1
|
Bhatti AK, Jabeen N, Bashir A, Khan LU, Bokhari SW, Akhter Z. Insight into a pure spinel Co 3O 4 and boron, nitrogen, sulphur (BNS) tri-doped Co 3O 4-rGO nanocomposite for the electrocatalytic oxygen reduction reaction. RSC Adv 2023; 13:28602-28612. [PMID: 37795048 PMCID: PMC10546277 DOI: 10.1039/d3ra04600a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
The intricate problems concerning energy require innovative solutions. Herein, we propose a smart composite nano system that can be used in a sustainable and dichotomous manner to resolve energy crises. The current study describes a new way to synthesize a pure spinel cobalt oxide (Co3O4) and boron (B), nitrogen (N), and sulfur (S) tri-doped Co3O4-reduced graphite oxide (rGO) nanocomposite (CBNS). A hydrothermal method has been used for the synthesis of these nanomaterials. The synthesized nanocomposite was characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). The XRD results showed the formation of Co3O4 and B, N, S doped nanocomposite with high purity and crystallinity. XAS analysis elucidates the formation of spinel Co3O4 with tetrahedral and octahedral arrangement of cobalt ions. The peaks at 2.50 Å and 3.07 Å are due to the Co-Co bonding. The electrocatalytic oxygen reduction (ORR) was successfully implemented using these nanocomposites. The electrochemical study exhibits the better activity of the B, N, and S tri-doped Co3O4-rGO nanocomposite due to the mutual effect of B, N and S. The synthesized catalyst has maximum current density of 9.97 mA cm-2 with onset potential (Eonset) of 0.98 V in alkaline medium.
Collapse
Affiliation(s)
- Afia Kanwal Bhatti
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Naila Jabeen
- Nanoscience's and Technology Division, National Center for Physics, Quaid-i-Azam University Campus Shahdra Valley Road, P.O. Box 2141 Islamabad 44000 Pakistan
| | - Amna Bashir
- Department of Chemistry, Fatima Jinnah Women University The Mall Rawalpindi Pakistan
| | - Latif U Khan
- Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME) P.O. Box 7 Allan 19252 Jordan
| | - Syeda Wishal Bokhari
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 Zhejiang People's Republic of China
| | - Zareen Akhter
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
2
|
Biz C, Gracia J, Fianchini M. Review on Magnetism in Catalysis: From Theory to PEMFC Applications of 3d Metal Pt-Based Alloys. Int J Mol Sci 2022; 23:14768. [PMID: 36499096 PMCID: PMC9739051 DOI: 10.3390/ijms232314768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between magnetism and catalysis has been an important topic since the mid-20th century. At present time, the scientific community is well aware that a full comprehension of this relationship is required to face modern challenges, such as the need for clean energy technology. The successful use of (para-)magnetic materials has already been corroborated in catalytic processes, such as hydrogenation, Fenton reaction and ammonia synthesis. These catalysts typically contain transition metals from the first to the third row and are affected by the presence of an external magnetic field. Nowadays, it appears that the most promising approach to reach the goal of a more sustainable future is via ferromagnetic conducting catalysts containing open-shell metals (i.e., Fe, Co and Ni) with extra stabilization coming from the presence of an external magnetic field. However, understanding how intrinsic and extrinsic magnetic features are related to catalysis is still a complex task, especially when catalytic performances are improved by these magnetic phenomena. In the present review, we introduce the relationship between magnetism and catalysis and outline its importance in the production of clean energy, by describing the representative case of 3d metal Pt-based alloys, which are extensively investigated and exploited in PEM fuel cells.
