1
|
Cosimi A, Stöbener DD, Nickl P, Schusterbauer R, Donskyi IS, Weinhart M. Interfacial Nanoengineering of Hydrogel Surfaces via Block Copolymer Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10073-10086. [PMID: 39901519 PMCID: PMC11826506 DOI: 10.1021/acsami.4c18632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/27/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Synthetic polymer hydrogels are valuable matrices for biotransformations, drug delivery, and soft implants. While the bulk properties of hydrogels depend on chemical composition and network structure, the critical role of interfacial features is often underestimated. This work presents a nanoscale modification of the gel-water interface using polymer brushes via a straightforward "grafting-to" strategy, offering an alternative to more cumbersome "grafting-from" approaches. Functional block copolymers with photoreactive anchor blocks are successfully self-assembled and UV-immobilized on hydrogel substrates despite their low solid content (<30 wt %). This versatile technique works on both bulk- and surface-immobilized hydrogels, demonstrated on poly(hydroxypropyl acrylate), poly(N-isopropylacrylamide), and alginate gels, allowing precise control over grafting density. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry revealed a homogeneous bilayered architecture. By "brushing-up", the hydrogels' interface can be tailored to enhance protein adsorption, improve cell adhesion, or impair the diffusive uptake of small molecules into the bulk gels. This effective interfacial nanoengineering method is broadly applicable for enhancing hydrogel performance across a wide range of applications.
Collapse
Affiliation(s)
- Andrea Cosimi
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry − Organic Chemistry, Takustraße 3, Berlin 14195, Germany
- Leibniz
Universität Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, Hannover 30167, Germany
| | - Daniel D. Stöbener
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry − Organic Chemistry, Takustraße 3, Berlin 14195, Germany
- Leibniz
Universität Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, Hannover 30167, Germany
| | - Philip Nickl
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry − Organic Chemistry, Takustraße 3, Berlin 14195, Germany
- BAM
− Federal Institute for Material Science and Testing −
Division of Surface Analytics, and Interfacial Chemistry, Unter den Eichen 44-46, Berlin 12205, Germany
| | - Robert Schusterbauer
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry − Organic Chemistry, Takustraße 3, Berlin 14195, Germany
- BAM
− Federal Institute for Material Science and Testing −
Division of Surface Analytics, and Interfacial Chemistry, Unter den Eichen 44-46, Berlin 12205, Germany
| | - Ievgen S. Donskyi
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry − Organic Chemistry, Takustraße 3, Berlin 14195, Germany
- BAM
− Federal Institute for Material Science and Testing −
Division of Surface Analytics, and Interfacial Chemistry, Unter den Eichen 44-46, Berlin 12205, Germany
| | - Marie Weinhart
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry − Organic Chemistry, Takustraße 3, Berlin 14195, Germany
- Leibniz
Universität Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, Hannover 30167, Germany
| |
Collapse
|
2
|
Huang C, Liu X, Meng L, Qu H, Chen Q, Wang Q. Fabrication of an Antibacterial/Anticoagulant Dual-Functional Surface for Left Ventricular Assist Devices via Mussel-Inspired Polydopamine Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24306-24317. [PMID: 39498633 DOI: 10.1021/acs.langmuir.4c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Infections and thrombosis remain unsolved problems for implanted cardiovascular devices, such as left ventricular assist devices. Hence, the development of surfaces with improved blood compatibility and antimicrobial properties is imperative to reduce complications after artificial heart implantation. In this work, we report a novel approach to fabricate multifunctional surfaces for left ventricular transplanted ventricular assist devices (LVADs) by immobilizing nitric oxide (NO) generation catalysts and heparin and reducing silver nanoparticles in situ. The general view, structure, and chemical compositions of the pure/modified surfaces were characterized using digital imaging, scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle (WCA), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP). All of the results demonstrated that the AgNPs and heparin were successfully immobilized on the surface. The Cu ions and NO release experimental results showed that the immobilized copper ions could catalyze the production of NO from S-nitrosothiols within the biological system. Meanwhile, due to the synergistic anticoagulant effect of NO and surface-immobilized heparin, the fabricated modified surfaces exhibited antiplatelet adhesion activities and good hemocompatibility. Finally, the antimicrobial activity of the samples was evaluated by Escherichia coli and Staphylococcus aureus, and cytocompatibility was measured using human umbilical vein endothelial cells (HUVECs). The results demonstrated that silver nanoparticles (AgNPs) immobilized by surface reduction reaction did not cause any significant inhibition of cell proliferation while providing stable and effective antimicrobial properties. We envision that this simple surface modification strategy with bifunctional activities of antimicrobial and anticoagulant will find widespread use in clinically used indwelling left ventricular assist devices.
