt M. [Not Available]. BIOSPEKTRUM : ZEITSCHRIFT DER GESELLSCHAFT FUR BIOLOGISHE CHEMIE (GBCH) UND DER VEREINIGUNG FUR ALLGEMEINE UND ANGEWANDTE MIKROBIOLOGIE (VAAM) 2022; 28:377-380. [PMID: 35698575 PMCID: PMC9178215 DOI: 10.1007/s12268-022-1772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The past decade has seen the advent of a new imaging technique in the life sciences that is ideal for microbiological applications: the helium ion microscope (HIM). Its lateral resolution is better than one nanometre, it has a large depth-of-field and can image non-conductive specimens which renders the tool ideal for studying microbiological objects such as microbes attached to surfaces, microbial biofilms and viruses. Here we compare HIM with electron microscopy techniques and highlight selected examples that demonstrate the new possibilities for microbiology opened up by this technique.
Collapse
Affiliation(s)
- Matthias Schmidt
- ProVIS - Zentrum für Chemische Mikroskopie Abteilung Isotopen Biogeochemie Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Permoserstraße 15, D-04318 Leipzig, Deutschland
| |
Collapse
|
6
|
Merolli A, Kasaei L, Ramasamy S, Kolloli A, Kumar R, Subbian S, Feldman LC. An intra-cytoplasmic route for SARS-CoV-2 transmission unveiled by Helium-ion microscopy. Sci Rep 2022; 12:3794. [PMID: 35260703 PMCID: PMC8904465 DOI: 10.1038/s41598-022-07867-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 virions enter the host cells by docking their spike glycoproteins to the membrane-bound Angiotensin Converting Enzyme 2. After intracellular assembly, the newly formed virions are released from the infected cells to propagate the infection, using the extra-cytoplasmic ACE2 docking mechanism. However, the molecular events underpinning SARS-CoV-2 transmission between host cells are not fully understood. Here, we report the findings of a scanning Helium-ion microscopy study performed on Vero E6 cells infected with mNeonGreen-expressing SARS-CoV-2. Our data reveal, with unprecedented resolution, the presence of: (1) long tunneling nanotubes that connect two or more host cells over submillimeter distances; (2) large scale multiple cell fusion events (syncytia); and (3) abundant extracellular vesicles of various sizes. Taken together, these ultrastructural features describe a novel intra-cytoplasmic connection among SARS-CoV-2 infected cells that may act as an alternative route of viral transmission, disengaged from the well-known extra-cytoplasmic ACE2 docking mechanism. Such route may explain the elusiveness of SARS-CoV-2 to survive from the immune surveillance of the infected host.
Collapse
Affiliation(s)
- Antonio Merolli
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA. .,Department Physics and Astronomy, Rutgers University, DLS Building, 145 Bevier Road, Room 108, Piscataway, NJ, 08854, USA.
| | - Leila Kasaei
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Afsal Kolloli
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Leonard C Feldman
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
7
|
Moreno Osorio JH, Pollio A, Frunzo L, Lens PNL, Esposito G. A Review of Microalgal Biofilm Technologies: Definition, Applications, Settings and Analysis. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.737710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Biofilm-based algal cultivation has many advantages over the conventional suspended growth methods and has received increased attention as a potential platform for algal production, wastewater treatment (nutrient removal), and a potential pathway to supply feedstock for microalgae-based biorefinery attempts. However, the attached cultivation by definition and application is a result of a complex interaction between the biotic and abiotic components involved. Therefore, the entire understanding of the biofilm nature is still a research challenge due to the need for real-time analysis of the system. In this review, the state of the art of biofilm definition, its life cycle, the proposed designs of bioreactors, screening of carrier materials, and non-destructive techniques for the study of biofilm formation and performance are summarized. Perspectives for future research needs are also discussed to provide a primary reference for the further development of microalgal biofilm systems.
