1
|
Schwegler N, Gebert T, Villiou M, Colombo F, Schamberger B, Selhuber-Unkel C, Thomas F, Blasco E. Multimaterial 3D Laser Printing of Cell-Adhesive and Cell-Repellent Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401344. [PMID: 38708807 DOI: 10.1002/smll.202401344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 05/07/2024]
Abstract
Here, a straightforward method is reported for manufacturing 3D microstructured cell-adhesive and cell-repellent multimaterials using two-photon laser printing. Compared to existing strategies, this approach offers bottom-up molecular control, high customizability, and rapid and precise 3D fabrication. The printable cell-adhesive polyethylene glycol (PEG) based material includes an Arg-Gly-Asp (RGD) containing peptide synthesized through solid-phase peptide synthesis, allowing for precise control of the peptide design. Remarkably, minimal amounts of RGD peptide (< 0.1 wt%) suffice for imparting cell-adhesiveness, while maintaining identical mechanical properties in the 3D printed microstructures to those of the cell-repellent, PEG-based material. Fluorescent labeling of the RGD peptide facilitates visualization of its presence in cell-adhesive areas. To demonstrate the broad applicability of the system, the fabrication of cell-adhesive 2.5D and 3D structures is shown, fostering the adhesion of fibroblast cells within these architectures. Thus, this approach allows for the printing of high-resolution, true 3D structures suitable for diverse applications, including cellular studies in complex environments.
Collapse
Affiliation(s)
- Niklas Schwegler
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Tanisha Gebert
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Maria Villiou
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Federico Colombo
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Barbara Schamberger
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Hauer L, Naga A, Badr RGM, Pham JT, Wong WSY, Vollmer D. Wetting on silicone surfaces. SOFT MATTER 2024; 20:5273-5295. [PMID: 38952198 DOI: 10.1039/d4sm00346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Silicone is frequently used as a model system to investigate and tune wetting on soft materials. Silicone is biocompatible and shows excellent thermal, chemical, and UV stability. Moreover, the mechanical properties of the surface can be easily varied by several orders of magnitude in a controlled manner. Polydimethylsiloxane (PDMS) is a popular choice for coating applications such as lubrication, self-cleaning, and drag reduction, facilitated by low surface energy. Aiming to understand the underlying interactions and forces, motivated numerous and detailed investigations of the static and dynamic wetting behavior of drops on PDMS-based surfaces. Here, we recognize the three most prevalent PDMS surface variants, namely liquid-infused (SLIPS/LIS), elastomeric, and liquid-like (SOCAL) surfaces. To understand, optimize, and tune the wetting properties of these PDMS surfaces, we review and compare their similarities and differences by discussing (i) the chemical and molecular structure, and (ii) the static and dynamic wetting behavior. We also provide (iii) an overview of methods and techniques to characterize PDMS-based surfaces and their wetting behavior. The static and dynamic wetting ridge is given particular attention, as it dominates energy dissipation, adhesion, and friction of sliding drops and influences the durability of the surfaces. We also discuss special features such as cloaking and wetting-induced phase separation. Key challenges and opportunities of these three surface variants are outlined.
Collapse
Affiliation(s)
- Lukas Hauer
- Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Abhinav Naga
- Department of Physics, Durham University, DH1 3LE, UK
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Rodrique G M Badr
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55099 Mainz, Germany
| | - Jonathan T Pham
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, 45221 OH, USA
| | - William S Y Wong
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Doris Vollmer
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
3
|
Schumacher L, Siemsen K, Appiah C, Rajput S, Heitmann A, Selhuber-Unkel C, Staubitz A. A Co-Polymerizable Linker for the Covalent Attachment of Fibronectin Makes pHEMA Hydrogels Cell-Adhesive. Gels 2022; 8:258. [PMID: 35621556 PMCID: PMC9140594 DOI: 10.3390/gels8050258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Hydrogels are attractive biomaterials because their chemical and mechanical properties can be tailored to mimic those of biological tissues. However, many hydrogels do not allow cell or protein attachment. Therefore, they are post-synthetically functionalized by adding functional groups for protein binding, which then allows cell adhesion in cell culture substrates. However, the degree of functionalization and covalent binding is difficult to analyze in these cases. Moreover, the density of the functional groups and the homogeneity of their distribution is hard to control. This work introduces another strategy for the biofunctionalization of hydrogels: we synthesized a polymerizable linker that serves as a direct junction between the polymeric structure and cell adhesion proteins. This maleimide-containing, polymerizable bio-linker was copolymerized with non-functionalized monomers to produce a bioactive hydrogel based on poly(2-hydroxyethyl methacrylate) (pHEMA). Therefore, the attachment site was only controlled by the polymerization process and was thus uniformly distributed throughout the hydrogel. In this way, the bio-conjugation by a protein-binding thiol-maleimide Michael-type reaction was possible in the entire hydrogel matrix. This approach enabled a straightforward and highly effective biofunctionalization of pHEMA with the adhesion protein fibronectin. The bioactivity of the materials was demonstrated by the successful adhesion of fibroblast cells.