Collapse
Affiliation(s)
- Chuangxin Huang
- School of Rare Earth, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Xin Liu
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Lingwei Meng
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Hongyi Qu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Chen
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Qiuliang Wang
- School of Rare Earth, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Momina M, Ahmad K. Synthesis of biodegradable sodium alginate-based carbon dot-nanomagnetic composite (SA-FOCD) for enhanced water remediation using ANN modelling, RSM optimization, and economic analysis. Int J Biol Macromol 2024; 263:130253. [PMID: 38368976 DOI: 10.1016/j.ijbiomac.2024.130253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
This study involves the synthesis of a magnetic‑sodium alginate bio-composite embedded with carbon dots, designed to eliminate pollutants like dyes and metal ions and tackle environmental issues. The modified particles are effectively incorporated into the biopolymers for improved adsorption and regeneration performance using an economically viable and environmentally sustainable process. The composite's surface morphology and chemical structure have been extensively characterized through various analytical techniques. It has been found that CD-modified nanoparticles demonstrate good dispersion, abundance in functional groups, and excellent adsorption performance. The adsorption process variables have been optimized using Response Surface Methodology (RSM), resulting in a maximum adsorption capacity of 232.44 mg/g achieved under optimal conditions. An Artificial Neural Network (ANN) model with a topology of 3-5-5-1 is constructed to predict the adsorption capacity of composite, exhibiting superior predictive performance. The statistical physical model was also performed to understand the adsorption mechanism and orientation of dye molecules attached to the surface of the composite. The adsorption capacity using statistical physical method was found to be 467.57 mg/g. The composite exhibits good adsorption and regeneration performance in the column adsorption study. Furthermore, a detailed cost analysis of the synthesized composite was performed, ensuring its economic viability in real-world applications.
Collapse
Affiliation(s)
- Momina Momina
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi-110025, India.
| | - Kafeel Ahmad
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
4
|
Marsotto M, De Santis S, Sotgiu G, Battocchio C, Iucci G, Ceccucci A, Masci G, Orsini M. Multifunctional Platform for Covalent Titanium Coatings: Micro-FTIR, XPS, and NEXAFS Characterizations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6837-6845. [PMID: 37130382 DOI: 10.1021/acs.langmuir.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This work aims at preparing and characterizing a versatile multifunctional platform enabling the immobilization of macromolecules on a titanium surface by robust covalent grafting. Functionalized titanium is widely used in the biomedical field to improve its properties. Despite its high biocompatibility and osteointegrability, titanium implants are not very stable in the long term due to the onset of inflammation and bacterial infections. The proposed method allows the superficial insertion of three different organic linkers to be used as anchors for the attachment of biopolymers or bioactive molecules. This strategy used green solvents and is a good alternative to the proposed classic methods that employ organic solvents. The uniformly modified surfaces were characterized by micro-Fourier transform infrared spectroscopy (micro-FTIR), X-ray Photoelectron spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS). The latter made it possible to assess the orientation of the linker molecules with respect to the titanium surface. To test the efficiency of the linkers, two polymers (alginate and 2-(dimethylamino)-ethyl methacrylate (PDMAEMA)), with the potential ability to increase biocompatibility, were covalently attached to the titanium surfaces. The obtained results are a good starting point for the realization of stable polymeric coatings permanently bonded to the surface that could be used to extend the life of biomedical implants.
Collapse
Affiliation(s)
- Martina Marsotto
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Serena De Santis
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - Giovanni Sotgiu
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Giovanna Iucci
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Anita Ceccucci
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - Giancarlo Masci
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Monica Orsini
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| |
Collapse
|
5
|
Buryi M, Babin V, Neykova N, Wang YM, Remeš Z, Ridzoňová K, Dominec F, Davydova M, Drahokoupil J, Chertopalov S, Landová L, Pop-Georgievski O. Changes to Material Phase and Morphology Due to High-Level Molybdenum Doping of ZnO Nanorods: Influence on Luminescence and Defects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093294. [PMID: 37176178 PMCID: PMC10178970 DOI: 10.3390/ma16093294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
The influence of Mo on the electronic states and crystalline structure, as well as morphology, phase composition, luminescence, and defects in ZnO rods grown as free-standing nanoparticles, was studied using a variety of experimental techniques. Mo has almost no influence on the luminescence of the grown ZnO particles, whereas shallow donors are strongly affected in ZnO rods. Annealing in air causes exciton and defect-related bands to drop upon Mo doping level. The increase of the Mo doping level from 20 to 30% leads to the creation of dominating molybdates. This leads to a concomitant drop in the number of formed ZnO nanorods.