Collapse
Affiliation(s)
- Chiara Biz
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - José Gracia
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| | - Mauro Fianchini
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| |
Collapse
|
3
|
Zhang X, Truong-Phuoc L, Asset T, Pronkin S, Pham-Huu C. Are Fe–N–C Electrocatalysts an Alternative to Pt-Based Electrocatalysts for the Next Generation of Proton Exchange Membrane Fuel Cells? ACS Catal 2022. [DOI: 10.1021/acscatal.2c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiong Zhang
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Lai Truong-Phuoc
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Tristan Asset
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Sergey Pronkin
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), UMR 7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex
02, France
| |
Collapse
|
4
|
Optimisation of parameters of complete nickel electrodeposition from acidic aqueous electrolytic baths prepared by dissolution of metal powder. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
GÜNEŞ S, GÜLDÜR Ç. Investigation of the oxygen reduction kinetics and mechanism on ordered mesoporous carbon-supported Pt-based catalysts. Turk J Chem 2021; 46:530-541. [PMID: 38143460 PMCID: PMC10734762 DOI: 10.3906/kim-2102-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2022] [Accepted: 12/19/2021] [Indexed: 12/26/2023] Open
Abstract
The kinetics and mechanism of oxygen reduction reaction (ORR) on the surface of Pt and PtAgFe catalysts supported by ordered mesoporous carbon (OMC) were investigated. Metal particles were loaded by the wet impregnation-reduction method on two types of OMC, one being surface-modified by HNO3 and the other unmodified. Cyclic voltammetry measurements showed that Pt on modified OMC, namely Pt/OMC-M, had the highest electroactive surface area among OMC-supported catalyts with 987 cm2/mg. This catalyst had also a mass activity of 39.1 mA/mgPt, which was the same as the carbon black supported commercial Pt/C catalyst. Rotating disk electrode (RDE) studies revealed that the net number of transferred electrons for OMC supported Pt and PtAgFe catalysts were in the range between 3 and 4, indicating a predominant 4-electron water formation route. The ORR mechanisms on Pt/OMC and PtAgFe/OMC were found to be similar with that of Pt/C; however, the associative mechanism was pronounced at a wider potential range. The modified OMC-supported catalysts showed higher oxygen reduction activities in general.
Collapse
Affiliation(s)
- Silver GÜNEŞ
- Graduate School of Natural and Applied Sciences, Gazi University, Ankara,
Turkey
| | - Çiğdem GÜLDÜR
- Department of Chemical Engineering, Faculty of Engineering, Gazi University, Ankara,
Turkey
| |
Collapse
|
7
|
Sandoval A, Borja E, Magallón L, Su J. Green Microwave-Assisted Synthesis of CoFeRu-Based Electrocatalyst for the Oxygen Reduction Reaction. MATERIALS 2021; 14:ma14071662. [PMID: 33800681 PMCID: PMC8037011 DOI: 10.3390/ma14071662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022]
Abstract
A simple and rapid synthesis of a CoFeRu-based electrocatalyst by a microwave-assisted method (using water as the microwave absorbing solvent) is reported in this work. Agglomerates with different sizes and shapes are observed by scanning electron microscopy technique. The energy dispersive X-ray spectroscopy shows a low atomic percentage of Co and similar atomic percentage of Fe and Ru. However, the X-ray diffraction exhibits only the presence of metallic Ru and Fe2O3 (hematite) phases. The oxygen reduction without and with 2 mol L−1 methanol is studied using the rotating disk electrode technique. The electrochemical kinetic parameters obtained are compared to a similar electrocatalyst reported in the literature, which was synthesized using a mixture of an organic solvent with DI water as the microwave absorbing solvent. An improvement on the activity of the electrocatalyst synthesized is observed, where high Tafel slopes are not observed. The electrocatalyst also showed tolerance to the presence of methanol during the oxygen reduction reaction.
