1
|
Amador GJ, Klaassen van Oorschot B, Sen U, Karman B, Leenders R. Capillary adhesion of stick insects. Ann N Y Acad Sci 2024; 1538:98-106. [PMID: 39091080 DOI: 10.1111/nyas.15195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Scientific progress within the last few decades has revealed the functional morphology of an insect's sticky footpads-a compliant pad that secretes thin liquid films. However, the physico-chemical mechanisms underlying their adhesion remain elusive. Here, we explore these underlying mechanisms by simultaneously measuring adhesive force and contact geometry of the adhesive footpads of live, tethered Indian stick insects, Carausius morosus, spanning more than two orders of magnitude in body mass. We find that the adhesive force we measure is similar to the previous measurements that use a centrifuge. Our measurements afford us the opportunity to directly probe the adhesive stress in vivo and use existing theory on capillary adhesion to predict the surface tension of the secreted liquid and compare it to previous assumptions. From our predictions, we find that the surface tension required to generate the adhesive stresses we observed ranges between 0.68 and 12 mNm - 1 ${\rm m}^{-1}$ . The low surface tension of the liquid would enhance the wetting of the stick insect's footpads and promote their ability to conform to various substrates. Our insights may inform the biomimetic design of capillary-based, reversible adhesives and motivate future studies on the physico-chemical properties of the secreted liquid.
Collapse
Affiliation(s)
- Guillermo J Amador
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Uddalok Sen
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, The Netherlands
| | - Benjamin Karman
- Biology Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rutger Leenders
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Gorb EV, Gorb SN. Insect attachment on waxy plant surfaces: the effect of pad contamination by different waxes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:385-395. [PMID: 38633766 PMCID: PMC11022371 DOI: 10.3762/bjnano.15.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
This study focuses on experimental testing of the contamination hypothesis and examines how the contamination of insect adhesive pads with three-dimensional epicuticular waxes of different plant species contributes to the reduction of insect attachment. We measured traction forces of tethered Chrysolina fastuosa male beetles having hairy adhesive pads on nine wax-bearing plant surfaces differing in both shape and dimensions of the wax structures and examined insect adhesive organs after they have contacted waxy substrates. For comparison, we performed the experiments with the same beetle individuals on a clean glass sample just before (gl1) and immediately after (gl2) the test on a plant surface. The tested insects showed a strong reduction of the maximum traction force on all waxy plant surfaces compared to the reference experiment on glass (gl1). After beetles have walked on waxy plant substrates, their adhesive pads were contaminated with wax material, however, to different extents depending on the plant species. The insects demonstrated significantly lower values of both the maximum traction force and the first peak of the traction force and needed significantly longer time to reach the maximum force value in the gl2 test than in the gl1 test. These effects were especially pronounced in cases of the plant surfaces covered with wax projections having higher aspect ratios. The data obtained clearly indicated the impact of waxy plant surfaces on the insect ability to subsequently attach to the clean smooth surface. This effect is caused by the contamination of adhesive pads and experimentally supports the contamination hypothesis.