Collapse
Affiliation(s)
- Maksym Buryi
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Prague, Czech Republic
| | - Vladimir Babin
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic
| | - Neda Neykova
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague, Czech Republic
| | - Yu-Min Wang
- Department of Chemistry and Physics of Surfaces and Interfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský sq. 2, 162 06 Prague, Czech Republic
| | - Zdeněk Remeš
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic
| | - Katarína Ridzoňová
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic
| | - Filip Dominec
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic
| | - Marina Davydova
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic
| | - Jan Drahokoupil
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic
| | - Sergii Chertopalov
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic
| | - Lucie Landová
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague, Czech Republic
| | - Ognen Pop-Georgievski
- Department of Chemistry and Physics of Surfaces and Interfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský sq. 2, 162 06 Prague, Czech Republic
| |
Collapse
|
6
|
Urbaniak T, Musiał W. Layer-by-Layer Surface Modification of Alendronate-Loaded Polyester Microparticles-Enabling Protein Immobilization. Polymers (Basel) 2022; 14:polym14224943. [PMID: 36433069 PMCID: PMC9697578 DOI: 10.3390/polym14224943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
The highly inert surface of polyester micro- and nano- drug carriers is a challenging substrate for further modification. The presence of surface moieties suitable for macromolecule coupling is crucial in the development of targeted drug delivery systems. Among available methods of surface activation, those based on adsorption of charged macromolecules may be carried out in mild conditions. In this work, alendronate-loaded microcores of three polyesters: poly-ε-caprolactone (PCL), poly(l-lactide-co-ε-caprolactone) (PLA-co-PCL) and poly(lactic-co-glycolic acid) (PLGA) were coated with three polyelectrolyte shells composed of chitosan/heparin (CHIT/HEP), polyallylamine/heparin (PAH/HEP), and polyethyleneimine/heparin (PEI/HEP) via the layer-by-layer method. Subsequently, the feasibility of model protein immobilization on obtained shells was assessed. Electrokinetic potential measurements confirmed the possibility of deposition of all investigated coating variants, and a positive correlation between initial core ζ potential and intensity of charge alterations after deposition of subsequent layers was identified. PEI/HEP assembly was stable in physiological-like conditions, while PAH/HEP multilayers disassembled in presence of phosphate ions, and CHIT/HEP shell showed limited stability in pH 7.4. Fluorescence assays of fluorescein tagged lysozyme surface coupled via ethylcarbodiimide hydrochloride/N-Hydroxysuccinimide (EDC/NHS) click reaction with all shell variants indicated satisfying reaction efficiency. Poly-ε-caprolactone cores coated with CHIT/HEP tetralayer were selected as suitable for model IgG surface immobilization. Antibodies immobilized on the shell surface exhibited a moderate degree of affinity to fluorescent IgG binding protein.
Collapse
|
7
|
Sánchez-Bodón J, Andrade del Olmo J, Alonso JM, Moreno-Benítez I, Vilas-Vilela JL, Pérez-Álvarez L. Bioactive Coatings on Titanium: A Review on Hydroxylation, Self-Assembled Monolayers (SAMs) and Surface Modification Strategies. Polymers (Basel) 2021; 14:165. [PMID: 35012187 PMCID: PMC8747097 DOI: 10.3390/polym14010165] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Titanium (Ti) and its alloys have been demonstrated over the last decades to play an important role as inert materials in the field of orthopedic and dental implants. Nevertheless, with the widespread use of Ti, implant-associated rejection issues have arisen. To overcome these problems, antibacterial properties, fast and adequate osseointegration and long-term stability are essential features. Indeed, surface modification is currently presented as a versatile strategy for developing Ti coatings with all these challenging requirements and achieve a successful performance of the implant. Numerous approaches have been investigated to obtain stable and well-organized Ti coatings that promote the tailoring of surface chemical functionalization regardless of the geometry and shape of the implant. However, among all the approaches available in the literature to functionalize the Ti surface, a promising strategy is the combination of surface pre-activation treatments typically followed by the development of intermediate anchoring layers (self-assembled monolayers, SAMs) that serve as the supporting linkage of a final active layer. Therefore, this paper aims to review the latest approaches in the biomedical area to obtain bioactive coatings onto Ti surfaces with a special focus on (i) the most employed methods for Ti surface hydroxylation, (ii) SAMs-mediated active coatings development, and (iii) the latest advances in active agent immobilization and polymeric coatings for controlled release on Ti surfaces.
