1
|
Lorberg RY, Nair Sailaja ST, Terlau F, Victoria Cappellari M, Schmiedtchen M, Galstyan A, Strassert CA, Giese M, Voskuhl J. Photoresponsive Luminescent Silica Nanoparticles as Additive for 3D Printing and Electrospinning. Chem Asian J 2024:e202401415. [PMID: 39611720 DOI: 10.1002/asia.202401415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 11/30/2024]
Abstract
In this study, we present the synthesis and a versatile way to incorporate photoresponsive organic luminophores into polymeric materials using mesoporous silica nanoparticles (MSNs). The encapsulated thioethers within the MSNs were employed in polyvinyl alcohol (PVA) films, resin-based stereolithography, and electrospinning. Due to light-induced cyclisation to dibenzothiophenes (DBTs), mmOC12 loaded materials were used to inscribe images using UV light. The DBTs formed from mmOC12 (mmDBTA/B) exhibit a long phosphorescence afterglow, which was investigated by steady-state and time-resolved photoluminescence spectroscopy. In addition, scanning electron microscopy (SEM) imaging, including energy dispersive X-ray spectroscopy (EDX), revealed the well-dispersed and intact MSNs in the polymeric materials. This approach shows a general way to incorporate non-polar organic luminophores into polymeric materials while retaining their unique emission properties.
Collapse
Affiliation(s)
- Rick Y Lorberg
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB), Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, 45117, Germany
| | - Sidharth Thulaseedharan Nair Sailaja
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB), Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, 45117, Germany
| | - Fabian Terlau
- Faculty of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), Center of Medical Biotechnology (ZMB) and Center for Water and Environment Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, Essen, 45141, Germany
| | - Maria Victoria Cappellari
- Institute for Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, Münster, 48149, Germany
- CiMIC, SoN, CeNTech, University of Münster, Heisenbergstraße 11, Münster, 48149, Germany
| | - Marco Schmiedtchen
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB), Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, 45117, Germany
| | - Anzhela Galstyan
- Faculty of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), Center of Medical Biotechnology (ZMB) and Center for Water and Environment Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, Essen, 45141, Germany
| | - Cristian A Strassert
- Institute for Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, Münster, 48149, Germany
- CiMIC, SoN, CeNTech, University of Münster, Heisenbergstraße 11, Münster, 48149, Germany
| | - Michael Giese
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB), Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, 45117, Germany
- GUIDEPlus Co-Creation Lab Produktinnovationen (CCLP), Schützenbahn 70, Essen, 45127, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB), Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, Essen, 45117, Germany
| |
Collapse
|
2
|
Wu YM, Ma XL, Li FY, Huang CC, Gao L, Zhang Y, Pan YM, He MX, Mo ZY. Dearomative Cyclization/Spirocyclization via Electrochemical Reductive Hydroarylation of Nonactivated Arenes. Org Lett 2024; 26:8993-8998. [PMID: 39400289 DOI: 10.1021/acs.orglett.4c02862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
An electrochemical cyclization/spirocyclization hydroarylation via reductive dearomatization of a series of nonactivated arenes including N-substituted indoles, indole-3-carboxamide derivatives, and iodo-substituted benzamides is described. This protocol boasts high atom efficiency, broad substrate applicability, and excellent selectivity. Utilizing a simple undivided cell, various nonactivated arenes undergo cyclization/spirocyclization through the intramolecular addition of aryl radicals to an aromatic ring, yielding 50 indolines, spirocyclizative hydroarylation products, and phenanthridinones.
Collapse
Affiliation(s)
- Yi-Miao Wu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Fang-Yao Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Chun-Chan Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Lei Gao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Mu-Xue He
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Zu-Yu Mo
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
3
|
Mousa M, Adly ME, Mahmoud AM, El-Nassan HB. Synthesis of Tetrahydro-β-carboline Derivatives under Electrochemical Conditions in Deep Eutectic Solvents. ACS OMEGA 2024; 9:14198-14209. [PMID: 38559915 PMCID: PMC10975637 DOI: 10.1021/acsomega.3c09790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
In this work, a novel, green, and atom-efficient method for the synthesis of tetrahydro-β-carboline derivatives using electrochemistry (EC) in deep eutectic solvents (DESs) was reported. The EC reaction conditions were optimized to achieve the highest yield. The experimental design was also optimized to perform the reaction in a two-step, one-pot reaction, thereby the time, workup procedure, and solvents needed were all reduced. The new approach achieved our strategy as EC served to decrease the time of reaction, eliminate the use of hazardous catalysts, and lower the energy required for the synthesis of the targeted compounds. On the other side, DESs were used as catalysts, in situ electrolytes, and noninflammable green solvents. The scope of the reaction was investigated using different aromatic aldehydes. Finally, the scalability of the reaction was investigated using a gram-scale reaction that afforded the product in an excellent yield.
