1
|
Kroonen CCE, Hinaut A, D'Addio A, Prescimone A, Häussinger D, Navarro‐Marín G, Fuhr O, Fenske D, Meyer E, Mayor M. Toward Molecular Textiles: Synthesis and Characterization of Molecular Patches. Chemistry 2024; 30:e202402866. [PMID: 39325654 PMCID: PMC11632409 DOI: 10.1002/chem.202402866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
This works describes a new step into the assembly of molecular textiles by the use of covalent templating. To establish a well-founded base and to tackle pre-mature obstacles, expected during the fabrication of the desired 2D-material, we opted to investigate the in-solution synthesis of molecular patches e. g. cut-outs of a textile. A bi-functional cross-shaped monomer was designed, synthesized and was in-detail characterized by means of 1H-NMR and chiro-optical spectroscopy. In addition, x-ray structure crystallography was used to assess the absolute configuration. The monomer was used in an in-solution oligomerization to assemble the molecular patches via imine condensation, which revealed the formation of predominately dimeric patches. The imine-oligomer mixtures were further analyzed by reduction and cleaved to investigate the conditions required post mono-layer assembly. All reaction stages were followed by FT-IR and 1H-NMR analysis. Finally, we address the adsorption of the cross-shaped monomer onto a Au(111) surface, via high vacuum electrospray deposition. The subsequent annealing of the interface induced the on-surface imine condensation reaction, leading to unidimensional oligomers co-adsorbed with clusters of cyclic-dimers. Nc-AFM analysis revealed the tridimensional molecular structures, and together with electrospray deposition technique showed to be a promising pathway to investigate potential monomer candidates.
Collapse
Affiliation(s)
- Camiel C. E. Kroonen
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Antoine Hinaut
- Department of PhysicsUniversity of BaselKlingelbergstrasse 824056BaselSwitzerland
| | - Adriano D'Addio
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | | | - Daniel Häussinger
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Gema Navarro‐Marín
- Department of PhysicsUniversity of BaselKlingelbergstrasse 824056BaselSwitzerland
| | - Olaf Fuhr
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)P. O. Box 364076021Karlsruhe Eggenstein-Leopoldshafen,Germany
| | - Dieter Fenske
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)P. O. Box 364076021Karlsruhe Eggenstein-Leopoldshafen,Germany
| | - Ernst Meyer
- Department of PhysicsUniversity of BaselKlingelbergstrasse 824056BaselSwitzerland
| | - Marcel Mayor
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)P. O. Box 364076021Karlsruhe Eggenstein-Leopoldshafen,Germany
- Lehn Institute of Functional Materials(LIFM)School of ChemistrySun Yat-Sen University (SYSU)Guangzhou510275P.R. of China
| |
Collapse
|
2
|
Hinaut A, Scherb S, Yao X, Liu Z, Song Y, Moser L, Marot L, Müllen K, Glatzel T, Narita A, Meyer E. Stable Au(111) Hexagonal Reconstruction Induced by Perchlorinated Nanographene Molecules. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:18894-18900. [PMID: 39534759 PMCID: PMC11552072 DOI: 10.1021/acs.jpcc.4c03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Surface reconstructions play a crucial role in surface science because of their influence on the adsorption and arrangement of molecules or nanoparticles. On the Au(111) surface, the herringbone reconstruction presents favorable anchoring at the elbow sites, where the highest reactivity is found. In this work, we deposited large organic perchlorinated molecules on a Au(111) surface via high-vacuum electrospray deposition. With noncontact atomic force microscopy measurements at room temperature, we studied the molecular structures formed on the surface before and after annealing at different temperatures. We found that a supramolecular layer is formed and that a hexagonal reconstruction of the Au(111) surface is induced. After high-temperature annealing, the molecules are removed, but the hexagonal Au(111) surface reconstruction is preserved. With the hexagonal Au(111) surface reconstruction, a periodic lattice of anchoring sites is formed.