Collapse
Affiliation(s)
- Elena V Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
3
|
Matsumura Y, Gorb EV, Gorb SN. The tight attachment achieved by the male discoidal setae is possibly a counter-adaptation to the grease layer on female integument surfaces in green dock beetles. J R Soc Interface 2023; 20:20230324. [PMID: 37582406 PMCID: PMC10427193 DOI: 10.1098/rsif.2023.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Green dock beetles Gastrophysa viridula exhibit sexual dimorphism in tarsal attachment setae: females have only pointed, lanceolate and spatula-like setae, while males additionally possess discoidal ones. The sexual dimorphism is probably attributed to the necessity of male discoidal setae to adhere to the smooth back of the female during copulation. We aimed to understand its possible mechanism of attachment with G. viridula. Pull-off forces of both females and males were measured on (i) alive females, (ii) dead and dried females, and (iii) resin replicas of fresh females. The attachment ability tended to increase on dead and replicated female surfaces in both sexes, which indicates that the epicuticular grease layer on the integument of alive intact beetles decreases the attachment. This tendency was prominent in females. The present study clearly showed that in G. viridula discoidal setae enable the males to adhere stronger to female surfaces. The divergent performance found between the sexes differing in their setal composition is probably caused by the stiffness difference between the setae types and by the specific shape of the setal tips. A peculiar reproductive biology in G. viridula is probably attributed to this remarkable divergence of labour in their attachment pads between the sexes.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
- Department of Systematic Entomology, Graduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan
| | - Elena V. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
4
|
Gonen M, Kasem H. Effect of the Mechanical Properties of Soft Counter-Faces on the Adhesive Capacity of Mushroom-Shaped Biomimetic Microstructures. Biomimetics (Basel) 2023; 8:327. [PMID: 37504215 PMCID: PMC10807653 DOI: 10.3390/biomimetics8030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The effects of mechanical properties and contact environment conditions on the adhesiveness of the biomimetic adhesive mushroom-shaped micro-structure have been experimentally investigated. The idea is based on the adhesive micro-structures and surfaces inspired by nature after observing the abilities of some animals. Applications are proposed in various fields of engineering and technology. However, to enable unconventional uses of these biomimetic adhesion surfaces, such as in the biomedical field, it is necessary to adjust and optimize their tribological properties (friction, adhesion, and peeling strength) in contact with soft substrates that can simulate the mechanical features of biological tissues. Our work explores the effect of the combinations of the various parameters on the strength of adhesion. Under dry contact conditions, soft counter-faces lead to lower adhesion than hard counter-faces, whereas under wet conditions, soft counter-faces lead to higher adhesion than harder counter-faces.
Collapse
Affiliation(s)
- May Gonen
- Faculty of Mechanical Engineering, The Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Haytam Kasem
- Faculty of Mechanical Engineering, The Technion-Israel Institute of Technology, Haifa 32000, Israel
- Department of Mechanical Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel
| |
Collapse
|
5
|
Burack J, Gorb SN, Büscher TH. Attachment Performance of Stick Insects (Phasmatodea) on Plant Leaves with Different Surface Characteristics. INSECTS 2022; 13:952. [PMID: 36292904 PMCID: PMC9604322 DOI: 10.3390/insects13100952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 05/25/2023]
Abstract
Herbivorous insects and plants exemplify a longstanding antagonistic coevolution, resulting in the development of a variety of adaptations on both sides. Some plant surfaces evolved features that negatively influence the performance of the attachment systems of insects, which adapted accordingly as a response. Stick insects (Phasmatodea) have a well-adapted attachment system with paired claws, pretarsal arolium and tarsal euplantulae. We measured the attachment ability of Medauroidea extradentata with smooth surface on the euplantulae and Sungaya inexpectata with nubby microstructures of the euplantulae on different plant substrates, and their pull-off and traction forces were determined. These species represent the two most common euplantulae microstructures, which are also the main difference between their respective attachment systems. The measurements were performed on selected plant leaves with different properties (smooth, trichome-covered, hydrophilic and covered with crystalline waxes) representing different types among the high diversity of plant surfaces. Wax-crystal-covered substrates with fine roughness revealed the lowest, whereas strongly structured substrates showed the highest attachment ability of the Phasmatodea species studied. Removal of the claws caused lower attachment due to loss of mechanical interlocking. Interestingly, the two species showed significant differences without claws on wax-crystal-covered leaves, where the individuals with nubby euplantulae revealed stronger attachment. Long-lasting effects of the leaves on the attachment ability were briefly investigated, but not confirmed.