Collapse
Affiliation(s)
- Mohamed
O. Mousa
- Pharmaceutical
Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mina E. Adly
- Pharmaceutical
Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr M. Mahmoud
- Pharmaceutical
Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Hala B. El-Nassan
- Pharmaceutical
Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
4
|
Nguyen KT, Huynh TNT, Ratanathawornkiti K, Juthathan M, Thamyongkit P, Sukwattanasinitt M, Wacharasindhu S. NaI-Mediated Electrochemical Cyclization-Desulfurization for the Synthesis of N-Substituted 2-Aminobenzimidazoles. J Org Chem 2024; 89:1591-1608. [PMID: 38102091 DOI: 10.1021/acs.joc.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
An electrochemical method for the synthesis of N-substituted 2-aminobenzimidazoles through a NaI-mediated desulfurization-cyclization process is reported. This electrosynthesis method utilizes cost-effective NaI as both a mediator and an electrolyte in a catalytic amount (0.2 equiv), replacing traditional oxidizing reagents. N-Substituted o-phenylenediamines and isothiocyanates undergo a thiourea formation/cyclization/desulfurization process to provide N-substituted 2-aminobenzimidazoles (55 examples, up to 98% yield) in a single reaction vessel. Importantly, this electrochemical methodology is applicable to gram-scale synthesis, maintaining reaction efficiency.
Collapse
Affiliation(s)
- Khuyen Thu Nguyen
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thao Nguyen Thanh Huynh
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Methasit Juthathan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patchanita Thamyongkit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Sumrit Wacharasindhu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Green Chemistry for Fine Chemical Productions and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Zhang M, Luo Z, Tang X, Yu L, Pei J, Wang J, Lu C, Huang B. Electrochemical selenocyclization of 2-ethynylanilines with diselenides: facile and efficient access to 3-selenylindoles. Org Biomol Chem 2023; 21:8918-8923. [PMID: 37906112 DOI: 10.1039/d3ob01502e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An efficient electrochemical selenocyclization strategy for the synthesis of 3-selenylindoles from 2-ethynylanilines and diselenides has been developed in simple tube- or beaker-type undivided cells under ambient conditions. Notably, these sustainable transformations are completed within a short time with low equivalents of charges, diselenides and electrolytes, exhibiting a broad substrate scope with excellent functional group compatibility. Moreover, a gram-scale electrosynthesis and late-stage functionalization of complex molecules further demonstrate the practical synthetic potential of this facile electrochemical system.
Collapse
Affiliation(s)
- Mingyu Zhang
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
| | - Zhenyu Luo
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
| | - Xinye Tang
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
| | - Linmin Yu
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
| | - Jinglin Pei
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
| | - Junlei Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550000, China.
| | - Caicai Lu
- Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai 519087, China
| | - Binbin Huang
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China.
- College of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
6
|
Kumar R, Banerjee N, Kumar P, Banerjee P. Electrochemical Synthesis and Reactivity of Three-Membered Strained Carbo- and Heterocycles. Chemistry 2023; 29:e202301594. [PMID: 37436418 DOI: 10.1002/chem.202301594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
Three-membered carbocyclic and heterocyclic ring structures are versatile synthetic building blocks in organic synthesis with biological importance. Moreover, the inherent strain of these three-membered rings leads to their ring-opening functionalization through C->C, C->N, and C-O bond cleavage. Traditional synthesis and ring-opening methods for these molecules require the use of acid catalysts or transition metals. Recently, electro-organic synthesis has emerged as a powerful tool for initiating new chemical transformations. In this review, the synthetic and mechanistic aspects of electro-mediated synthesis and ring-opening functionalization of three-membered carbo- and heterocycles are highlighted.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| | - Nakshatra Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar Lab No. 406
| |
Collapse
|
7
|
Dong ZB, Gong Z, Dou Q, Cheng B, Wang T. A decade update on the application of β-oxodithioesters in heterocyclic synthesis. Org Biomol Chem 2023; 21:6806-6829. [PMID: 37555699 DOI: 10.1039/d3ob00601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (i.e., α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (e.g., thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.