Collapse
Affiliation(s)
- Antoine Hinaut
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Sebastian Scherb
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Xuelin Yao
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zhao Liu
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Yiming Song
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Lucas Moser
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Laurent Marot
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Thilo Glatzel
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Akimitsu Narita
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ernst Meyer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Yin R, Wang Z, Tan S, Ma C, Wang B. On-Surface Synthesis of Graphene Nanoribbons with Atomically Precise Structural Heterogeneities and On-Site Characterizations. ACS NANO 2023; 17:17610-17623. [PMID: 37666005 DOI: 10.1021/acsnano.3c06128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Graphene nanoribbons (GNRs) are strips of graphene, with widths of a few nanometers, that are promising candidates for future applications in nanodevices and quantum information processing due to their highly tunable structure-dependent electronic, spintronic, topological, and optical properties. Implantation of periodic structural heterogeneities, such as heteroatoms, nanopores, and non-hexagonal rings, has become a powerful manner for tailoring the designer properties of GNRs. The bottom-up synthesis approach, by combining on-surface chemical reactions based on rationally designed molecular precursors and in situ tip-based microscopic and spectroscopic techniques, promotes the construction of atomically precise GNRs with periodic structural modulations. However, there are still obstacles and challenges lying on the way toward the understanding of the intrinsic structure-property relations, such as the strong screening and Fermi level pinning effect of the normally used transition metal substrates and the lack of collective tip-based techniques that can cover multi-internal degrees of freedom of the GNRs. In this Perspective, we briefly review the recent progress in the on-surface synthesis of GNRs with diverse structural heterogeneities and highlight the structure-property relations as characterized by the noncontact atomic force microscopy and scanning tunneling microscopy/spectroscopy. We furthermore motivate to deliver the need for developing strategies to achieve quasi-freestanding GNRs and for exploiting multifunctional tip-based techniques to collectively probe the intrinsic properties.
Collapse
Affiliation(s)
- Ruoting Yin
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengya Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shijing Tan
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chuanxu Ma
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
4
|
Biere N, Kreft D, Walhorn V, Schwarzbich S, Glaser T, Anselmetti D. Dinuclear complex-induced DNA melting. J Nanobiotechnology 2023; 21:26. [PMID: 36691056 PMCID: PMC9869567 DOI: 10.1186/s12951-023-01784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Dinuclear copper complexes have been designed for molecular recognition in order to selectively bind to two neighboring phosphate moieties in the backbone of double strand DNA. Associated biophysical, biochemical and cytotoxic effects on DNA were investigated in previous works, where atomic force microscopy (AFM) in ambient conditions turned out to be a particular valuable asset, since the complexes influence the macromechanical properties and configurations of the strands. To investigate and scrutinize these effects in more depth from a structural point of view, cutting-edge preparation methods and scanning force microscopy under ultra-high vacuum (UHV) conditions were employed to yield submolecular resolution images. DNA strand mechanics and interactions could be resolved on the single base pair level, including the amplified formation of melting bubbles. Even the interaction of singular complex molecules could be observed. To better assess the results, the appearance of treated DNA is also compared to the behavior of untreated DNA in UHV on different substrates. Finally, we present data from a statistical simulation reasoning about the nanomechanics of strand dissociation. This sort of quantitative experimental insights paralleled by statistical simulations impressively shade light on the rationale for strand dissociations of this novel DNA interaction process, that is an important nanomechanistic key and novel approach for the development of new chemotherapeutic agents.
Collapse
Affiliation(s)
- Niklas Biere
- grid.7491.b0000 0001 0944 9128Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Dennis Kreft
- grid.7491.b0000 0001 0944 9128Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Volker Walhorn
- grid.7491.b0000 0001 0944 9128Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Sabrina Schwarzbich
- grid.7491.b0000 0001 0944 9128Lehrstuhl für Anorganische Chemie I, Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Thorsten Glaser
- grid.7491.b0000 0001 0944 9128Lehrstuhl für Anorganische Chemie I, Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Dario Anselmetti
- grid.7491.b0000 0001 0944 9128Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
Scherb S, Hinaut A, Yao X, Götz A, Al-Hilfi SH, Wang XY, Hu Y, Qiu Z, Song Y, Müllen K, Glatzel T, Narita A, Meyer E. Solution-Synthesized Extended Graphene Nanoribbons Deposited by High-Vacuum Electrospray Deposition. ACS NANO 2023; 17:597-605. [PMID: 36542550 PMCID: PMC9835822 DOI: 10.1021/acsnano.2c09748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Solution-synthesized graphene nanoribbons (GNRs) facilitate various interesting structures and functionalities, like nonplanarity and thermolabile functional groups, that are not or not easily accessible by on-surface synthesis. Here, we show the successful high-vacuum electrospray deposition (HVESD) of well-elongated solution-synthesized GNRs on surfaces maintained in ultrahigh vacuum. We compare three distinct GNRs, a twisted nonplanar fjord-edged GNR, a methoxy-functionalized "cove"-type (or also called gulf) GNR, and a longer "cove"-type GNR both equipped with alkyl chains on Au(111). Nc-AFM measurements at room temperature with submolecular imaging combined with Raman spectroscopy allow us to characterize individual GNRs and confirm their chemical integrity. The fjord-GNR and methoxy-GNR are additionally deposited on nonmetallic HOPG and SiO2, and fjord-GNR is deposited on a KBr(001) surface, facilitating the study of GNRs on substrates, as of now not accessible by on-surface synthesis.