Collapse
Affiliation(s)
| | | | - Thies H. Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
6
|
Pentylamine inhibits humidity detection in insect vectors of human and plant borne pathogens. Sci Rep 2022; 12:16732. [PMID: 36202886 PMCID: PMC9537525 DOI: 10.1038/s41598-022-20488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/14/2022] [Indexed: 12/04/2022] Open
Abstract
Insects house humidity-sensing neurons in the antenna, which is presumed to be important for a variety of behaviors and survival since water is a crucial component of the environment. Here we use the simple olfactory system of the Asian Citrus Psyllid (ACP), a citrus pest that transmits a deadly bacterium, to identify volatile amines that significantly inhibited humidity-induced activation of antennal neurons. The inhibition of action potentials is observed by single sensillum recordings and mixing these odorants with humid air abolished the humidity avoidance behavior of ACP. The inhibition is conserved in the humidity-sensing coeloconic neurons of dipteran Drosophila melanogaster that are known to detect humidity, but it is not seen in other coeloconic neurons that are not sensitive to humidity. Dipteran mosquitoes Aedes aegypti and Anopheles gambiae oviposit in water, and the addition of the humidity-inhibiting odorants in a two-choice oviposition assay significantly reduces oviposition. Our results demonstrate that a naturally occurring volatile compound can effectively “mask” detection of an important environmental cue and modify behavior of important vectors of plant and human disease pathogens. Odorants targeting the conserved humidity sensing system of insects, therefore, offer a novel strategy for modifying their behavior.
Collapse
|
7
|
Kampowski T, Schuler B, Speck T, Poppinga S. The effects of substrate porosity, mechanical substrate properties and loading conditions on the attachment performance of the Mediterranean medicinal leech ( Hirudo verbana). J R Soc Interface 2022; 19:20220068. [PMID: 35317649 PMCID: PMC8941423 DOI: 10.1098/rsif.2022.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ectoparasitic lifestyle of the Mediterranean medicinal leech (Hirudo verbana) requires reliable functioning of its attachment organs (i.e. anterior and posterior suction discs) on multiple habitat- and host-specific surfaces under both normal and shear stresses. In addition to some intrinsic properties of the attachment devices, however, only a few extrinsic factors (e.g. substrate roughness and porosity) have been considered in previous studies on leech suckers. Using centrifugal force experiments, we analysed the attachment performance of H. verbana under different types of loading on artificial substrates differing in porosity and their mechanical properties. Whereas the substrate porosity significantly influenced leech attachment under normal and shear loading, the different mechanical properties did not noticeably affect attachment within the considered parameter limits. Furthermore, suction was confirmed to be the primary attachment mechanism independent of the prevailing loading condition. The question of whether the suction cups of H. verbana are adapted to a specific loading condition could not be answered. In any case, our results again highlight the high functional resilience of leech suckers guaranteeing a successful ectoparasitic lifestyle.
Collapse
Affiliation(s)
- Tim Kampowski
- Plant Biomechanics Group (PBG), Botanic Garden, University of Freiburg, Schänzlestr. 1, 79104 Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg im Breisgau, Germany
| | - Benedikt Schuler
- Plant Biomechanics Group (PBG), Botanic Garden, University of Freiburg, Schänzlestr. 1, 79104 Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group (PBG), Botanic Garden, University of Freiburg, Schänzlestr. 1, 79104 Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS@ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg im Breisgau, Germany
| | - Simon Poppinga
- Plant Biomechanics Group (PBG), Botanic Garden, University of Freiburg, Schänzlestr. 1, 79104 Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS@ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg im Breisgau, Germany
- Current address: Botanical Garden, Technical University of Darmstadt, Department of Biology, Schnittspahnstr. 2, 64287 Darmstadt, Germany
| |
Collapse
|
8
|
Joel AC, Schmitt D, Baumgart L, Menzel F. Insect cuticular hydrocarbon composition influences their interaction with spider capture threads. J Exp Biol 2022; 225:274274. [PMID: 35129200 DOI: 10.1242/jeb.242514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022]
Abstract
Insects represent the main prey of spiders, and spiders and insects co-diversified in evolutionary history. One of the main features characterizing spiders is their web as trap to capture prey. Phylogenetically, the cribellate thread is one of the earliest thread types that was specialized to capture prey. In contrast to capture threads, it lacks adhesive glue and consists of nanofibers, which do not only adhere to insects via van der Waals forces, but also interact with the insects' cuticular hydrocarbon (CHC) layer, thus enhancing adhesion. The CHC layer consist of multiple hydrocarbon types and is highly diverse between species. In this study, we show that CHC adhesion to cribellate capture threads is affected by CHC composition of the insect. We studied the interaction in detail for four different insect species with different CHC profiles and observed a differential migration of CHCs into the thread. The migration depends on the molecular structure of the hydrocarbon types as well as their viscosity, influenced by altering the ambient temperature during interaction. As a consequence, adhesion forces to CHC layers differ depending on their chemical composition. Our results match predictions based on biophysical properties of hydrocarbons, and show that cribellate spiders can exert selection pressure on the CHC composition of their insect prey.