Collapse
Affiliation(s)
- Laura Schumacher
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Katharina Siemsen
- Biocompatible Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany;
| | - Clement Appiah
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Sunil Rajput
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, INF 253, D-69120 Heidelberg, Germany;
| | - Anne Heitmann
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, INF 253, D-69120 Heidelberg, Germany;
- Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; (L.S.); (C.A.); (A.H.)
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany
| |
Collapse
|
4
|
Lagowala DA, Kwon S, Sidhaye VK, Kim DH. Human microphysiological models of airway and alveolar epithelia. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1072-L1088. [PMID: 34612064 PMCID: PMC8715018 DOI: 10.1152/ajplung.00103.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022] Open
Abstract
Human organ-on-a-chip models are powerful tools for preclinical research that can be used to study the mechanisms of disease and evaluate new targets for therapeutic intervention. Lung-on-a-chip models have been one of the most well-characterized designs in this field and can be altered to evaluate various types of respiratory disease and to assess treatment candidates prior to clinical testing. These systems are capable of overcoming the flaws of conventional two-dimensional (2-D) cell culture and in vivo animal testing due to their ability to accurately recapitulate the in vivo microenvironment of human tissue with tunable material properties, microfluidic integration, delivery of precise mechanical and biochemical cues, and designs with organ-specific architecture. In this review, we first describe an overview of currently available lung-on-a-chip designs. We then present how recent innovations in human stem cell biology, tissue engineering, and microfabrication can be used to create more predictive human lung-on-a-chip models for studying respiratory disease. Finally, we discuss the current challenges and future directions of lung-on-a-chip designs for in vitro disease modeling with a particular focus on immune and multiorgan interactions.
Collapse
Affiliation(s)
- Dave Anuj Lagowala
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Seoyoung Kwon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Venkataramana K Sidhaye
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Effects of substrate stiffness on mast cell migration. Eur J Cell Biol 2021; 100:151178. [PMID: 34555639 DOI: 10.1016/j.ejcb.2021.151178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Mast cells (MCs) play important roles in multiple pathologies, including fibrosis; however, their behaviors in different extracellular matrix (ECM) environments have not been fully elucidated. Accordingly, in this study, the migration of MCs on substrates with different stiffnesses was investigated using time-lapse video microscopy. Our results showed that MCs could appear in round, spindle, and star-like shapes; spindle-shaped cells accounted for 80-90 % of the total observed cells. The migration speed of round cells was significantly lower than that of cells with other shapes. Interestingly, spindle-shaped MCs migrated in a jiggling and wiggling motion between protrusions. The persistence index of MC migration was slightly higher on stiffer substrates. Moreover, we found that there was an intermediate optimal stiffness at which the migration efficiency was the highest. These findings may help to improve our understanding of MC-induced pathologies and the roles of MC migration in the immune system.
Collapse
|
6
|
Timmermann M, Lukat N, Schneider LP, Shields CW, López GP, Selhuber-Unkel C. Migration of Microparticle-Containing Amoeba through Constricted Environments. ACS Biomater Sci Eng 2020; 6:889-897. [PMID: 32215319 PMCID: PMC7082834 DOI: 10.1021/acsbiomaterials.9b00496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/30/2019] [Indexed: 12/28/2022]
Abstract
![]()
In many situations,
cells migrate through tiny orifices.