Collapse
Affiliation(s)
- Sebastian Scherb
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Antoine Hinaut
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Xuelin Yao
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Alicia Götz
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Samir H. Al-Hilfi
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xiao-Ye Wang
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yunbin Hu
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zijie Qiu
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yiming Song
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Klaus Müllen
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Thilo Glatzel
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Akimitsu Narita
- Max
Plank Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ernst Meyer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| |
Collapse
|
6
|
Walz A, Stoiber K, Huettig A, Schlichting H, Barth JV. Navigate Flying Molecular Elephants Safely to the Ground: Mass-Selective Soft Landing up to the Mega-Dalton Range by Electrospray Controlled Ion-Beam Deposition. Anal Chem 2022; 94:7767-7778. [PMID: 35609119 PMCID: PMC9178560 DOI: 10.1021/acs.analchem.1c04495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The prototype of a highly versatile and efficient preparative mass spectrometry system used for the deposition of molecules in ultrahigh vacuum (UHV) is presented, along with encouraging performance data obtained using four model species that are thermolabile or not sublimable. The test panel comprises two small organic compounds, a small and very large protein, and a large DNA species covering a 4-log mass range up to 1.7 MDa as part of a broad spectrum of analyte species evaluated to date. Three designs of innovative ion guides, a novel digital mass-selective quadrupole (dQMF), and a standard electrospray ionization (ESI) source are combined to an integrated device, abbreviated electrospray controlled ion-beam deposition (ES-CIBD). Full control is achieved by (i) the square-wave-driven radiofrequency (RF) ion guides with steadily tunable frequencies, including a dQMF allowing for investigation, purification, and deposition of a virtually unlimited m/z range, (ii) the adjustable landing energy of ions down to ∼2 eV/z enabling integrity-preserving soft landing, (iii) the deposition in UHV with high ion beam intensity (up to 3 nA) limiting contaminations and deposition time, and (iv) direct coverage control via the deposited charge. The maximum resolution of R = 650 and overall efficiency up to Ttotal = 4.4% calculated from the solution to UHV deposition are advantageous, whereby the latter can be further enhanced by optimizing ionization performance. In the setup presented, a scanning tunneling microscope (STM) is attached for in situ UHV investigations of deposited species, demonstrating a selective, structure-preserving process and atomically clean layers.
Collapse
Affiliation(s)
- Andreas Walz
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Karolina Stoiber
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Annette Huettig
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Hartmut Schlichting
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
7
|
Hou ICY, Hinaut A, Scherb S, Meyer E, Narita A, Müllen K. Synthesis of Giant Dendritic Polyphenylenes with 366 and 546 Carbon Atoms and their High-vacuum Electrospray Deposition. Chem Asian J 2022; 17:e202200220. [PMID: 35381624 PMCID: PMC9321752 DOI: 10.1002/asia.202200220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Indexed: 11/21/2022]
Abstract
Dendritic polyphenylenes (PPs) can serve as precursors of nanographenes (NGs) if their structures represent 2D projections without overlapping benzene rings. Here, we report the synthesis of two giant dendritic PPs fulfilling this criteria with 366 and 546 carbon atoms by applying a “layer‐by‐layer” extension strategy. Although our initial attempts on their cyclodehydrogenation toward the corresponding NGs in solution were unsuccessful, we achieved their deposition on metal substrates under ultrahigh vacuum through the electrospray technique. Scanning probe microscopy imaging provides valuable information on the possible thermally induced partial planarization of such giant dendritic PPs on a metal surface.