Collapse
Affiliation(s)
- Anna-Christin Joel
- RWTH Aachen University, Institute of Zoology, Aachen, Germany.,Johannes Gutenberg-University, Institute of Organismic and Molecular Evolution, Mainz, Germany
| | - Dorothea Schmitt
- Johannes Gutenberg-University, Institute of Organismic and Molecular Evolution, Mainz, Germany
| | - Lucas Baumgart
- RWTH Aachen University, Institute of Zoology, Aachen, Germany
| | - Florian Menzel
- Johannes Gutenberg-University, Institute of Organismic and Molecular Evolution, Mainz, Germany
| |
Collapse
|
9
|
Surface chemistry of the ladybird beetle adhesive foot fluid across various substrates. Biointerphases 2021; 16:031004. [PMID: 34241230 DOI: 10.1116/6.0001006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nature has coevolved highly adaptive and reliable bioadhesives across a multitude of animal species. Much attention has been paid in recent years to selectively mimic these adhesives for the improvement of a variety of technologies. However, very few of the chemical mechanisms that drive these natural adhesives are well understood. Many insects combine hairy feet with a secreted adhesive fluid, allowing for adhesion to considerably rough and slippery surfaces. Insect adhesive fluids have evolved highly specific compositions which are consistent across most surfaces and optimize both foot adhesion and release in natural environments. For example, beetles are thought to have adhesive fluids made up of a complex molecular mixture containing both hydrophobic and hydrophilic parts. We hypothesize that this causes the adhesive interface to be dynamic, with molecules in the fluid selectively organizing and ordering at surfaces with complimentary hydrophobicity to maximize adhesion. In this study, we examine the adhesive fluid of a seven-spotted ladybird beetle with a surface-sensitive analytical technique, sum frequency generation spectroscopy, as the fluid interacts with three substrates of varied wettabilities. The resulting spectra present no evidence of unique molecular environments between hydrophilic and hydrophobic surfaces but exhibit significant differences in the ordering of hydrocarbons. This change in surface interactions across different substrates correlates well with traction forces measured from beetles interacting with substrates of increasing hydrophobicities. We conclude that insect adhesion is dependent upon a dynamic molecular-interfacial response to an environmental surface.