Collapse
Affiliation(s)
- Julia Sánchez-Bodón
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
| | - Jon Andrade del Olmo
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- i+Med S. Coop, Parque Tecnológico de Alava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain;
| | - Jose María Alonso
- i+Med S. Coop, Parque Tecnológico de Alava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain;
| | - Isabel Moreno-Benítez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leyre Pérez-Álvarez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
8
|
Adrian E, Treľová D, Filová E, Kumorek M, Lobaz V, Poreba R, Janoušková O, Pop-Georgievski O, Lacík I, Kubies D. Complexation of CXCL12, FGF-2 and VEGF with Heparin Modulates the Protein Release from Alginate Microbeads. Int J Mol Sci 2021; 22:11666. [PMID: 34769095 PMCID: PMC8583835 DOI: 10.3390/ijms222111666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Long-term delivery of growth factors and immunomodulatory agents is highly required to support the integrity of tissue in engineering constructs, e.g., formation of vasculature, and to minimize immune response in a recipient. However, for proteins with a net positive charge at the physiological pH, controlled delivery from negatively charged alginate (Alg) platforms is challenging due to electrostatic interactions that can hamper the protein release. In order to regulate such interactions between proteins and the Alg matrix, we propose to complex proteins of interest in this study - CXCL12, FGF-2, VEGF - with polyanionic heparin prior to their encapsulation into Alg microbeads of high content of α-L-guluronic acid units (high-G). This strategy effectively reduced protein interactions with Alg (as shown by model ITC and SPR experiments) and, depending on the protein type, afforded control over the protein release for at least one month. The released proteins retained their in vitro bioactivity: CXCL12 stimulated the migration of Jurkat cells, and FGF-2 and VEGF induced proliferation and maturation of HUVECs. The presence of heparin also intensified protein biological efficiency. The proposed approach for encapsulation of proteins with a positive net charge into high-G Alg hydrogels is promising for controlled long-term protein delivery under in vivo conditions.
Collapse
Affiliation(s)
- Edyta Adrian
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
- Department of Chemical Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Dušana Treľová
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia; (D.T.); (I.L.)
| | - Elena Filová
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Marta Kumorek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Rafal Poreba
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| | - Igor Lacík
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia; (D.T.); (I.L.)
- Centre for Advanced Materials Application of the Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovakia
| | - Dana Kubies
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq.2, 162 06 Prague, Czech Republic; (E.A.); (M.K.); (V.L.); (R.P.); (O.J.); (O.P.-G.)
| |
Collapse
|
9
|
Unraveling the influence of substrate on the growth rate, morphology and covalent structure of surface adherent polydopamine films. Colloids Surf B Biointerfaces 2021; 205:111897. [PMID: 34118533 DOI: 10.1016/j.colsurfb.2021.111897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022]
Abstract
Polydopamine (PDA), also known as synthetic melanin, is widely used as a biomimetic anchoring layer for the modification of various solid substrates. PDA is utilized for a wide range of biomedical, sensing and tribological applications, even though the polymer's precise covalent structure has not been completely revealed yet. Even more, it is not evident to which extent the chemical nature of the substrate, on which the layer is formed, influences and predetermines the covalent structure of resulting PDA. In this contribution, we have studied the growth of PDA using various surface-sensitive techniques such as spectroscopic ellipsometry, atomic force microscopy and X-ray photoelectron spectroscopy. We supplemented grazing angle attenuated total reflection FTIR spectroscopy with multivariate statistical analysis to further gain analytical power. We have particularly focused on the effects of polymerization time and substrate on the PDA structure. We found notable differences in the chemical composition of PDA formed on gold and on surfaces terminated with oxides/reactive hydroxides such as silicon and N-dopped-TiO2 in the early stages of the layer formation. At the later stages of layer formation, a merely unified chemical structure was observed independently on the type of substrate.
Collapse
|
10
|
Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases 2021; 16:020803. [PMID: 33906356 DOI: 10.1116/6.0000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone. However, the applications of these methods demonstrated a need for an interphase layer improving bone-making to overcome two major risk factors: aseptic loosening and peri-implantitis. To accomplish a biologically functional bridge with the host to prevent loosening, regenerative cues, osteoimmunomodulatory modifications, and electrochemically resistant layers against corrosion appeared as imperative reinforcements. In addition, interphases carrying antibacterial cargo were proven to be successful against peri-implantitis. In the literature, metallic implant coatings employing natural polymers as the main matrix were presented as bioactive interphases, enabling rapid, robust, and functional osseointegration with the host bone. However, a comprehensive review of natural polymer coatings, bridging and grafting on metallic implants, and their activities has not been reported. In this review, state-of-the-art studies on multifunctional natural polymer-based implant coatings effectively utilized as a bone tissue engineering (BTE) modality are depicted. Protein-based, polysaccharide-based coatings and their combinations to achieve better osseointegration via the formation of an extracellular matrix-like (ECM-like) interphase with gap filling and corrosion resistance abilities are discussed in detail. The hypotheses and results of these studies are examined and criticized, and the potential future prospects of multifunctional coatings are also proposed as final remarks.