Collapse
Affiliation(s)
- Ian Cheng-Yi Hou
- Max-Planck-Institut fur Polymerforschung, synthetic chemitry, GERMANY
| | - Antoine Hinaut
- University of Basel: Universitat Basel, physics, GERMANY
| | | | - Ernst Meyer
- University of Basel: Universitat Basel, physics, GERMANY
| | - Akimitsu Narita
- Max-Planck-Institut für Polymerforschung: Max-Planck-Institut fur Polymerforschung, synthetic chemistry, GERMANY
| | - Klaus Müllen
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, GERMANY
| |
Collapse
|
8
|
Jagdale GS, Choi MH, Siepser NP, Jeong S, Wang Y, Skalla RX, Huang K, Ye X, Baker LA. Electrospray deposition for single nanoparticle studies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4105-4113. [PMID: 34554166 DOI: 10.1039/d1ay01295a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single entity electrochemical (SEE) studies that can probe activities and heterogeneity in activities at nanoscale require samples that contain single and isolated particles. Single, isolated nanoparticles are achieved here with electrospray deposition of colloidal nanoparticle solutions, with simple instrumentation. Role of three electrospray (ES) parameters, viz. spray distance (emitter tip-to-substrate distance), ES current and emitter tip diameter, in the ES deposition of single Au nano-octahedra (Au ODs) is examined. The ES deposition of single, isolated Au ODs are analyzed in terms of percentage of single NPs and local surface density of deposition. The local surface density of ES deposition of single Au ODs was found to increase with decrease in spray distance and emitter tip diameter, and increase in ES current. While the percentage of single particle ES deposition increased with increase in spray distance and decrease in emitter tip size. No significant change in the single Au ODs ES deposition percentage was observed with change in ES current values included in this study. The most favourable conditions in the ES deposition of Au ODs in this study resulted in the local surface density of 0.26 ± 0.05 single particles per μm2 and observation of 96.3% single Au OD deposition.
Collapse
Affiliation(s)
- Gargi S Jagdale
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Myung-Hoon Choi
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Soojin Jeong
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Yi Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Rebecca X Skalla
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| |
Collapse
|
9
|
Hinaut A, Scherb S, Freund S, Liu Z, Glatzel T, Meyer E. Influence of electrospray deposition on C 60 molecular assemblies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:552-558. [PMID: 34221801 PMCID: PMC8218541 DOI: 10.3762/bjnano.12.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Maintaining clean conditions for samples during all steps of preparation and investigation is important for scanning probe studies at the atomic or molecular level. For large or fragile organic molecules, where sublimation cannot be used, high-vacuum electrospray deposition is a good alternative. However, because this method requires the introduction into vacuum of the molecules from solution, clean conditions are more difficult to be maintained. Additionally, because the presence of solvent on the surface cannot be fully eliminated, one has to take care of its possible influence. Here, we compare the high-vacuum electrospray deposition method to thermal evaporation for the preparation of C60 on different surfaces and compare, for sub-monolayer coverages, the influence of the deposition method on the formation of molecular assemblies. Whereas the island location is the main difference for metal surfaces, we observe for alkali halide and metal oxide substrates that the high-vacuum electrospray method can yield single isolated molecules accompanied by surface modifications.
Collapse
Affiliation(s)
- Antoine Hinaut
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Sebastian Scherb
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Sara Freund
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Zhao Liu
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Benchohra A, Méthivier C, Landoulsi J, Kreher D, Lescouëzec R. Electrospray ionization: an efficient approach to deposit polymetallic molecular switches onto gold surfaces. Chem Commun (Camb) 2020; 56:6587-6589. [PMID: 32406433 DOI: 10.1039/d0cc01906b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospray ionization (EI) deposition is proven efficient in obtaining monolayers of a polymetallic charge transfer complex on gold surfaces. The molecule's integrity is monitored by using PM-IRRAS and XPS. This approach broadens the perspective of molecular magnetic switch deposition, which is currently dominated by the thermal evaporation of monometallic spin crossover (SCO) complexes.
Collapse
Affiliation(s)
- Amina Benchohra
- Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, Sorbonne Université, 4 place Jussieu, Paris 750005, France.
| | | | | | | | | |
Collapse
|
11
|
Tan A, Zhang P. Tailoring the growth and electronic structures of organic molecular thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:503001. [PMID: 31422957 DOI: 10.1088/1361-648x/ab3c22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the rapidly developing electronics industry, it has become increasingly necessary to explore materials that are cheap, flexible and versatile which have led to significant research efforts towards organic molecular thin films. Organic molecules are unique compared to their inorganic atomic counterparts as their properties can be tuned drastically through chemical functionalization, offering versatility, though their extended shape and weak intermolecular interactions bring significant challenges to the control of both the growth and the electronic structures of molecular thin films. In this paper, we will review the self-assembly process and how to establish long-range ordered organic molecular thin films. We will also discuss how the electronic structures of thin films are impacted by the molecule's local electrostatic environment and its interaction with the substrate, within the context of controlling interfacial energy level alignment between organic semiconductors and electrodes in electronic devices.