Examples
include the extravasation of immune cells from the bloodstream for
fighting infections, the infiltration of cancer cells during metastasis,
and the migration of human pathogens. An extremely motile and medically
relevant type of human pathogen is Acanthamoeba castellanii. In the study presented here, we investigated how a combination
of microparticles and microstructured interfaces controls the migration
of A. castellanii trophozoites. The
microinterfaces comprised well-defined micropillar arrays, and the
trophozoites easily migrated through the given constrictions by adapting
the shape and size of their intracellular vacuoles and by adapting
intracellular motion. After feeding the trophozoite cells in microinterfaces
with synthetic, stiff microparticles of various sizes and shapes,
their behavior changed drastically: if the particles were smaller
than the micropillar gap, migration was still possible. If the cells
incorporated particles larger than the pillar gap, they could become
immobilized but could also display remarkable problem-solving capabilities.
For example, they turned rod-shaped microparticles such that their
short axis fit through the pillar gap or they transported the particles
above the structure. As migration is a crucial contribution to A. castellanii pathogenicity and is also relevant
to other biological processes in microenvironments, such as cancer
metastasis, our results provide an interesting strategy for controlling
the migration of cells containing intracellular particles by microstructured
interfaces that serve as migration-limiting environments.
Collapse
Affiliation(s)
- Michael Timmermann
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Nils Lukat
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Lindsay P Schneider
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - C Wyatt Shields
- NSF Research Triangle Materials Research Science and Engineering Center, Durham, North Carolina 27708, United States.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gabriel P López
- NSF Research Triangle Materials Research Science and Engineering Center, Durham, North Carolina 27708, United States.,Center for Biomedical Engineering, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Christine Selhuber-Unkel
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| |
Collapse
|
7
|
Xu Z, Orkwis JA, DeVine BM, Harris GM. Extracellular matrix cues modulate Schwann cell morphology, proliferation, and protein expression. J Tissue Eng Regen Med 2019; 14:229-242. [PMID: 31702874 DOI: 10.1002/term.2987] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/17/2019] [Accepted: 10/17/2019] [Indexed: 01/07/2023]
Abstract
Peripheral nerve injuries require a complex set of signals from cells, macrophages, and the extracellular matrix (ECM) to induce regeneration across injury sites and achieve functional recovery. Schwann cells (SCs), the major glial cell in the peripheral nervous system (PNS), are critical to nerve regeneration due to their inherent capacity for altering phenotype postinjury to facilitate wound healing. The ECM plays a vital role in wound healing as well as regulating cell phenotype during tissue repair. To examine the underlying mechanisms between the ECM and SCs, this work sought to determine how specific ECM cues regulate the phenotype of SCs. To address this, SCs were cultured on polydimethylsiloxane substrates of a variable Young's modulus coated with ECM proteins. Cells were analyzed for spreading area, proliferation, cell and nuclear shape, and c-Jun expression. It was found that substrates with a stiffness of 8.67 kPa coated with laminin promoted the highest expression of c-Jun, a marker signifying a "regenerative" SC. Microcontact printed, cell adhesive areas were then utilized to precisely control the geometry and spreading of SCs and by controlling spreading area and cellular elongation; expression of c-Jun was either promoted or downregulated. These results begin to address the significant interplay between ECM cues and phenotype of SCs, while offering a potential means to enhance PNS regeneration through cellular therapies.