Collapse
|
11
|
Petrović Ž, Šarić A, Despotović I, Katić J, Peter R, Petravić M, Petković M. A New Insight into Coating's Formation Mechanism Between TiO 2 and Alendronate on Titanium Dental Implant. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3220. [PMID: 32698367 PMCID: PMC7411690 DOI: 10.3390/ma13143220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022]
Abstract
Organophosphorus compounds, like bisphosphonates, drugs for treatment and prevention of bone diseases, have been successfully applied in recent years as bioactive and osseoinductive coatings on dental implants. An integrated experimental-theoretical approach was utilized in this study to clarify the mechanism of bisphosphonate-based coating formation on dental implant surfaces. Experimental validation of the alendronate coating formation on the titanium dental implant surface was carried out by X-ray photoelectron spectroscopy and contact angle measurements. Detailed theoretical simulations of all probable molecular implant surface/alendronate interactions were performed employing quantum chemical calculations at the density functional theory level. The calculated Gibbs free energies of (TiO2)10-alendronate interaction indicate a more spontaneous exergonic process when alendronate molecules interact directly with the titanium surface via two strong bonds, Ti-N and Ti-O, through simultaneous participation common to both phosphonate and amine branches. Additionally, the stability of the alendronate-modified implant during 7 day-immersion in a simulated saliva solution has been investigated by using electrochemical impedance spectroscopy. The alendronate coating was stable during immersion in the artificial saliva solution and acted as an additional barrier on the implant with overall resistivity, R ~ 5.9 MΩ cm2.
Collapse
Affiliation(s)
- Željka Petrović
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
| | - Ankica Šarić
- Division of Materials Physics, Centre of Excellence for Advanced Materials and Sensing Device, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
| | - Ines Despotović
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia;
| | - Jozefina Katić
- Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia;
| | - Robert Peter
- Department of Physics and Center for Micro- and Nanosciences and Technologies, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia; (R.P.); (M.P.)
| | - Mladen Petravić
- Department of Physics and Center for Micro- and Nanosciences and Technologies, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia; (R.P.); (M.P.)
| | - Marin Petković
- Adentro dental studio, Petrova ul. 67, 10000 Zagreb, Croatia;
| |
Collapse
|
12
|
Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110660. [PMID: 32204088 DOI: 10.1016/j.msec.2020.110660] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
Bone-mimetic scaffolds are receiving much interest as such scaffolds exhibit excellent biocompatibility and very close mimic to bone structure and composition. Here, novel bone-mimetic nanohydroxyapatite (nHA)/collagen (Col) porous scaffolds (nHA/Col) were prepared from surface silanized mesoporous nanobioglass (NBG)/Col hybrid scaffold by biomimetic mineralization. Surface silanized mesoporous NBG was prepared by ultrasound-assisted sol-gel method and post treatment with 3-aminopropyltriethylsilane (APTS). The surface silanized mesoporous NBG was characterized by transmission electron microscopy (TEM), transmission electron microscopy-selected area electron diffraction (TEM-SAED) and X-ray photoelectron spectroscopy (XPS). The physicochemical/mechanical characterizations of the scaffolds included scanning electron microscopy (SEM) and TEM imaging of micro/nanostructure, energy dispersive X-ray (EDX) analysis of chemical composition, TEM-SAED and X-ray diffraction/Attenuated total Reflectance-Fourier Infrared spectroscopy (XRD/ATR-FTIR) analyses of amorphous-to-crystalline transformations, thermogravimetric/differential scanning calorimetric (TGA/DSC) analyses of thermal behaviour , porosity and dynamic mechanical analyses. The presence of NBG in collagen fibrillar network enabled progressive growth of HA nanocrystals and generation of a novel bone-mimetic hybrid structures while preserving the highly porous structure of collagen scaffold. The crystallinity, crystallite size and crystal morphology of the grown HA nanocrystals were controllable by regulation of the mineralization time. Furthermore, the osteogenic properties of the non-mineralized (NBG/Col) and mineralized (nHA/Col) hybrid porous scaffolds were examined in vivo using critical-sized calvarial bone defect model in rat. Histological and micro-computed tomography (Micro-CT) analyses after 6 weeks of implantation revealed that the mineralized scaffolds possess excellent in vivo osteogenic potential compared to the non-mineralized one. Collectively, by using surface silanized mesoporous NBG hybridization with collagen fibrillar network, we successfully introduced a new approach for developing novel bone-mimetic nanohydroxyapatite/collagen hybrid scaffolds that possess significant potential for bone tissue regeneration.