Collapse
|
10
|
Evidence for intermolecular forces involved in ladybird beetle tarsal setae adhesion. Sci Rep 2021; 11:7729. [PMID: 33833354 PMCID: PMC8032735 DOI: 10.1038/s41598-021-87383-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Why can beetles such as the ladybird beetle Coccinella septempunctata walk vertically or upside-down on a smooth glass plane? Intermolecular and/or capillary forces mediated by a secretion fluid on the hairy footpads have commonly been considered the predominant adhesion mechanism. However, the main contribution of physical phenomena to the resulting overall adhesive force has yet to be experimentally proved, because it is difficult to quantitatively analyse the pad secretion which directly affects the adhesion mechanism. We observed beetle secretion fluid by using inverted optical microscopy and cryo-scanning electron microscopy, which showed the fluid secretion layer and revealed that the contact fluid layer between the footpad and substrate was less than 10–20 nm thick, thus indicating the possibility of contribution of intermolecular forces. If intermolecular force is the main physical phenomenon of adhesion, the force will be proportional to the work of adhesion, which can be described by the sum of the square roots of dispersive and polar parts of surface free energy. We measured adhesion forces of ladybird beetle footpads to flat, smooth substrates with known surface free energies. The adhesive force was proportional to the square-root of the dispersive component of the substrate surface free energy and was not affected by the polar component. Therefore, intermolecular forces are the main adhesive component of the overall adhesion force of the ladybird beetle. The footpads adhere more strongly to surfaces with higher dispersive components, such as wax-covered plant leaves found in the natural habitat of ladybird beetles. Based on the present findings, we assume ladybird beetles have developed this improved performance as an adaptation to the variety of plant species in its habitat.
Collapse
|
11
|
Zhang J, Li J, Li C, Wu Z, Liang H, Wu J. Self-righting physiology of the ladybird beetle Coccinella septempunctata on surfaces with variable roughness. JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104202. [PMID: 33582102 DOI: 10.1016/j.jinsphys.2021.104202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/13/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Insects such as cockroaches and locusts self-right swiftly to reduce chances of being attacked by predators. Compared to these insects, ladybirds have shorter legs hidden inside highly domed elytra so self-righting is of great challenge if using strategies of abdominal arching and/or leg swinging. Specifically, ladybirds live in over-ground environment with clusters of vegetation so they are prone to self-right from various natural substrates, such as soil, bark, and leaves. However, self-righting strategies under such complicated environment packed with multiple surfaces remain elusive. In this combined experimental and theoretical study, we examined and quantified self-righting physiology of ladybirds (Coccinella septempunctata) on surfaces with varying roughness. Most ladybirds self-right in 15.00 s with a success rate of ~100.00% within 3 attempts using either legged or winged strategies, and the self-righting strategy is strongly associated with the surface roughness. Righting on a coarser board (Ra = 124.62 μm) is performed by swinging the legs to attach and hook the protrusions on the rough surface. However, if self-righting occurs on a smooth surface (Ra = 6.69 μm), both the elytra and hind wings deploy to alter the body orientation to roll over. Considering the effect of surface roughness, we analyzed the self-righting mechanism by a mathematical model, and uncovered that contact status between the claw and surface microstructures affected the arm of force required to self-right, which leads to the binary strategic selection. Our quantification of self-righting on diverse surfaces not only deepens understanding of ladybird's self-righting but may inspire new means of evaluating its environmental adaptability.
Collapse
Affiliation(s)
- Jie Zhang
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Jing Li
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Chujun Li
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Zhigang Wu
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Haizhao Liang
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China.
| | - Jianing Wu
- School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Kimura KI, Hosoda N. Crucial role of framework with cytoskeletal actin filaments for shaping microstructure of footpad setae in the ladybird beetle, Harmonia axyridis. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:100998. [PMID: 33249365 DOI: 10.1016/j.asd.2020.100998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Insects that can walk on smooth surfaces have specialized structures, footpads, on their legs. Footpads play an important role in adhesion to the substrate surface. Although the morphology and function of footpads have been studied, the mechanism of their formation is still elusive. In the ladybird beetle (Harmonia axyridis), hairy footpads are present on the first and second tarsal segments of the legs. The footpads are covered with hundreds of hairs, i.e. setae, whose tips consist of four types: pointed, lanceolate, spatular, and discoidal. We examined the formation of the footpad during the pupal stage using immuno-staining and fluorescent-conjugated phalloidin staining. We found that a seta was composed of a shaft and a socket and some setae were accompanied by a neuron. By the mid-pupal stages, the shaft cells elongated to form a setal structure. Cytoskeletal actin bundles ramified to create a framework for the setal tip structure of the cells. We examined the effects of the application of cytochalasin D, which inhibits actin polymerization, on the formation of footpad setal structures. The results showed that the setal tips were deformed by the inhibition of actin polymerization. Our observations reveal that cytoskeletal actin filaments are involved in shaping the setae.