Collapse
Affiliation(s)
- Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zhiying Gong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Qian Dou
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Bin Cheng
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Taimin Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
8
|
Winter J, Prenzel T, Wirtanen T, Schollmeyer D, Waldvogel SR. Direct Electrochemical Synthesis of 2,3-Disubstituted Quinoline N-oxides by Cathodic Reduction of Nitro Arenes. Chemistry 2023; 29:e202203319. [PMID: 36426660 DOI: 10.1002/chem.202203319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/26/2022]
Abstract
The use of electric current in synthetic organic chemistry offers a sustainable tool for the selective reductive synthesis of quinoline N-oxides starting from easily accessible nitro compounds. The reported method employs mild and reagent-free conditions, a simple undivided cell, and constant current electrolysis set-up which provides conversion with a high atom economy. The synthesis of 30 differently substituted quinoline N-oxides was successfully performed in up to 90 % yield. Using CV studies, the mechanism of the selective formation of the quinoline N-oxides was elucidated. The technical relevance of the described reaction could be shown in a 50-fold scale-up reaction.
Collapse
Affiliation(s)
- Johannes Winter
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Tobias Prenzel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Tom Wirtanen
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Karipal Padinjare Veedu D, Connal LA, Malins LR. Tunable Electrochemical Peptide Modifications: Unlocking New Levels of Orthogonality for Side-Chain Functionalization. Angew Chem Int Ed Engl 2023; 62:e202215470. [PMID: 36336657 PMCID: PMC10107541 DOI: 10.1002/anie.202215470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Electrochemical transformations provide enticing opportunities for programmable, residue-specific peptide modifications. Herein, we harness the potential of amidic side-chains as underutilized handles for late-stage modification through the development of an electroauxiliary-assisted oxidation of glutamine residues within unprotected peptides. Glutamine building blocks bearing electroactive side-chain N,S-acetals are incorporated into peptides using standard Fmoc-SPPS. Anodic oxidation of the electroauxiliary in the presence of diverse alcohol nucleophiles enables the installation of high-value N,O-acetal functionalities. Proof-of-principle for an electrochemical peptide stapling protocol, as well as the functionalization of dynorphin B, an endogenous opioid peptide, demonstrates the applicability of the method to intricate peptide systems. Finally, the site-selective and tunable electrochemical modification of a peptide bearing two discretely oxidizable sites is achieved.
Collapse
Affiliation(s)
- Dhanya Karipal Padinjare Veedu
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceAustralian National UniversityCanberraACT 2601Australia
| | - Luke A. Connal
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
| | - Lara R. Malins
- Research School of ChemistryAustralian National UniversityCanberraACT 2601Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceAustralian National UniversityCanberraACT 2601Australia
| |
Collapse
|
10
|
Synthetic utility of styrenes in the construction of diverse heterocycles via annulation/cycloaddition. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Vil’ VA, Grishin SS, Terent’ev AO. Electrochemically Induced Synthesis of Imidazoles from Vinyl Azides and Benzyl Amines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227721. [PMID: 36431821 PMCID: PMC9692461 DOI: 10.3390/molecules27227721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
An electrochemically induced synthesis of imidazoles from vinyl azides and benzyl amines was developed. A wide range of imidazoles were obtained, with yields of 30 to 64%. The discovered transformation is a multistep process whose main steps include the generation of electrophilic iodine species, 2H-azirine formation from the vinyl azide, followed by its reactions with benzyl amine and with imine generated from benzyl amine. The cyclization and aromatization of the obtained intermediate lead to the target imidazole. The synthesis proceeds under constant current conditions in an undivided cell. Despite possible cathodic reduction of various unsaturated intermediates with C=N bonds, the efficient electrochemically induced synthesis of imidazoles was carried out.
Collapse
|
12
|
Yang SF, Li P, Fang ZL, Liang S, Tian HY, Sun BG, Xu K, Zeng CC. A one-pot electrochemical synthesis of 2-aminothiazoles from active methylene ketones and thioureas mediated by NH 4I. Beilstein J Org Chem 2022; 18:1249-1255. [PMID: 36158175 PMCID: PMC9490072 DOI: 10.3762/bjoc.18.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
The electrochemical preparation of 2-aminothiazoles has been achieved by the reaction of active methylene ketones with thioureas assisted by ᴅʟ-alanine using NH4I as a redox mediator. The electrochemical protocol proceeds in an undivided cell equipped with graphite plate electrodes under constant current conditions. Various active methylene ketones, including β-keto ester, β-keto amide, β-keto nitrile, β-keto sulfone and 1,3-diketones, can be converted to the corresponding 2-aminothiazoles. Mechanistically, the in situ generated α-iodoketone was proposed to be the key active species.