Collapse
|
13
|
Türk S, Altınsoy I, Efe GÇ, Ipek M, Özacar M, Bindal C. Biomimetic synthesis of Ag, Zn or Co doped HA and coating of Ag, Zn or Co doped HA/fMWCNT composite on functionalized Ti. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:986-998. [DOI: 10.1016/j.msec.2019.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022]
|
14
|
Karamikamkar S, Abidli A, Behzadfar E, Rezaei S, Naguib HE, Park CB. The effect of graphene-nanoplatelets on gelation and structural integrity of a polyvinyltrimethoxysilane-based aerogel. RSC Adv 2019; 9:11503-11520. [PMID: 35520268 PMCID: PMC9063430 DOI: 10.1039/c9ra00994a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/20/2019] [Indexed: 11/21/2022] Open
Abstract
Aerogels suffer greatly from poor mechanical properties resulting from their particulate structure. They also experience noticeable pore shrinkage during drying due to their low structural integrity. These shortfalls limit their broad application. To enhance the mechanical properties and improve the structural integrity of silica-based aerogels, graphene nanoplatelets (GnPs), as a nanofiller, were embedded into the solution of polymerized vinyltrimethoxysilane (VTMS) to prepare P-VTMS-based silica/GnP (PE-b-Si/GnP) hybrid aerogel monoliths based on sol–gel synthesis and supercritical drying. The inclusion of GnPs in our polymer-based silica aerogel processes reinforced the nanostructure and suppressed PE-b-Si nanopore shrinkage during supercritical drying, thus acting as an effective anti-shrinkage nanofiller. Accordingly, the GnPs significantly contributed to the PE-b-Si solution's uniform gelation and to the change of the hydrophilic nature to a hydrophobic one even with 1 wt% addition. In this study, the influence of the GnP content on the sol–gel process, structure, and physical properties of PE-based silica aerogels is studied. Aerogels suffer greatly from poor mechanical properties resulting from their particulate structure.![]()
Collapse
Affiliation(s)
- Solmaz Karamikamkar
- Microcellular Plastics Manufacturing Laboratory
- Department of Mechanical and Industrial Engineering
- University of Toronto
- Toronto
- Canada
| | - Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory
- Department of Mechanical and Industrial Engineering
- University of Toronto
- Toronto
- Canada
| | - Ehsan Behzadfar
- Department of Chemical Engineering
- Lakehead University
- Thunder Bay
- Canada P7B 5E1
| | - Sasan Rezaei
- Microcellular Plastics Manufacturing Laboratory
- Department of Mechanical and Industrial Engineering
- University of Toronto
- Toronto
- Canada
| | - Hani E. Naguib
- Smart Polymers & Composites Lab
- Department of Mechanical and Industrial Engineering
- University of Toronto
- Toronto
- Canada
| | - Chul B. Park
- Microcellular Plastics Manufacturing Laboratory
- Department of Mechanical and Industrial Engineering
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
15
|
Cui X, Chen C, Sun S, Zhou D, Ndayisenga F, Huo M, Zhu S, Zhang L, Crittenden JC. Acceleration of saturated porous media clogging and silicon dissolution due to low concentrations of Al(III) in the recharge of reclaimed water. WATER RESEARCH 2018; 143:136-145. [PMID: 29945029 DOI: 10.1016/j.watres.2018.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/10/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
The recharge of reclaimed water is an effective strategy for addressing the issues of water quality deterioration and groundwater level decline simultaneously. Residual Al coagulants are normally remained in the recovered water at low concentrations, and may induce clogging problems during the recharging process. However, this issue has been ignored in the past. In this study, we investigated the mechanisms of Al(III)-induced aquifer bio-clogging, the role of Al(III) in quartz sand media (SiO2) dissolution and re-precipitation in the series of aquifer columns. We determined that Al(III) resulted in serious clogging in ∼140 h at low concentrations that satisfied the national drinking water standard of China. The corresponding hydraulic conductivity decreased by more than ∼90% in the bacteria-containing aquifer, which was ∼30% greater than that for the bacteria-free trials. The enhanced Al(III)-related clogging was caused by modifying quartz sand to form Si-O-Al(OH)n and improving microbes attachment. Microbes retention kinetic coefficients (k) of the Al recharged simulated aquifer could increase by 3.0-8.3 times. The Al(III) also enhanced biomass production and clogging by binding to microbial extracellular polymeric substances. In turn, the greater amount of biomass accelerated the Si dissolution and re-precipitation, this may potentially damage the stability of aquifer structure. The results showed that reclaimed water treated with Al coagulation should be employed with caution for recharging.
Collapse
Affiliation(s)
- Xiaochun Cui
- School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Congli Chen
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Shu Sun
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Fabrice Ndayisenga
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Suiyi Zhu
- School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Leilei Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
16
|
Yoo J, Birke A, Kim J, Jang Y, Song SY, Ryu S, Kim BS, Kim BG, Barz M, Char K. Cooperative Catechol-Functionalized Polypept(o)ide Brushes and Ag Nanoparticles for Combination of Protein Resistance and Antimicrobial Activity on Metal Oxide Surfaces. Biomacromolecules 2018; 19:1602-1613. [DOI: 10.1021/acs.biomac.8b00135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Alexander Birke
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz,, Duesbergweg 10-14, 55128 Mainz, Germany
| | | | - Yeongseon Jang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | | | | | | | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz,, Duesbergweg 10-14, 55128 Mainz, Germany
| | | |
Collapse
|
17
|
Park S, Choi D, Jeong H, Heo J, Hong J. Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms. Mol Pharm 2017; 14:3322-3330. [DOI: 10.1021/acs.molpharmaceut.7b00371] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sohyeon Park
- School of Chemical Engineering
and Material Science, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Daheui Choi
- School of Chemical Engineering
and Material Science, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyejoong Jeong
- School of Chemical Engineering
and Material Science, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jiwoong Heo
- School of Chemical Engineering
and Material Science, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jinkee Hong
- School of Chemical Engineering
and Material Science, Chung-Ang University, 84 Heukseok-ro,
Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
18
|
Cattani-Scholz A. Functional Organophosphonate Interfaces for Nanotechnology: A Review. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25643-25655. [PMID: 28671811 DOI: 10.1021/acsami.7b04382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Optimization of interfaces in inorganic-organic device systems depends strongly on understanding both the molecular processes that are involved in surface modification and the effects that such modifications have on the electronic states of the material. In particular, the last several years have seen passivation and functionalization of semiconductor surfaces to be strategies by which to realize devices with superior function by controlling Fermi level energies, band-gap magnitudes, and work functions of semiconducting substrates. Among all of the synthetic routes and deposition methods available for the optimization of functional interfaces in hybrid systems, organophosphonate chemistry has been found to be a powerful tool to control at the molecular level the properties of materials in many different applications. In this Review, we focus on the relevance of organophosphonate chemistry in nanotechnology, giving an overview about some recent advances in surface modification, interface engineering, nanostructure optimization, and biointegration.