Collapse
Affiliation(s)
- Ken-Ichi Kimura
- Laboratory of Biology, Sapporo Campus, Hokkaido University of Education, Sapporo, 002-8502, Japan.
| | - Naoe Hosoda
- Research Center for Structural Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| |
Collapse
|
13
|
Limits of piriform silk adhesion—similar effects of substrate surface polarity on silk anchor performance in two spider species with disparate microhabitat use. Naturwissenschaften 2020; 107:31. [DOI: 10.1007/s00114-020-01687-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022]
|
14
|
Iazzolino A, Cerkvenik U, Tourtit Y, Ladang A, Compère P, Gilet T. Liquid dispensing in the adhesive hairy pads of dock beetles. J R Soc Interface 2020; 17:20200024. [PMID: 32370693 PMCID: PMC7276548 DOI: 10.1098/rsif.2020.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/07/2020] [Indexed: 11/12/2022] Open
Abstract
Many insects can climb on smooth inverted substrates using adhesive hairy pads on their legs. The hair-surface contact is often mediated by minute volumes of liquid, which form capillary bridges in the contact zones and aid in adhesion. The liquid transport to the contact zones is poorly understood. We investigated the dynamics of liquid secretion in the dock beetle Gastrophysa viridula by quantifying the volume of the deposited liquid footprints during simulated walking experiments. The footprint volume increased with pad-surface contact time and was independent of the non-contact time. Furthermore, the footprint volume decreased to zero after reaching a threshold cumulative volume (approx. 30 fl) in successive steps. This suggests a limited reservoir with low liquid influx. We modelled our results as a fluidic resistive system and estimated the hydraulic resistance of a single attachment hair of the order of MPa · s/fl. The liquid secretion in beetle hairy pads is dominated by passive suction of the liquid during the contact phase. The high calculated resistance of the secretion pathway may originate from the nanosized channels in the hair cuticle. Such nanochannels presumably mediate the transport of cuticular lipids, which are chemically similar to the adhesive liquid.
Collapse
Affiliation(s)
- Antonio Iazzolino
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - Uroš Cerkvenik
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
- Functional and Evolutionary Morphology Laboratory, FOCUS, University of Liège, Liège, Belgium
| | - Youness Tourtit
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
- Transfers, Interfaces and Processes, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Auxane Ladang
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - Philippe Compère
- Functional and Evolutionary Morphology Laboratory, FOCUS, University of Liège, Liège, Belgium
| | - Tristan Gilet
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
15
|
Gilet T, Gernay SM, Aquilante L, Mastrangeli M, Lambert P. Adhesive elastocapillary force on a cantilever beam. SOFT MATTER 2019; 15:3999-4007. [PMID: 31032506 DOI: 10.1039/c9sm00217k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper reports an experimental and theoretical investigation of a cantilever beam in contact with an underlying substrate, in the presence of an intervening liquid bridge. The beam is deflected in response to the adhesive capillary forces generated by the liquid. Three main regimes of contact are observed, similarly to other elastocapillary systems already reported in the literature. We measured both the position of the liquid meniscus and the force at the beam clamp in the direction normal to the substrate, as functions of the distance between the beam clamp and the substrate. The resulting force-displacement curve is not monotonic and it exhibits hysteresis in the second regime that we could attribute to solid-solid friction at the beam tip. In the third regime, the adhesive force measured at the clamp strongly increases as the beam approaches the substrate. A 2-dimensional beam model is proposed to rationalize these measurements. This model involves several non-linearities due to geometrical constraints, and its solution with a minimum of iterations is not trivial. The model correctly reproduces the force-displacement curve under two conditions: friction is considered in the second regime, and the reaction force applied by the substrate on the beam is distributed in the third regime. These results are discussed in the context of the adhesion of setal tips involved in the terrestrial locomotion of beetles.