Collapse
Affiliation(s)
- Shang-Feng Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Pei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Zi-Lin Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Hong-Yu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Bao-Guo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Cheng-Chu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Osman EO, Mahmoud AM, El-Mosallamy SS, El-Nassan HB. Electrochemical synthesis of tetrahydrobenzo[b]pyran derivatives in deep eutectic solvents. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Badiger KB, Kamanna K. Green Method Synthesis of Pyrano[2,3- d]Pyrimidine Derivatives: Antimicrobial and Electrochemical Behavior Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2108852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Krishnappa B. Badiger
- Peptide and Medicinal Chemistry Research Laboratory, Department of Chemistry, Rani Channamma University, Belagavi, India
| | - Kantharaju Kamanna
- Peptide and Medicinal Chemistry Research Laboratory, Department of Chemistry, Rani Channamma University, Belagavi, India
| |
Collapse
|
15
|
Chang X, Chen X, Lu S, Zhao Y, Ma Y, Zhang D, Yang L, Sun P. Electrochemical [3+2] Cycloaddition of Anilines and 1,3‐Dicarbonyl Compounds: Construction of Multisubstituted Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoqiang Chang
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Xingyu Chen
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China CHINA
| | - Sixian Lu
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Yifan Zhao
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China CHINA
| | | | | | - Lan Yang
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Peng Sun
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| |
Collapse
|
16
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|
17
|
Bityukov OV, Kirillov AS, Serdyuchenko PY, Kuznetsova MA, Demidova VN, Vil' VA, Terent'ev AO. Electrochemical thiocyanation of barbituric acids. Org Biomol Chem 2022; 20:3629-3636. [PMID: 35420113 DOI: 10.1039/d2ob00343k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical thiocyanation of barbituric acids with NH4SCN was disclosed in an undivided cell under constant current conditions. The electrosynthesis is the most efficient at a record high current density (janode ≈50-70 mA cm-2). NH4SCN has a dual role as the source of the SCN group and as the electrolyte. Electrochemical thiocyanation of barbituric acids starts with the generation of (SCN)2 from the thiocyanate anion. The addition of thiocyanogen to the double bond of the enol tautomer of barbituric acid gives thiocyanated barbituric acid. A variety of thiocyanated barbituric acids bearing different functional groups were obtained in 18-95% yields and were shown to exhibit promising antifungal activity.
Collapse
Affiliation(s)
- Oleg V Bityukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Andrey S Kirillov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Pavel Yu Serdyuchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. .,D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Maria A Kuznetsova
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050, Moscow Region, Russian Federation
| | - Valentina N Demidova
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050, Moscow Region, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
18
|
Swaroop TR, Shivaprasad CM, Preetham R, Sadashiva MP, Rangappa KS. Developments in the electrochemical synthesis of thia-heterocycles. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2057498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Chalya M. Shivaprasad
- Department of Chemistry, Government First Grade College for Women, Mysuru, Karnataka, India
| | - Ramesh Preetham
- DOS in Chemistry, University of Mysore, Mysuru, Karnataka, India
| | | | | |
Collapse
|
19
|
Khatavi SY, Kamanna K. Facile and greener method synthesis of pyrano[2,3-d]pyrimidine-2,4,7-triones: Electrochemical and biological activity evaluation studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Vil' V, Grishin S, Baberkina E, Alekseenko A, Glinushkin A, Kovalenko A, Terent'ev A. Electrochemical Synthesis of Tetrahydroquinolines from Imines and Cyclic Ethers via Oxidation/Aza‐Diels‐Alder Cycloaddition. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vera Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences RUSSIAN FEDERATION
| | - Sergei Grishin
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | - Elena Baberkina
- Dmitry Mendeleev University of Chemical Technology of Russia RUSSIAN FEDERATION
| | - Anna Alekseenko
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | | | - Alexey Kovalenko
- Dmitry Mendeleev University of Chemical Technology of Russia RUSSIAN FEDERATION
| | - Alexander Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences RUSSIAN FEDERATION
| |
Collapse
|
21
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Bieniek JC, Grünewald M, Winter J, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of
N
,
N