Collapse
Affiliation(s)
- Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Jacob A Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Braden M DeVine
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Greg M Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
8
|
Peng Q, Zhou X, Wang Z, Xie Q, Ma C, Zhang G, Gong X. Three-Dimensional Bacterial Motions near a Surface Investigated by Digital Holographic Microscopy: Effect of Surface Stiffness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12257-12263. [PMID: 31423792 DOI: 10.1021/acs.langmuir.9b02103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface stiffness plays a critical role in bacterial adhesion, but the mechanism is unclear since the bacterial motion before adhesion is overlooked. Herein, the three-dimensional (3D) motions of Escherichia coli and Pseudonomas sp. nov 776 onto poly(dimethylsiloxane) (PDMS) surfaces with varying stiffness before adhering were monitored by digital holographic microscopy (DHM). As Young's modulus (E) of the PDMS surface decreases from 278.1 to 3.4 MPa, the adhered E. coli and Pseudonomas sp. decrease in number by 40.4 and 34.9%, respectively. Atomic force microscopy (AFM) measurements show that the adhesion force of bacteria to the surface declines with the decreased surface stiffness. In contrast, a nontumbling mutant of adhered E. coli (HCB1414 with the adaptive function being partially deficient) decreases much less (by 18.4%). On the other hand, the tumble frequency (Ft) of E. coli HCB1 and flick frequency (Ff) of Pseudomonas sp. increase as the surface stiffness decreases, and the motion bias (Bθ) of Pseudomonas sp. also increases. These facts clearly indicate that the bacteria have adapted responses to the surface stiffness. RNA sequencing (RNA-seq) reveals that the downregulated Cph2 and CsrA as well as the upregulated GcvA of swimming E. coli HCB1 in bulk near the softer surface promote the bacterial motility.
Collapse
Affiliation(s)
- Qingmei Peng
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Xin Zhou
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Zhi Wang
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
9
|
Gutekunst SB, Siemsen K, Huth S, Möhring A, Hesseler B, Timmermann M, Paulowicz I, Mishra YK, Siebert L, Adelung R, Selhuber-Unkel C. 3D Hydrogels Containing Interconnected Microchannels of Subcellular Size for Capturing Human Pathogenic Acanthamoeba Castellanii. ACS Biomater Sci Eng 2019; 5:1784-1792. [PMID: 30984820 PMCID: PMC6457568 DOI: 10.1021/acsbiomaterials.8b01009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Porous hydrogel scaffolds are ideal candidates for mimicking cellular microenvironments, regarding both structural and mechanical aspects. We present a novel strategy to use uniquely designed ceramic networks as templates for generating hydrogels with a network of interconnected pores in the form of microchannels. The advantages of this new approach are the high and guaranteed interconnectivity of the microchannels, as well as the possibility to produce channels with diameters smaller than 7 μm. Neither of these assets can be ensured with other established techniques. Experiments using the polyacrylamide substrates produced with our approach have shown that the migration of human pathogenic Acanthamoeba castellanii trophozoites is manipulated by the microchannel structure in the hydrogels. The parasites can even be captured inside the microchannel network and removed from their incubation medium by the porous polyacrylamide, indicating the huge potential of our new technique for medical, pharmaceutical, and tissue engineering applications.
Collapse
Affiliation(s)
- Sören B Gutekunst
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Katharina Siemsen
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Steven Huth
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Anneke Möhring
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Britta Hesseler
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Michael Timmermann
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | | | - Yogendra Kumar Mishra
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Leonard Siebert
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Rainer Adelung
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| | - Christine Selhuber-Unkel
- Institute for Materials Science, Biocompatible Nanomaterials, and Institute for Materials Science, Functional Nanomaterials, University of Kiel, Kiel D-24143, Germany
| |
Collapse
|
10
|
Nataraj NM, Dang AP, Kam LC, Lee JH. Ex vivo induction of regulatory T cells from conventional CD4 + T cells is sensitive to substrate rigidity. J Biomed Mater Res A 2018; 106:3001-3008. [PMID: 30303608 PMCID: PMC6240380 DOI: 10.1002/jbm.a.36489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/16/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022]
Abstract
The immune system maintains a balance between protection and tolerance. Regulatory T cells (Tregs) function as a vital tolerance mechanism in the immune system to suppress effector immune cells. Additionally, Tregs can be utilized as a form of immunotherapy for autoimmune disorders. As T cells have previously been shown to exhibit sensitivity to the rigidity of an activating substrate upon activation via IL-2 secretion, we herein explore the previously unknown effect of substrate rigidity on the induction of Tregs from conventional naïve mouse CD4+ T cells. Substrates with modulatable rigidities ranging from a hundred kilopascals to a few megapascals were fabricated via poly(dimethylsiloxane). We found that there was a significant increase in Treg induction at lower substrate rigidities (i.e., E ~ 100 kPa) compared to higher rigidity levels (i.e., E ~ 3 MPa). To confirm that this significant difference in induction rate was truly related to T-cell mechanosensing, we administered compound Y-27632 to inhibit myosin contractility. In the presence of Y-27632, the myosin-based contractility was disrupted and, as a result, the difference in Treg induction caused by the substrate rigidity was abrogated. This study demonstrates that mechanosensing is involved in Treg induction and raises questions about the underlying molecular mechanisms involved in this process. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3001-3008, 2018.