Collapse
|
8
|
Allen FI. A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:633-664. [PMID: 34285866 PMCID: PMC8261528 DOI: 10.3762/bjnano.12.52] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/30/2021] [Indexed: 05/28/2023]
Abstract
The helium ion microscope has emerged as a multifaceted instrument enabling a broad range of applications beyond imaging in which the finely focused helium ion beam is used for a variety of defect engineering, ion implantation, and nanofabrication tasks. Operation of the ion source with neon has extended the reach of this technology even further. This paper reviews the materials modification research that has been enabled by the helium ion microscope since its commercialization in 2007, ranging from fundamental studies of beam-sample effects, to the prototyping of new devices with features in the sub-10 nm domain.
Collapse
Affiliation(s)
- Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Munck S, Swoger J, Coll-Lladó M, Gritti N, Vande Velde G. Maximizing content across scales: Moving multimodal microscopy and mesoscopy toward molecular imaging. Curr Opin Chem Biol 2021; 63:188-199. [PMID: 34198170 DOI: 10.1016/j.cbpa.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Molecular imaging aims to depict the molecules in living patients. However, because this aim is still far beyond reach, patchworks of different solutions need to be used to tackle this overarching goal. From the vast toolbox of imaging techniques, we focus on those recent advances in optical microscopy that image molecules and cells at the submicron to centimeter scale. Mesoscopic imaging covers the "imaging gap" between techniques such as confocal microscopy and magnetic resonance imagingthat image entire live samples but with limited resolution. Microscopy focuses on the cellular level; mesoscopy visualizes the organization of molecules and cells into tissues and organs. The correlation between these techniques allows us to combine disciplines ranging from whole body imaging to basic research of model systems. We review current developments focused on improving microscopic and mesoscopic imaging technologies and on hardware and software that push the current sensitivity and resolution boundaries.
Collapse
Affiliation(s)
- Sebastian Munck
- VIB-KU Leuven Center for Brain & Disease Research, Light Microscopy Expertise Unit & VIB BioImaging Core, O&N4 Herestraat 49 box 602, Leuven, 3000, Belgium; KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N4 Herestraat 49 box 602, Leuven, 3000, Belgium
| | - Jim Swoger
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, 08003, Spain
| | | | - Nicola Gritti
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, 08003, Spain
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Frese N, Schmerer P, Wortmann M, Schürmann M, König M, Westphal M, Weber F, Sudhoff H, Gölzhäuser A. Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:172-179. [PMID: 33614383 PMCID: PMC7871036 DOI: 10.3762/bjnano.12.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
Helium ion microscopy (HIM) offers the opportunity to obtain direct views of biological samples such as cellular structures, virus particles, and microbial interactions. Imaging with the HIM combines sub-nanometer resolution, large depth of field, and high surface sensitivity. Due to its charge compensation capability, the HIM can image insulating biological samples without additional conductive coatings. Here, we present an exploratory HIM study of SARS-CoV-2 infected Vero E6 cells, in which several areas of interaction between cells and virus particles, as well as among virus particles, were imaged. The HIM pictures show the three-dimensional appearance of SARS-CoV-2 and the surface of Vero E6 cells at a multiplicity of infection of approximately 1 with great morphological detail. The absence of a conductive coating allows for a distinction between virus particles bound to the cell membrane and virus particles lying on top of the membrane. After prolonged imaging, it was found that ion-induced deposition of hydrocarbons from the vacuum renders the sample sufficiently conductive to allow for imaging even without charge compensation. The presented images demonstrate the potential of the HIM in bioimaging, especially for the imaging of interactions between viruses and their host organisms.
Collapse
Affiliation(s)
- Natalie Frese
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Patrick Schmerer
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Germany
| | - Martin Wortmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany
| | - Matthias Schürmann
- University Clinic for Otolaryngology, Head and Neck Surgery, Medical Faculty OWL at Bielefeld University, Germany
| | - Matthias König
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Germany
| | - Michael Westphal
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Friedemann Weber
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Germany
| | - Holger Sudhoff
- University Clinic for Otolaryngology, Head and Neck Surgery, Medical Faculty OWL at Bielefeld University, Germany
| | - Armin Gölzhäuser
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| |
Collapse
|