’‑ Disubstituted Indazolin-3-ones via Intramolecular Anodic DehydrogenativeN-NCoupling Reaction. Chem Sci 2022; 13:8180-8186. [PMID: 35919432 PMCID: PMC9278119 DOI: 10.1039/d2sc01827f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
The use of electricity as a traceless oxidant enables a sustainable and novel approach to N,N′-disubstituted indazolin-3-ones by an intramolecular anodic dehydrogenative N–N coupling reaction. This method is characterized by mild reaction conditions, an easy experimental setup, excellent scalability, and a high atom economy. It was used to synthesize various indazolin-3-one derivatives in yields up to 78%, applying inexpensive and sustainable electrode materials and a low supporting electrolyte concentration. Mechanistic studies, based on cyclic voltammetry experiments, revealed a biradical pathway. Furthermore, the access to single 2-aryl substituted indazolin-3-ones by cleavage of the protecting group could be demonstrated. A novel sustainable electrochemical synthetic route to N,N′-disubstituted indazolin-3-ones by direct anodic oxidation with mild reaction conditions, a simple galvanostatic setup, broad scope and excellent scalability is established.![]()
Collapse
Affiliation(s)
- Jessica C Bieniek
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Michele Grünewald
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| |
Collapse
|
23
|
Nandhakumar P, Lee W, Nam S, Bhatia A, Seo J, Kim G, Lee N, Yoon YH, Joo JM, Yang H. Di(Thioether Sulfonate)-Substituted Quinolinedione as a Rapidly Dissoluble and Stable Electron Mediator and Its Application in Sensitive Biosensors. Adv Healthc Mater 2022; 11:e2101819. [PMID: 34706164 DOI: 10.1002/adhm.202101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Indexed: 11/06/2022]
Abstract
The commonly required properties of diffusive electron mediators for point-of-care testing are rapid dissolubility, high stability, and moderate formal potential in aqueous solutions. Inspired by nature, various quinone-containing electron mediators have been developed; however, satisfying all these requirements remains a challenge. Herein, a strategic design toward quinones incorporating sulfonated thioether and nitrogen-containing heteroarene moieties as solubilizing, stabilizing, and formal potential-modulating groups is reported. A systematic investigation reveals that di(thioether sulfonate)-substituted quinoline-1,4-dione (QLS) and quinoxaline-1,4-dione (QXS) display water solubilities of ≈1 m and are rapidly dissoluble. By finely balancing the electron-donating effect of the thioethers and the electron-withdrawing effect of the nitrogen atom, formal potentials suitable for electrochemical biosensors are achieved with QLS and QXS (-0.15 and -0.09 V vs Ag/AgCl, respectively, at pH 7.4). QLS is stable for >1 d in PBS (pH 7.4) and for 1 h in tris buffer (pH 9.0), which is sufficient for point-of-care testing. Furthermore, QLS, with its high electron mediation ability, is successfully used in biosensors for sensitive detection of glucose and parathyroid hormone, demonstrating detection limits of ≈0.3 × 10-3 m and ≈2 pg mL-1 , respectively. This strategy produces organic electron mediators exhibiting rapid dissolution and high stability, and will find broad application beyond quinone-based biosensors.
Collapse
Affiliation(s)
- Ponnusamy Nandhakumar
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Woohyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Sangwook Nam
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Aman Bhatia
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Jia Seo
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Gyeongho Kim
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | | | | | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan 46241 Korea
| |
Collapse
|
24
|
Electrosynthesis of N-unsubstituted enaminosulfones from vinyl azides and sodium sulfinates mediated by NH4I. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Kisukuri CM, Fernandes VA, Delgado JAC, Häring AP, Paixão MW, Waldvogel SR. Electrochemical Installation of CFH 2 -, CF 2 H-, CF 3 -, and Perfluoroalkyl Groups into Small Organic Molecules. CHEM REC 2021; 21:2502-2525. [PMID: 34151507 DOI: 10.1002/tcr.202100065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
Electrosynthesis can be considered a powerful and sustainable methodology for the synthesis of small organic molecules. Due to its intrinsic ability to generate highly reactive species under mild conditions by anodic oxidation or cathodic reduction, electrosynthesis is particularly interesting for otherwise challenging transformations. One such challenge is the installation of fluorinated alkyl groups, which has gained significant attention in medicinal chemistry and material science due to their unique physicochemical features. Unsurprisingly, several electrochemical fluoroalkylation methods have been established. In this review, we survey recent developments and established methods in the field of electrochemical mono-, di-, and trifluoromethylation, and perfluoroalkylation of small organic molecules.