Collapse
Affiliation(s)
- Neha M Nataraj
- Department of Biomedical Engineering, Columbia University, New York, New York
- Biomedical Graduate Studies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex P Dang
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Jounghyun H Lee
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
11
|
Yang HW, Liu XY, Shen ZF, Yao W, Gong XB, Huang HX, Ding GH. An investigation of the distribution and location of mast cells affected by the stiffness of substrates as a mechanical niche. Int J Biol Sci 2018; 14:1142-1152. [PMID: 29989093 PMCID: PMC6036734 DOI: 10.7150/ijbs.26738] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022] Open
Abstract
The distribution and location of mast cells are closely related to their physiological and pathological functions, such as allergic responses, immunity, and fibrosis, and are used in acupuncture. In this study, the distribution of mast cells in vivo was observed, and mechanical clues for understanding their distribution based on mechanical niches were explored. By toluidine blue staining and immunohistochemical staining, we examined the distribution and location of mast cells in rat skin and found that mast cells are distributed in a spatially nonuniform manner, preferring to locate at regions in the tissue and extracellular matrix with stiffness changes. In vitro experiments for studying the distribution of rat basophilic leukemia (RBL-2H3) mast cell line on poly-di-methyl-siloxane (PDMS) substrates with stiffness variations were performed. It was found that RBL-2H3 cells migrate and tend to remain in the areas with stiffness variations. The present research suggests that changing the stiffness of local tissues may stimulate mast cell recruitment, which may be the method by which some traditional Chinese medicine treatments, such as acupuncture. On the basis of the origin of mast cells and our experimental results, we predict that mast cells exist in tissues that contain permeable capillaries and prefer regions with stiffness changes. We discussed this prediction using examples of specific tissues from some cases.
Collapse
Affiliation(s)
- Hong-Wei Yang
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Xin-Yue Liu
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhou-Feng Shen
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Wei Yao
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Xiao-Bo Gong
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua-Xiong Huang
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Guang-Hong Ding
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Liu L, You Z, Yu H, Zhou L, Zhao H, Yan X, Li D, Wang B, Zhu L, Xu Y, Xia T, Shi Y, Huang C, Hou W, Du Y. Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. NATURE MATERIALS 2017; 16:1252-1261. [PMID: 29170554 DOI: 10.1038/nmat5024] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
The role of pathological angiogenesis on liver fibrogenesis is still unknown. Here, we developed fibrotic microniches (FμNs) that recapitulate the interaction of liver sinusoid endothelial cells (LSECs) and hepatic stellate cells (HSCs). We investigated how the mechanical properties of their substrates affect the formation of capillary-like structures and how they relate to the progression of angiogenesis during liver fibrosis. Differences in cell response in the FμNs were synonymous of the early and late stages of liver fibrosis. The stiffness of the early-stage FμNs was significantly elevated due to condensation of collagen fibrils induced by angiogenesis, and led to activation of HSCs by LSECs. We utilized these FμNs to understand the response to anti-angiogenic drugs, and it was evident that these drugs were effective only for early-stage liver fibrosis in vitro and in an in vivo mouse model of liver fibrosis. Late-stage liver fibrosis was not reversed following treatment with anti-angiogenic drugs but rather with inhibitors of collagen condensation. Our work reveals stage-specific angiogenesis-induced liver fibrogenesis via a previously unrevealed mechanotransduction mechanism which may offer precise intervention strategies targeting stage-specific disease progression.