Collapse
Affiliation(s)
- Antonia Sandoval
- Cátedras-CONACYT-Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Querétaro 76703, Mexico;
| | - Edgar Borja
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Correspondence: ; Tel.: +52-55-5622-3899
| | - Lorena Magallón
- Cátedras-CONACYT-Instituto Nacional de Electricidad y Energías Limpias, Morelos 62490, Mexico;
| | - Javier Su
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
8
|
Kudas Z, Atmaca U, Saruhan T, Celik M, Ekinci D. Electrocatalytic Reduction of Oxygen at Glassy Carbon Electrodes Coated with Diazonium‐derived Porphyrin/Metalloporphyrin Films. ELECTROANAL 2020. [DOI: 10.1002/elan.201900707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zuleyha Kudas
- Department of Chemistry, Faculty of SciencesAtatürk University 25240 Erzurum Turkey
| | - Ufuk Atmaca
- Department of Food Processing, Oltu Vocational CollegeAtatürk University 25240 Erzurum Turkey
| | - Tuba Saruhan
- Department of Chemistry, Faculty of SciencesAtatürk University 25240 Erzurum Turkey
| | - Murat Celik
- Department of Chemistry, Faculty of SciencesAtatürk University 25240 Erzurum Turkey
| | - Duygu Ekinci
- Department of Chemistry, Faculty of SciencesAtatürk University 25240 Erzurum Turkey
| |
Collapse
|
9
|
Yi S, Jiang H, Bao X, Zou S, Liao J, Zhang Z. Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113279] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Gómez-Marín AM, Feliu JM, Ticianelli E. Oxygen Reduction on Platinum Surfaces in Acid Media: Experimental Evidence of a CECE/DISP Initial Reaction Path. ACS Catal 2019. [DOI: 10.1021/acscatal.8b03351] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana M. Gómez-Marín
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa
Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, SP, Brazil
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São José dos Campos CEP 12228-900, SP, Brazil
| | - Juan M. Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apt 99, E-03080 Alicante, Spain
| | - Edson Ticianelli
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa
Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, SP, Brazil
| |
Collapse
|
11
|
Deng C, He R, Shen W, Li M. Theoretical analysis of oxygen reduction reaction activity on single metal (Ni, Pd, Pt, Cu, Ag, Au) atom supported on defective two-dimensional boron nitride materials. Phys Chem Chem Phys 2019; 21:18589-18594. [DOI: 10.1039/c9cp03287h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single metal atom supported by a defective two-dimensional boron nitride material is a promising ORR catalyst.
Collapse
Affiliation(s)
- Chaofang Deng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Rongxing He
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Wei Shen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ming Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
12
|
Bozem M, Knapp P, Mirčeski V, Slowik EJ, Bogeski I, Kappl R, Heinemann C, Hoth M. Electrochemical Quantification of Extracellular Local H 2O 2 Kinetics Originating from Single Cells. Antioxid Redox Signal 2018; 29:501-517. [PMID: 28314376 PMCID: PMC6056260 DOI: 10.1089/ars.2016.6840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS H2O2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local hydrogen peroxide concentrations ([H2O2]) originating from single cells is required. RESULTS Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H2O2] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H2O2] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H2O2] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H2O2 to an unstimulated MC, the local [H2O2] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H2O2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H2O2 separately. Local extracellular [H2O2] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 29, 501-517.
Collapse
Affiliation(s)
- Monika Bozem
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Phillip Knapp
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Valentin Mirčeski
- 2 Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Kiril i Metodij University , Skopje, Macedonia
| | - Ewa J Slowik
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Ivan Bogeski
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany .,3 Cardiovascular Physiology, University Medical Center, University of Göttingen , Göttingen, Germany
| | - Reinhard Kappl
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | | | - Markus Hoth
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| |
Collapse
|
13
|
Gambu TG, Petersen MA, van Steen E. Probing the edge effect on the ORR activity using platinum nanorods: A DFT study. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Lozano T, Rankin RB. Computational predictive design for metal-decorated-graphene size-specific subnanometer to nanometer ORR catalysts. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Gómez-Marín A, Feliu J, Edson T. Reaction Mechanism for Oxygen Reduction on Platinum: Existence of a Fast Initial Chemical Step and a Soluble Species Different from H2O2. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01291] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Gómez-Marín