Collapse
Affiliation(s)
- Tristan Gilet
- Microfluidics Lab, Dept. Aerospace and Mech. Eng., University of Liege, 4000 Liege, Belgium.
| | | | | | | | | |
Collapse
|
16
|
Gilet T, Heepe L, Lambert P, Compère P, Gorb SN. Liquid secretion and setal compliance: the beetle's winning combination for a robust and reversible adhesion. CURRENT OPINION IN INSECT SCIENCE 2018; 30:19-25. [PMID: 30553481 DOI: 10.1016/j.cois.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 06/09/2023]
Abstract
This paper is a brief review and discussion of the recent literature on the hairy adhesive pads of beetles, with the focus on two features of these pads, firstly, compliant setal tips and secondly, a liquid secretion, that together guarantee robust cycles of attachment/detachment on smooth and rough substrates. The compliance is required to ensure sufficient contact between the setal tips and the substrate with a minimum of elastically stored energy at the contact interface. The secretion fills potential gaps between both surfaces, generates capillary adhesive forces, and enhances self-cleaning of these microstructures. Furthermore, the secretion might prevent setal dehydration and subsequently maintain setal tip compliancy. The paper also pinpoints a series of open questions on the physical mechanisms at play to passively regulate the contact forces developed by these hairy pads during locomotion.
Collapse
Affiliation(s)
- Tristan Gilet
- Microfluidics Lab, Aerospace and Mechanical Engineering, University of Liège, B-4000 Liège, Belgium.
| | - Lars Heepe
- Functional Morphology and Biomechanics, Kiel University, D-24118 Kiel, Germany
| | - Pierre Lambert
- TIPs, CP 165/67, Université Libre de Bruxelles, B-1000 Brussels, Belgium
| | - Philippe Compère
- Laboratoire de Morphologie Fonctionnelle et Evolutive, FOCUS, University of Liège, B-4000 Liège, Belgium
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Kiel University, D-24118 Kiel, Germany
| |
Collapse
|
17
|
Stark AY, Yanoviak SP. Adhesion and running speed of a tropical arboreal ant ( Cephalotes atratus) on wet substrates. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181540. [PMID: 30564427 PMCID: PMC6281928 DOI: 10.1098/rsos.181540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
In the tropical forest canopy, wingless worker ants must cling to and run along diverse vegetative surfaces with little protection from sun, wind and rain. Ants rely in part on their tiny adhesive tarsal pads to maintain sufficient contact with substrates to prevent falls under these varied conditions. Here, we examined the effects of substrate wettability and surface water on the tarsal pad adhesive performance of a common tropical arboreal ant. Ant adhesion was consistently higher on an intermediately wetting substrate (static water contact angle ca 90°) when resisting both perpendicular (normal) force and parallel (shear) force. Normal adhesion was maintained on intermediately wetting and hydrophobic substrates following the addition of rain-mimicking water droplets, whereas shear adhesion declined on all substrate types tested after wetting. Ant running speed was slower on wet substrates. On wood substrates, normal and shear adhesion declined with increasing wetness from dry, to misted, to water-soaked. These differences probably contributed to lower ant running speed on wet wood. The results of this study provide the first quantitative assessment of tropical arboreal ant adhesive performance under substrate conditions that are commonly encountered in the rainforest canopy.