Collapse
Affiliation(s)
- Anna Cattani-Scholz
- Walter Schottky Institut and Technische Universität München , 85748 Garching, Germany
| |
Collapse
|
19
|
Kim YO, You JM, Jang HS, Choi SK, Jung BY, Kang O, Kim JW, Lee YS. Eumelanin as a support for efficient palladium nanoparticle catalyst for Suzuki coupling reaction of aryl chlorides in water. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Zheng D, Neoh KG, Kang ET. Immobilization of alendronate on titanium via its different functional groups and the subsequent effects on cell functions. J Colloid Interface Sci 2017; 487:1-11. [PMID: 27743540 DOI: 10.1016/j.jcis.2016.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
Immobilization of alendronate on orthopedic implants offers the possibility of enhancing osteogenesis without potentially adverse effects associated with systemic administration of this drug. In this work, alendronate was immobilized on titanium (Ti) via either its phosphate (Method 1) or amino (Method 2) groups, and responses of osteoblasts and human mesenchymal stem cells (hMSCs) on these surfaces were investigated. These modified substrates have similar surface roughness and are negatively charged. With similar amounts of immobilized alendronate, these two types of modified substrates showed comparable osteogenic stimulating effects in enhancing osteoblasts' alkaline phosphatase (ALP) activity and calcium deposition for the first 10days. However, alendronate immobilized via its phosphate groups was less stable, and gradually leached into the medium. As a result, its stimulating effect on osteoblast differentiation diminished with time. On the other hand, alendronate immobilized via its amino group stimulated osteoblast differentiation over 21days, and with 1655ng/cm2 of immobilized alendronate on the Ti substrate, calcium deposition by osteoblasts and hMSCs increased by 30% and 69%, respectively, compared to pristine Ti after 21days. The expressions of runt-related transcription factor 2, osterix, osteopontin and osteocalcin in hMSCs cultured on this substrate were monitored. The up-regulation of these genes is postulated to play a role in the acceleration of osteogenic differentiation of hMSCs cultured on the alendronate-modified substrate over those on pristine Ti.
Collapse
Affiliation(s)
- Dong Zheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore.
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| |
Collapse
|
21
|
Nie B, Ao H, Long T, Zhou J, Tang T, Yue B. Immobilizing bacitracin on titanium for prophylaxis of infections and for improving osteoinductivity: An in vivo study. Colloids Surf B Biointerfaces 2016; 150:183-191. [PMID: 27914255 DOI: 10.1016/j.colsurfb.2016.11.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/07/2016] [Accepted: 11/25/2016] [Indexed: 11/16/2022]
Abstract
Bacitracin immobilized on the titanium (Ti) surface significantly improves anti-bacterial activity and biocompatibility in vitro. In the current study, we investigated the biologic performance (bactericidal effect and bone-implant integration) of bacitracin-modified Ti in vivo. A rat osteomyelitis model with femoral medullary cavity placement of Ti rods was employed to analyze the prophylactic effect of bacitracin-modified Ti (Ti-BC). Thirty-six female Sprague Dawley (SD) rats were used to establish the Ti implant-associated infection. The Ti and Ti-BC rods were incubated with and without Staphylococcus aureus to mimic the contaminated Ti rod and were implanted into the medullary cavity of the left femur, and sterile Ti rods were used as the blank control. After 3 weeks, the bone pathology was evaluated using X-ray and micro-computed tomography (micro-CT) analysis. For the investigation of the Ti-BC implant osseointegration in vivo, fifteen SD rats were divided into three groups (N=5), namely Ti, Ti-dopamine immobilized (Ti-DOPA), and Ti-BC. Ti rods were implanted into the left femoral cavity and micro-CT and histological evaluation was conducted after 12 weeks. The in vivo study indicated that Ti-immobilized bacitracin owned the prophylaxis potential for the infection associated with the Ti implants and allowed for the osseointegration. Thus, the multiple biofunctionalized Ti implants could be realized via immobilization of bacitracin, making them promising candidates for preventing the Ti implant-associated infections while retaining the osseointegration effects.