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, São Paulo, Brazil
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), 12228-900 São Paulo, Brazil
| | - Juan Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apt 99, E-03080 Alicante, Spain
| | - Ticianelli Edson
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, São Paulo, Brazil
| |
Collapse
|
16
|
Ustarroz J, Ornelas IM, Zhang G, Perry D, Kang M, Bentley CL, Walker M, Unwin PR. Mobility and Poisoning of Mass-Selected Platinum Nanoclusters during the Oxygen Reduction Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00553] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jon Ustarroz
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Isabel M. Ornelas
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Nanoscale Physics, Chemistry and Engineering Research Laboratory, University of Birmingham, Birmingham B15 2TT, U.K
| | - Guohui Zhang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
17
|
Ye JY, Lin JL, Zhou ZY, Hong YH, Sheng T, Rauf M, Sun SG. Ammonia electrooxidation on dendritic Pt nanostructures in alkaline solutions investigated by in-situ FTIR spectroscopy and online electrochemical mass spectroscopy. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Joshi P, Okada T, Miyabayashi K, Miyake M. Evaluation of Alkylamine Modified Pt Nanoparticles as Oxygen Reduction Reaction Electrocatalyst for Fuel Cells via Electrochemical Impedance Spectroscopy. Anal Chem 2018; 90:6116-6123. [PMID: 29613775 DOI: 10.1021/acs.analchem.8b00247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Organically (octyl amine, OA) surface modified electrocatalyst (OA-Pt/CB) was studied for its oxygen reduction reaction (ORR) activity via dc methods and its charge and mass transfer properties were studied via electrochemical impedance spectroscopy (EIS). Comparison with a commercial catalyst (TEC10V30E) with similar Pt content was also carried out. In EIS, both the catalysts showed a single time-constant with an emerging high-frequency semicircle of very small diameter which was fitted using suitable equivalent circuits. The organically modified catalyst showed lower charge-transfer resistance and hence, low polarization resistance in high potential region as compared to the commercial catalyst. The dominance of kinetic processes was observed at 0.925-1.000 V, whereas domination of diffusion based processes was observed at lower potential region for the organic catalyst. No effect due to the presence of carbon was observed in the EIS spectra. Using the hydrodynamic method, higher current penetration depth was obtained for the organically modified catalyst at 1600 rpm. Exchange current density and Tafel slopes for both the electrocatalysts were calculated from the polarization resistance obtained from EIS which was in correlation with the results obtained from dc methods.
Collapse
Affiliation(s)
- Prerna Joshi
- Department of Engineering, Graduate School of Integrated Science and Technology , Shizuoka University , Shizuoka 432-8561 , Japan
| | - Toshihiko Okada
- Department of Engineering, Graduate School of Integrated Science and Technology , Shizuoka University , Shizuoka 432-8561 , Japan
| | - Keiko Miyabayashi
- Department of Engineering, Graduate School of Integrated Science and Technology , Shizuoka University , Shizuoka 432-8561 , Japan
| | - Mikio Miyake
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology , University Technology Malaysia , 54100 Kuala Lumpur , Malaysia
| |
Collapse
|
19
|
Electrochemical characterization and regeneration of sulfur poisoned Pt catalysts in aqueous media. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Ricca C, Labat F, Zavala C, Russo N, Adamo C, Merino G, Sicilia E. B,N-Codoped graphene as catalyst for the oxygen reduction reaction: Insights from periodic and cluster DFT calculations. J Comput Chem 2017; 39:637-647. [DOI: 10.1002/jcc.25148] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Chiara Ricca
- Institut de Recherche de Chimie Paris, PSL Research University, CNRS, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005; Paris France
| | - Frédéric Labat
- Institut de Recherche de Chimie Paris, PSL Research University, CNRS, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005; Paris France
| | - Claudia Zavala
- Departamento de Química; Universidad de Guanajuato, Col. Noria Alta S/N; Guanajuato GTO 36050 Mexico
| | - Nino Russo
- Dipartimento di Chimica; Università della Calabria, Cubo 14c Via P. Bucci; Arcavacata di Rende CS 87036 Italy
| | - Carlo Adamo
- Institut de Recherche de Chimie Paris, PSL Research University, CNRS, Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005; Paris France