Collapse
Affiliation(s)
- Longwei Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhifeng You
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Hongsheng Yu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Lyu Zhou
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Zhao
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojun Yan
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Dulei Li
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bingjie Wang
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Zhu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Yuzhou Xu
- Sequencing core facility, Tsinghua University, Beijing 100084, China
| | - Tie Xia
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chenyu Huang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Wei Hou
- Tianjin Second People's Hospital and Tianjin Institute of Hepatology, Tianjin 300192, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Huth S, Reverey JF, Leippe M, Selhuber-Unkel C. Adhesion forces and mechanics in mannose-mediated acanthamoeba interactions. PLoS One 2017; 12:e0176207. [PMID: 28472161 PMCID: PMC5417443 DOI: 10.1371/journal.pone.0176207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022] Open
Abstract
The human pathogenic amoeba Acanthamoeba castellanii (A. castellanii) causes severe diseases, including acanthamoeba keratitis and encephalitis. Pathogenicity arises from the killing of target-cells by an extracellular killing mechanism, where the crucial first step is the formation of a close contact between A. castellanii and the target-cell. This process is mediated by the glycocalix of the target-cell and mannose has been identified as key mediator. The aim of the present study was to carry out a detailed biophysical investigation of mannose-mediated adhesion of A. castellanii using force spectroscopy on single trophozoites. In detail, we studied the interaction of a mannose-coated cantilever with an A. castellanii trophozoite, as mannose is the decisive part of the cellular glycocalix in mediating pathogenicity. We observed a clear increase of the force to initiate cantilever detachment from the trophozoite with increasing contact time. This increase is also associated with an increase in the work of detachment. Furthermore, we also analyzed single rupture events during the detachment process and found that single rupture processes are associated with membrane tether formation, suggesting that the cytoskeleton is not involved in mannose binding events during the first few seconds of contact. Our study provides an experimental and conceptual basis for measuring interactions between pathogens and target-cells at different levels of complexity and as a function of interaction time, thus leading to new insights into the biophysical mechanisms of parasite pathogenicity.
Collapse
Affiliation(s)
- Steven Huth
- Institute of Materials Science, Biocompatible Nanomaterials, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Julia F. Reverey
- Institute of Materials Science, Biocompatible Nanomaterials, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Matthias Leippe
- Zoological Institute, Comparative Immunobiology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Christine Selhuber-Unkel
- Institute of Materials Science, Biocompatible Nanomaterials, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
| |
Collapse
|
14
|
A biomimetic gelatin-based platform elicits a pro-differentiation effect on podocytes through mechanotransduction. Sci Rep 2017; 7:43934. [PMID: 28262745 PMCID: PMC5338254 DOI: 10.1038/srep43934] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 01/12/2023] Open
Abstract
Using a gelatin microbial transglutaminase (gelatin-mTG) cell culture platform tuned to exhibit stiffness spanning that of healthy and diseased glomeruli, we demonstrate that kidney podocytes show marked stiffness sensitivity. Podocyte-specific markers that are critical in the formation of the renal filtration barrier are found to be regulated in association with stiffness-mediated cellular behaviors. While podocytes typically de-differentiate in culture and show diminished physiological function in nephropathies characterized by altered tissue stiffness, we show that gelatin-mTG substrates with Young’s modulus near that of healthy glomeruli elicit a pro-differentiation and maturation response in podocytes better than substrates either softer or stiffer. The pro-differentiation phenotype is characterized by upregulation of gene and protein expression associated with podocyte function, which is observed for podocytes cultured on gelatin-mTG gels of physiological stiffness independent of extracellular matrix coating type and density. Signaling pathways involved in stiffness-mediated podocyte behaviors are identified, revealing the interdependence of podocyte mechanotransduction and maintenance of their physiological function. This study also highlights the utility of the gelatin-mTG platform as an in vitro system with tunable stiffness over a range relevant for recapitulating mechanical properties of soft tissues, suggesting its potential impact on a wide range of research in cellular biophysics.