Collapse
Affiliation(s)
- Alyssa Y. Stark
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
| | - Stephen P. Yanoviak
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
18
|
Tramsen HT, Gorb SN, Zhang H, Manoonpong P, Dai Z, Heepe L. Inversion of friction anisotropy in a bio-inspired asymmetrically structured surface. J R Soc Interface 2018; 15:20170629. [PMID: 29298956 PMCID: PMC5805965 DOI: 10.1098/rsif.2017.0629] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/01/2017] [Indexed: 11/12/2022] Open
Abstract
Friction anisotropy is an important property of many surfaces that usually facilitate the generation of motion in a preferred direction. Such surfaces are very common in biological systems and have been the templates for various bio-inspired materials with similar tribological properties. So far friction anisotropy is considered to be the result of an asymmetric arrangement of surface nano- and microstructures. However, here we show by using bio-inspired sawtooth-structured surfaces that the anisotropic friction properties are not only controlled by an asymmetric surface topography, but also by the ratio of the sample-substrate stiffness, the aspect ratio of surface structures, and by the substrate roughness. Systematically modifying these parameters, we were able to demonstrate a broad range of friction anisotropies, and for specific sample-substrate combinations even an inversion of the anisotropy. This result highlights the complex interrelation between the different material and topographical parameters on friction properties and sheds new light on the conventional design paradigm of tribological systems. Finally, this result is also of great importance for understanding functional principles of biological materials and surfaces, as such inversion of friction anisotropy may correlate with gait pattern and walking behaviour in climbing animals, which in turn may be used in robotic applications.
Collapse
Affiliation(s)
- Halvor T Tramsen
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Hao Zhang
- College of Mechanical and Electric Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Poramate Manoonpong
- Embodied AI and Neurorobotics Lab, Centre for BioRobotics, The Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark
- Bio-inspired Robotics and Neural Engineering Lab, School of Information Science & Technology, Vidyasirimedhi Institute of Science & Technology, Rayong, Thailand
| | - Zhendong Dai
- College of Mechanical and Electric Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lars Heepe
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
19
|
Cadirov N, Booth JA, Turner KL, Israelachvili JN. Influence of Humidity on Grip and Release Adhesion Mechanisms for Gecko-Inspired Microfibrillar Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14497-14505. [PMID: 28398039 DOI: 10.1021/acsami.7b01624] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Geckos have developed foot pads that allow them to maintain their unique climbing ability despite vast differences of surfaces and environments, from dry desert to humid rainforest. Likewise, successful gecko-inspired mimics should exhibit adhesive and frictional performance across a similarly diverse range of climates. In this work, we focus on the effect of relative humidity (RH) on the "frictional-adhesion" behavior of gecko-inspired adhesive pads. A surface forces apparatus was used to quantitatively measure adhesion and friction forces of a microfibrillar cross-linked polydimethylsiloxane surface against a smooth hemispherical glass disk at varying relative humidity, from 0 to 100% (including fully submerged under water). Geometrically anisotropic tilted half-cylinder microfibers yield a "grip state" (high adhesion and friction forces after shearing along the tilt of the fibers, Fad+ and F∥+) and a "release state" (low adhesion and friction after shearing against the tilt of the fibers, Fad- and F∥-). By appropriate control of the loading path, this allows for transition between strong attachment and easy detachment. Changing the preload and shear direction gives rise to differences in the effective contact area at each fiber and the microscale and nanoscale structure of the contact while changing the relative humidity results in differences in the relative contributions of van der Waals and capillary forces. In combination, both effects lead to interesting trends in the adhesion and friction forces. At up to 75% RH, the grip state adhesion force remains constant and the ratio of grip to release adhesion force does not drop below 4.0. In addition, the friction forces F∥+ and F∥- and the release state adhesion force Fad- exhibit a maximum at intermediate relative humidity between 40% and 75%.
Collapse
Affiliation(s)
- Nicholas Cadirov
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Jamie A Booth
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Kimberly L Turner
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| | - Jacob N Israelachvili
- Department of Chemical Engineering, and ‡Department of Mechanical Engineering, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
20
|
Gorb S, Speck T. Biological and biomimetic materials and surfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:403-407. [PMID: 28326229 PMCID: PMC5331183 DOI: 10.3762/bjnano.8.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/23/2016] [Indexed: 05/20/2023]
Affiliation(s)
- Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Thomas Speck
- Plant Biomechanics Group & Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
- Freiburg Institute for Interactive Materials & Bioinspired Technologies (FIT), 79104 Freiburg, Germany
| |
Collapse
|