- Institut Universitaire de France, 103 Bd Saint-Michel; Paris F-75005 France
| | - Gabriel Merino
- Departamento de Fisica Aplicada; Centro de Investigacion y de Estudios Avanzados, Unidad Merida, km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex; Merida Yuc 97310 Mexico
| | - Emilia Sicilia
- Dipartimento di Chimica; Università della Calabria, Cubo 14c Via P. Bucci; Arcavacata di Rende CS 87036 Italy
| |
Collapse
|
21
|
Briega-Martos V, Herrero E, Feliu JM. The inhibition of hydrogen peroxide reduction at low potentials on Pt(111): Hydrogen adsorption or interfacial charge? Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
22
|
Drnec J, Ruge M, Reikowski F, Rahn B, Carlà F, Felici R, Stettner J, Magnussen OM, Harrington DA. Pt oxide and oxygen reduction at Pt(111) studied by surface X-ray diffraction. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Brummel O, Waidhas F, Khalakhan I, Vorokhta M, Dubau M, Kovács G, Aleksandrov HA, Neyman KM, Matolín V, Libuda J. Structural transformations and adsorption properties of PtNi nanoalloy thin film electrocatalysts prepared by magnetron co-sputtering. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Anandha Ganesh P, Jeyakumar D. Nano-Porous Electro-Catalyst with Textured Surface Active Pd-Pt Islands for Efficient Methanol Tolerant Oxygen Reduction Reaction. ChemistrySelect 2017. [DOI: 10.1002/slct.201700992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- P. Anandha Ganesh
- Fuel cell catalysis and nano-materials group; Functional Materials Division; CSIR-Central Electrochemical Research Institute; Karaikudi - 630006, Tamil Nadu India
| | - D. Jeyakumar
- Fuel cell catalysis and nano-materials group; Functional Materials Division; CSIR-Central Electrochemical Research Institute; Karaikudi - 630006, Tamil Nadu India
| |
Collapse
|
25
|
Prokop M, Carda M, Bystron T, Paidar M, Bouzek K. A rotating rod electrode disk as an alternative to the rotating disk electrode for medium-temperature electrolytes, Part II: An example of the application in an investigation of the oxygen reduction reaction on a Pt/C catalyst by the thin film method in hot concentrated H3PO4. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Karousos DS, Desdenakis KI, Sakkas PM, Sourkouni G, Pollet BG, Argirusis C. Sonoelectrochemical one-pot synthesis of Pt - Carbon black nanocomposite PEMFC electrocatalyst. ULTRASONICS SONOCHEMISTRY 2017; 35:591-597. [PMID: 27217306 DOI: 10.1016/j.ultsonch.2016.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 06/05/2023]
Abstract
Simultaneous electrocatalytic Pt-nanoparticle synthesis and decoration of Vulcan XC-72 carbon black substrate was achieved in a novel one-step-process, combining galvanostatic pulsed electrodeposition and pulsed ultrasonication with high power, low-frequency (20kHz) ultrasound. Aqueous chloroplatinic acid precursor baths, as well as carbon black suspensions in the former, were examined and decoration was proven by a combination of characterization methods, namely: dynamic light scattering, transmission electron microscopy, scanning electron microscopy with EDX-analysis and cyclic voltammetry. In particular, PVP was shown to have a beneficial stabilizing effect against free nanoparticle aggregation, ensuring narrow size distributions of the nanoparticles synthesized, but is also postulated to prevent the establishment of a strong metal-substrate interaction. Current pulse amplitude was identified as the most critical nanoparticle size-determining parameters, while only small size particles, under 10nm, appeared to be attached to carbon black.
Collapse
Affiliation(s)
- Dionysios S Karousos
- National Centre for Scientific Research, Demokritos, Institute of Nanoscience and Nanotechnology, P.O. Box 60228, 153 10, Aghia Paraskevi, Athens, Greece
| | - Kostantinos I Desdenakis
- National Technical University of Athens, School of Chemical Engineering, Zografou Campus, 9 Heroon Polytechneiou St., 15773 Zografou-Athens, Greece
| | - Petros M Sakkas
- National Technical University of Athens, School of Chemical Engineering, Zografou Campus, 9 Heroon Polytechneiou St., 15773 Zografou-Athens, Greece
| | - Georgia Sourkouni
- Institut für Energieforschung und Physikalische Technologien, Clausthal University of Technology, Leibnizstr. 4, 38678 Clausthal-Zell., Germany; Clausthaler Zentrum für Materialforschung (CZM), Agricola Str. 2, 38678 Clausthal-Zellerfeld, Germany
| | - Bruno G Pollet
- South African Institute for Advanced Materials Chemistry (SAIAMC), Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa
| | - Christos Argirusis
- National Technical University of Athens, School of Chemical Engineering, Zografou Campus, 9 Heroon Polytechneiou St., 15773 Zografou-Athens, Greece; Institut für Energieforschung und Physikalische Technologien, Clausthal University of Technology, Leibnizstr. 4, 38678 Clausthal-Zell., Germany; Clausthaler Zentrum für Materialforschung (CZM), Agricola Str. 2, 38678 Clausthal-Zellerfeld, Germany.