Collapse
|
15
|
Razafiarison T, Silván U, Meier D, Snedeker JG. Surface-Driven Collagen Self-Assembly Affects Early Osteogenic Stem Cell Signaling. Adv Healthc Mater 2016; 5:1481-92. [PMID: 27125602 DOI: 10.1002/adhm.201600128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/18/2016] [Indexed: 11/10/2022]
Abstract
This study reports how extracellular matrix (ECM) ligand self-assembly on biomaterial surfaces and the resulting nanoscale architecture can drive stem cell behavior. To isolate the biological effects of surface wettability on protein deposition, folding, and ligand activity, a polydimethylsiloxane (PDMS)-based platform was developed and characterized with the ability to tune wettability of elastomeric substrates with otherwise equivalent topology, ligand loading, and mechanical properties. Using this platform, markedly different assembly of covalently bound type I collagen monomers was observed depending on wettability, with hydrophobic substrates yielding a relatively rough layer of collagen aggregates compared to a smooth collagen layer on more hydrophilic substrates. Cellular and molecular investigations with human bone marrow stromal cells revealed higher osteogenic differentiation and upregulation of focal adhesion-related components on the resulting smooth collagen layer coated substrates. The initial collagen assembly driven by the PDMS surface directly affected α1β1 integrin/discoidin domain receptor 1 signaling, activation of the extracellular signal-regulated kinase/mitogen activated protein kinase pathway, and ultimately markers of osteogenic stem cell differentiation. We demonstrate for the first time that surface-driven ligand assembly on material surfaces, even on materials with otherwise identical starting topographies and mechanical properties, can dominate the biomaterial surface-driven cell response.
Collapse
Affiliation(s)
- Tojo Razafiarison
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
- Laboratory for Orthopedic Biomechanics ETH Zurich Lengghalde 5 8008 Zürich Switzerland
| | - Unai Silván
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
- Laboratory for Orthopedic Biomechanics ETH Zurich Lengghalde 5 8008 Zürich Switzerland
| | - Daniela Meier
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
| | - Jess G. Snedeker
- Department of Orthopedics Balgrist University Hospital University of Zurich Lengghalde 5 8008 Zürich Switzerland
- Laboratory for Orthopedic Biomechanics ETH Zurich Lengghalde 5 8008 Zürich Switzerland
| |
Collapse
|
16
|
Reverey JF, Jeon JH, Bao H, Leippe M, Metzler R, Selhuber-Unkel C. Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Sci Rep 2015; 5:11690. [PMID: 26123798 PMCID: PMC5155589 DOI: 10.1038/srep11690] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022] Open
Abstract
Acanthamoebae are free-living protists and human pathogens, whose cellular functions and pathogenicity strongly depend on the transport of intracellular vesicles and granules through the cytosol. Using high-speed live cell imaging in combination with single-particle tracking analysis, we show here that the motion of endogenous intracellular particles in the size range from a few hundred nanometers to several micrometers in Acanthamoeba castellanii is strongly superdiffusive and influenced by cell locomotion, cytoskeletal elements, and myosin II. We demonstrate that cell locomotion significantly contributes to intracellular particle motion, but is clearly not the only origin of superdiffusivity. By analyzing the contribution of microtubules, actin, and myosin II motors we show that myosin II is a major driving force of intracellular motion in A. castellanii. The cytoplasm of A. castellanii is supercrowded with intracellular vesicles and granules, such that significant intracellular motion can only be achieved by actively driven motion, while purely thermally driven diffusion is negligible.
Collapse
Affiliation(s)
- Julia F Reverey
- Institute for Materials Science, Biocompatible Nanomaterials, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Jae-Hyung Jeon
- School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea
| | - Han Bao
- Institute for Materials Science, Biocompatible Nanomaterials, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Matthias Leippe
- Zoological Institute, Comparative Immunobiology, Christian-Albrechts-Universität zu Kiel, Olshausenstr.40, D-24098 Kiel, Germany
| | - Ralf Metzler
- 1] Institute of Physics &Astronomy, University of Potsdam, D-14776 Potsdam-Golm, Germany [2] Department of Physics, Tampere University of Technology, FI-30101 Tampere, Finland
| | - Christine Selhuber-Unkel
- Institute for Materials Science, Biocompatible Nanomaterials, Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
| |
Collapse
|