Collapse
Affiliation(s)
- Andrew Tan
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, United States of America
| | | |
Collapse
|
12
|
Pawlak R, Vilhena JG, Hinaut A, Meier T, Glatzel T, Baratoff A, Gnecco E, Pérez R, Meyer E. Conformations and cryo-force spectroscopy of spray-deposited single-strand DNA on gold. Nat Commun 2019; 10:685. [PMID: 30737410 PMCID: PMC6368621 DOI: 10.1038/s41467-019-08531-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/16/2019] [Indexed: 01/02/2023] Open
Abstract
Cryo-electron microscopy can determine the structure of biological matter in vitrified liquids. However, structure alone is insufficient to understand the function of native and engineered biomolecules. So far, their mechanical properties have mainly been probed at room temperature using tens of pico-newton forces with a resolution limited by thermal fluctuations. Here we combine force spectroscopy and computer simulations in cryogenic conditions to quantify adhesion and intra-molecular properties of spray-deposited single-strand DNA oligomers on Au(111). Sub-nanometer resolution images reveal folding conformations confirmed by simulations. Lifting shows a decay of the measured stiffness with sharp dips every 0.2-0.3 nm associated with the sequential peeling and detachment of single nucleotides. A stiffness of 30-35 N m-1 per stretched repeat unit is deduced in the nano-newton range. This combined study suggests how to better control cryo-force spectroscopy of adsorbed heterogeneous (bio)polymer and to potentially enable single-base recognition in DNA strands only few nanometers long.
Collapse
Affiliation(s)
- Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland.
| | - J G Vilhena
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland.,Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Antoine Hinaut
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Tobias Meier
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Alexis Baratoff
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Enrico Gnecco
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, D-07742, Jena, Germany
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049, Madrid, Spain. .,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049, Madrid, Spain.
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland.
| |
Collapse
|
13
|
Hinaut A, Eren B, Steiner R, Freund S, Jöhr R, Glatzel T, Marot L, Meyer E, Kawai S. Nanostructuring of an alkali halide surface by low temperature plasma exposure. Phys Chem Chem Phys 2018; 19:16251-16256. [PMID: 28608893 DOI: 10.1039/c7cp02592k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Templating insulating surfaces at the nanoscale is an interesting prospect for applications that involve the adsorption of molecules or nanoparticles where electronic decoupling of the adsorbed species from the substrate is needed. In this study, we present a method to structure alkali halide surfaces at the nanoscale using a combination of low temperature plasma exposure and annealing, and characterize the surfaces by atomic force microscopy. We find that nanostructurating can be controlled by the duration of the exposure, the atomic mass of the plasma gas and the subsequent step-by-step annealing process. In contrast to previous studies with electron or high energy (few keV) ion irradiation, our approach of employing moderate particle energy (10-15 eV Ar+ or He+ ions) results in fine nanostructuring at length scales of nanometers and even single atom vacancies.
Collapse
Affiliation(s)
- Antoine Hinaut
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hinaut A, Meier T, Pawlak R, Feund S, Jöhr R, Kawai S, Glatzel T, Decurtins S, Müllen K, Narita A, Liu SX, Meyer E. Electrospray deposition of structurally complex molecules revealed by atomic force microscopy. NANOSCALE 2018; 10:1337-1344. [PMID: 29296988 DOI: 10.1039/c7nr06261c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Advances in organic chemistry allow the synthesis of large, complex and highly functionalized organic molecules having potential applications in optoelectronics, molecular electronics and organic solar cells. Their integration into devices as individual components or highly ordered thin-films is of paramount importance to address these future prospects. However, conventional sublimation techniques in vacuum are usually not applicable since large organic compounds are often non-volatile and decompose upon heating. Here, we prove by atomic force microscopy and scanning tunneling microscopy, the structural integrity of complex organic molecules deposited onto an Au(111) surface using electrospray ionisation deposition. High resolution AFM measurements with CO-terminated tips unambiguously reveal their successful transfer from solution to the gold surface in ultra-high vacuum without degradation of their chemical structures. Furthermore, the formation of molecular structures from small islands to large and highly-ordered self-assemblies of those fragile molecules is demonstrated, confirming the use of electrospray ionisation to promote also on-surface polymerization reactions of highly functionalized organic compounds, biological molecules or molecular magnets.
Collapse
Affiliation(s)
- Antoine Hinaut
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH 4056 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Glatzel T, Schimmel T. Advanced atomic force microscopy techniques III. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1052-1054. [PMID: 27547623 PMCID: PMC4979673 DOI: 10.3762/bjnano.7.98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Thilo Glatzel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Thomas Schimmel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| |
Collapse
|