| |
Collapse
|
27
|
Laurila T, Sainio S, Jiang H, Isoaho N, Koehne JE, Etula J, Koskinen J, Meyyappan M. Application-Specific Catalyst Layers: Pt-Containing Carbon Nanofibers for Hydrogen Peroxide Detection. ACS OMEGA 2017; 2:496-507. [PMID: 30023609 PMCID: PMC6044567 DOI: 10.1021/acsomega.6b00441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/25/2017] [Indexed: 06/08/2023]
Abstract
Complete removal of metal catalyst particles from carbon nanofibers (CNFs) and other carbon nanostructures is extremely difficult, and the envisioned applications may be compromised by the left-over impurities. To circumvent these problems, one should use, wherever possible, such catalyst materials that are meant to remain in the structure and have some application-specific role, making any removal steps unnecessary. Thus, as a proof-of-concept, we present here a nanocarbon-based material platform for electrochemical hydrogen peroxide measurement utilizing a Pt catalyst layer to grow CNFs with intact Pt particles at the tips of the CNFs. Backed by careful scanning transmission electron microscopy analysis, we show that this material can be readily realized with the Pt catalyst layer thickness impacting the resulting structure and also present a growth model to explain the evolution of the different types of structures. In addition, we show by electrochemical analysis that the material exhibits characteristic features of Pt in cyclic voltammetry and it can detect very small amounts of hydrogen peroxide with very fast response times. Thus, the present sensor platform provides an interesting electrode material with potential for biomolecule detection and in fuel cells and batteries. In the wider range, we propose a new approach where the selection of catalytic particles used for carbon nanostructure growth is made so that (i) they do not need to be removed and (ii) they will have essential role in the final application.
Collapse
Affiliation(s)
- Tomi Laurila
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, Tietotie 3, Espoo 02150, Finland
| | - Sami Sainio
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, Tietotie 3, Espoo 02150, Finland
| | - Hua Jiang
- Department
of Applied Physics, School of Science, Aalto
University, Puumiehenkuja
2, Espoo 02150, Finland
| | - Noora Isoaho
- Department
of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, Tietotie 3, Espoo 02150, Finland
| | - Jessica E. Koehne
- Center
for Nanotechnology, NASA Ames Research Center, Moffett Field, Mountain View, California 94035, United States
| | - Jarkko Etula
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, Kemistintie 1, Espoo 02150, Finland
| | - Jari Koskinen
- Department
of Chemistry and Materials Science, School of Chemical Technology, Aalto University, Kemistintie 1, Espoo 02150, Finland
| | - M. Meyyappan
- Center
for Nanotechnology, NASA Ames Research Center, Moffett Field, Mountain View, California 94035, United States
| |
Collapse
|
28
|
Kuo DY, Kawasaki JK, Nelson JN, Kloppenburg J, Hautier G, Shen KM, Schlom DG, Suntivich J. Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO2(110). J Am Chem Soc 2017; 139:3473-3479. [DOI: 10.1021/jacs.6b11932] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ding-Yuan Kuo
- Department
of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jason K. Kawasaki
- Laboratory
of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Jocienne N. Nelson
- Laboratory
of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Jan Kloppenburg
- Institute
of Condensed Matter and Nanosciences (ICMN), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Geoffroy Hautier
- Institute
of Condensed Matter and Nanosciences (ICMN), Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Kyle M. Shen
- Laboratory
of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Darrell G. Schlom
- Department
of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Jin Suntivich
- Department
of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Influence of chemical composition and amount of intermixed ionomer in the catalyst on the oxygen reduction reaction characteristics. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3521-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Martínez-Hincapié R, Arán-Ais RM, Feliu JM. Weakening the C C bond: On the behavior of glyoxylic acid on Pt(111) and its vicinal surfaces. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Weber J, Wain AJ, Attard GA, Marken F. Electrothermal Annealing of Catalytic Platinum Microwire Electrodes: Towards Membrane-Free pH 7 Glucose Micro-Fuel Cells. ELECTROANAL 2016. [DOI: 10.1002/elan.201600443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James Weber