Collapse
Affiliation(s)
- Bin'en Nie
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, PR China
| | - Haiyong Ao
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, PR China
| | - Teng Long
- Department of Joint Surgery and Sports Medicine, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, PR China
| | - Jianliang Zhou
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, PR China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, PR China
| | - Bing Yue
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, PR China; Department of Joint Surgery and Sports Medicine, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, PR China.
| |
Collapse
|
22
|
Ogawa ES, Matos AO, Beline T, Marques IS, Sukotjo C, Mathew MT, Rangel EC, Cruz NC, Mesquita MF, Consani RX, Barão VA. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:251-61. [DOI: 10.1016/j.msec.2016.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/17/2016] [Accepted: 04/11/2016] [Indexed: 01/04/2023]
|
23
|
Rana D, Ramasamy K, Leena M, Jiménez C, Campos J, Ibarra P, Haidar ZS, Ramalingam M. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine. Biotechnol Prog 2016; 32:554-67. [DOI: 10.1002/btpr.2262] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/16/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Deepti Rana
- Centre for Stem Cell Research (CSCR); A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru, Stem Cell Nanotechnology Lab, Christian Medical College Campus; Vellore 632002 India
| | - Keerthana Ramasamy
- Centre for Stem Cell Research (CSCR); A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru, Stem Cell Nanotechnology Lab, Christian Medical College Campus; Vellore 632002 India
| | - Maria Leena
- Dept. of Nanoscience and Technology; Karunya University; Coimbatore 641114 India
| | - Constanza Jiménez
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Centro De Investigación Biomédica (CIB), Facultad De Medicina; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
| | - Javier Campos
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Plan De Mejoramiento Institucional (PMI) En Innovación-I+D+I, Universidad De Los Andes; Santiago 12.455 Chile
| | - Paula Ibarra
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Plan De Mejoramiento Institucional (PMI) En Innovación-I+D+I, Universidad De Los Andes; Santiago 12.455 Chile
| | - Ziyad S. Haidar
- BioMAT'X, Facultad De Odontología; Universidad De Los Andes; Mons. Álvaro Del Portillo Santiago 12.455 Chile
- Plan De Mejoramiento Institucional (PMI) En Innovación-I+D+I, Universidad De Los Andes; Santiago 12.455 Chile
| | - Murugan Ramalingam
- Centre for Stem Cell Research (CSCR); A Unit of Institute for Stem Cell Biology and Regenerative Medicine-Bengaluru, Stem Cell Nanotechnology Lab, Christian Medical College Campus; Vellore 632002 India
- WPI-Advanced Institute for Materials Research, Tohoku University; Sendai 980-8577 Japan
| |
Collapse
|
24
|
Li D, Zhang Y, Wen S, Song Y, Tang Y, Zhu X, Shen M, Mignani S, Majoral JP, Zhao Q, Shi X. Construction of polydopamine-coated gold nanostars for CT imaging and enhanced photothermal therapy of tumors: an innovative theranostic strategy. J Mater Chem B 2016; 4:4216-4226. [DOI: 10.1039/c6tb00773b] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theranostic nanoplatform for in vivo CT imaging and enhanced PTT of tumors is reported.
Collapse
|
25
|
Kostina NY, Pop-Georgievski O, Bachmann M, Neykova N, Bruns M, Michálek J, Bastmeyer M, Rodriguez-Emmenegger C. Non-Fouling Biodegradable Poly(ϵ-caprolactone) Nanofibers for Tissue Engineering. Macromol Biosci 2015; 16:83-94. [DOI: 10.1002/mabi.201500252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/15/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Nina Yu. Kostina
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| | - Michael Bachmann
- Zoological Institute; Cell and Neurobiology; Karlsruhe Institute of Technology (KIT); Haid-und-Neu-Straße 9 Karlsruhe 76131 Germany
| | - Neda Neykova
- Institute of Physics; Academy of Sciences of the Czech Republic; Cukrovarnicka 10 Prague 16253 Czech Republic
- Faculty of Nuclear Science and Physical Engineering; Czech Technical University in Prague; Trojanova 13 Prague 12000 Czech Republic
| | - Michael Bruns
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen 76344 Germany
| | - Jiří Michálek
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| | - Martin Bastmeyer
- Zoological Institute; Cell and Neurobiology; Karlsruhe Institute of Technology (KIT); Haid-und-Neu-Straße 9 Karlsruhe 76131 Germany
- Institute for Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1; Eggenstein-Leopoldshafen 76344 Germany
| | - Cesar Rodriguez-Emmenegger
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| |
Collapse
|