- Department of Chemistry; University of Bath; Claverton Down, Bath BA2 7AY UK
| | - Andrew J. Wain
- National Physical Laboratory; Teddington, United Kingdom TW11 0LW UK
| | - Gary A. Attard
- Department of Physics, The Oliver Lodge Laboratory; University of Liverpool; Oxford Street Liverpool L69 7ZE UK
| | - Frank Marken
- Department of Chemistry; University of Bath; Claverton Down, Bath BA2 7AY UK
| |
Collapse
|
32
|
|
33
|
Zhao M, Anderson AB. Predicting Reaction Mechanisms and Potentials in Acid and Base from Self-Consistent Quantum Theory: H(ads) and OH(ads) Deposition on the Pt(111) Electrode. J Phys Chem Lett 2016; 7:711-714. [PMID: 26839055 DOI: 10.1021/acs.jpclett.5b02826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
It has been shown recently that when reactants and products are well modeled within a comprehensive self-consistent theory for the electrochemical interface, accurate predictions are possible for reversible potentials, Urev, in acid electrolyte for reactions such as reduction of H(+)(aq) to form under potential deposited H(ads) and oxidation of an OH bond of H2O(ads) to deposit OH(ads). Predictions are based on calculated Gibbs energies for the reactant and product being equal at the reversible potential, which is the potential at the crossing point for reaction and product Gibbs energies, plotted as functions of electrode potential. In this Letter, it is demonstrated that the same capability holds for these reactions in basic electrolyte. This demonstration opens up the opportunity for predictions of reversible potentials and mechanisms for other electrocatalytic reactions in base.
Collapse
Affiliation(s)
- Meng Zhao
- Chemistry Department, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Alfred B Anderson
- Chemistry Department, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
34
|
Shao M, Chang Q, Dodelet JP, Chenitz R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem Rev 2016; 116:3594-657. [DOI: 10.1021/acs.chemrev.5b00462] [Citation(s) in RCA: 2698] [Impact Index Per Article: 299.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Minhua Shao
- Department
of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Qiaowan Chang
- Department
of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jean-Pol Dodelet
- INRS-Énergie, Matériaux et Télécommunications, 1650, boulevard Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Regis Chenitz
- INRS-Énergie, Matériaux et Télécommunications, 1650, boulevard Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| |
Collapse
|
35
|
Vidal-Iglesias FJ, Solla-Gullón J, Feliu JM. Recent Advances in the Use of Shape-Controlled Metal Nanoparticles in Electrocatalysis. NANOSTRUCTURE SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1007/978-3-319-29930-3_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
36
|
An W, Liu P. Rationalization of Au Concentration and Distribution in AuNi@Pt Core–Shell Nanoparticles for Oxygen Reduction Reaction. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01656] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wei An
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- College
of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ping Liu
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
37
|
Yue J, Du Z, Shao M. Mechanisms of Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction on High-Index Platinum n(111)-(111) Surfaces. J Phys Chem Lett 2015; 6:3346-3351. [PMID: 26267316 DOI: 10.1021/acs.jpclett.5b01345] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oxygen reduction reactions (ORRs) on high-index planes of Pt n(111)-(111) were studied by density functional theory (DFT). The stepped surfaces, where n = 2, 3, and 4, showed that O2, O, and OH exhibited higher binding energies along the step compared to the terrace plane. The Pt atoms along the step can become distorted through the binding of the O and OH, where the shift in position of the Pt atoms is the largest along the stepped sites, hence forming stronger bonds with O atoms. One of the two O atoms produced from the bond dissociation of O2 will push the other one down a step with lower binding energies, consequently reducing the energy required for the protonation reaction (O + H(+) → OH, and OH + H(+) → H2O). The quicker recovery back to the clean Pt surface would therefore improve the catalytic properties of Pt nanoparticles, especially those with exposure to high-indexed facets.
Collapse
Affiliation(s)
- Jeffrey Yue
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science & Technology , Clear Water Bay, Kowloon, Hong Kong
| | - Zheng Du
- National Supercomputing Center in Shenzhen , Shenzhen, Guangdong 518055, P.R. China
| | - Minhua Shao
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science & Technology , Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
38
|
Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 2015; 44:2060-86. [PMID: 25672249 DOI: 10.1039/c4cs00470a] [Citation(s) in RCA: 2124] [Impact Index Per Article: 212.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.
Collapse
Affiliation(s)
- Yan Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
39
|
Behm RJ. Electrocatalysis on the nm scale. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1008-1009. [PMID: 25977871 PMCID: PMC4419656 DOI: 10.3762/bjnano.6.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Affiliation(s)
- R Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| |
Collapse
|
40
|
Sharma HN, Sharma V, Mhadeshwar AB, Ramprasad R. Why Pt Survives but Pd Suffers From SOx Poisoning? J Phys Chem Lett 2015; 6:1140-1148. [PMID: 26262963 DOI: 10.1021/jz5027147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pd is more prone to sulfation compared to Pt. Given the chemical similarity between Pt and Pd, the radical divide in their tendencies for sulfation remains a puzzle. We explain this intriguing difference using an extensive first-principles thermodynamics analysis and computed bulk and surface phase diagrams. In practically relevant temperatures and O2 and SO3 partial pressures, we find that Pt and Pd show significantly different tendencies for oxidation and sulfation. PdO formation is favored even at low oxygen chemical potential; however, PtO2 formation is not favorable in catalytically relevant conditions. Similarly, PdSO4, and adsorbed SO3 and oxygen species on clean and oxidized surfaces are highly favored, whereas PtSO4 formation does not occur at typical temperature and pressure conditions. Finally, several descriptors are identified that correlate to heightened sulfation tendencies, such as the critical O chemical potential for bulk oxide and surface oxide formation, chemical potentials O and SO3 for bulk sulfate formation, and SO3 binding strength on metal surface-oxide layers, which can be used to explore promising sulfur resistant catalysts.
Collapse
Affiliation(s)
- Hom N Sharma
- †Chemical and Biomolecular Engineering Department, University of Connecticut, Storrs, Connecticut 06269, United States
- §Center for Clean Energy Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Vinit Sharma
- ‡Material Science and Engineering Department, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ashish B Mhadeshwar
- §Center for Clean Energy Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Rampi Ramprasad
- ‡Material Science and Engineering Department, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
41
|
Zhang GR, Munoz M, Etzold BJM. Boosting performance of low temperature fuel cell catalysts by subtle ionic liquid modification. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3562-3570. [PMID: 25621887 DOI: 10.1021/am5074003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High cost and poor stability of the oxygen reduction reaction (ORR) electrocatalysts are the major barriers for broad-based application of polymer electrolyte membrane fuel cells. Here we report a facile and scalable approach to improve Pt/C catalysts for ORR, by modification with small amounts of hydrophobic ionic liquid (IL). The ORR performance of these IL-modified catalysts can be readily manipulated by varying the degree of IL filling, leading to a 3.4 times increase in activity. Besides, the IL-modified catalysts exhibit substantially enhanced stability relative to Pt/C. The enhanced performance is attributed to the optimized microenvironment at the interface of Pt and electrolyte, where advantages stemming from an increased number of free sites, higher oxygen concentration in the IL and electrostatic stabilization of the nanoparticles develop fully, at the same time that the drawback of mass transfer limitation remains suppressed. These findings open a new avenue for catalyst optimization for next-generation fuel cells.
Collapse
Affiliation(s)
- Gui-Rong Zhang
- Lehrstuhl für Chemische Reaktionstechnik Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , 91058 Erlangen, Germany
| | | | | |
Collapse
|