Collapse
Affiliation(s)
- Camila M Kisukuri
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Vitor A Fernandes
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - José A C Delgado
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Andreas P Häring
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Márcio W Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos - UFSCar São Carlos, São Paulo, Brazil, -13565-905
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
26
|
Cembellín S, Batanero B. Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. CHEM REC 2021; 21:2453-2471. [PMID: 33955158 DOI: 10.1002/tcr.202100128] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The adoption of new measures that preserve our environment, on which our survival depends, is a necessity. Electro-organic processes are sustainable per se, by producing the activation of a substrate by electron transfer at normal pressure and room temperature. In the recent years, a highly crescent number of works on organic electrosynthesis are available. Novel strategies at the electrode are being developed enabling the construction of a great variety of complex organic molecules. However, the possibility of being scaled-up is mandatory in terms of sustainability. Thus, some electrochemical methodologies have demonstrated to report the best results in reducing pollution and saving energy. In this personal account, these methods have been compiled, being organized as follows: • Direct discharge electrosynthesis • Paired electrochemical reactions. and • Organic transformations utilizing electrocatalysis (in absence of heavy metals). Selected protocols are herein presented and discussed with representative recent examples. Final perspectives and reflections are also considered.
Collapse
Affiliation(s)
- Sara Cembellín
- University of Alcala, Organic and Inorganic Chemistry Department (Organic area), Campus, km 33,6 A2, 28805, Alcalá de Henares, Madrid, Spain
| | - Belén Batanero
- University of Alcala, Organic and Inorganic Chemistry Department (Organic area), Campus, km 33,6 A2, 28805, Alcalá de Henares, Madrid, Spain.,Instituto de Investigación Química, "Andrés M. del Río" (IQAR) University of Alcala
| |
Collapse
|
27
|
|
28
|
Lian F, Xu K, Zeng C. Indirect Electrosynthesis with Halogen Ions as Mediators. CHEM REC 2021; 21:2290-2305. [PMID: 33728812 DOI: 10.1002/tcr.202100036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022]
Abstract
Organic electrosynthesis has gained increasing research interest as it harvests electric current as redox regents, thereby providing a sustainable alternative to conventional approaches. Compared with direct electrosynthesis, indirect electrosynthesis employs mediator(s) to lower the overpotentials for substrate activation, and enhance the reaction efficiency and functional group compatibility by shifting the heterogenous electron transfer process to be homogenous. As one of the most versatile and cost-efficient mediators, halogen mediators are always combined with an irreversible halogenation reaction. Thus, the electrochemical reaction between halogen mediators and substrates doesn't directly controlled by the two standard potentials difference. In this account, our recent developments in the area of halogen-mediated indirect electrosynthesis are summarized. The anodically generated halogen species from halogenide salts have the abilities to undergo electron-transfer (ET) or hydrogen-atom- transfer (HAT) processes. The reaction features, scopes, limitations, and mechanistic rationalisations are discussed in this account. We hope our studies will contribute to the future developments to broaden the scope of halogen-mediated electrosynthesis.
Collapse
Affiliation(s)
- Fei Lian
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
29
|
Saha D, Taily IM, Kumar R, Banerjee P. Electrochemical rearrangement protocols towards the construction of diverse molecular frameworks. Chem Commun (Camb) 2021; 57:2464-2478. [PMID: 33616597 DOI: 10.1039/d1cc00116g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rearrangement reactions constitute a critical facet of synthetic organic chemistry and demonstrate an attractive way to take advantage of existing structures to access various important molecular frameworks. Electroorganic chemistry has emerged as an environmentally benign approach to carry out organic transformations by directly employing an electric current and avoids the use of stoichiometric chemical oxidants. The last few years have witnessed a resurgence of electroorganic chemistry that has promoted a renaissance of interest in the development of novel redox electroorganic transformations. This review manifests the evolution of electrosynthesis in the area of rearrangement chemistry and covers the achievements in the field of migration, ring expansion, and rearrangements along with the mechanisms involved.
Collapse
Affiliation(s)
- Debarshi Saha
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
30
|
Smeyne D, Verboom K, Bryan M, LoBue J, Shaikh A. Electrochemical esterification via oxidative coupling of aldehydes and alcohols. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Chen N, Ye Z, Zhang F. Recent progress on electrochemical synthesis involving carboxylic acids. Org Biomol Chem 2021; 19:5501-5520. [PMID: 34079974 DOI: 10.1039/d1ob00420d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carboxylic acids are not only essential sections of medicinal molecules, natural products and agrochemicals but also basic building blocks for organic synthesis. However, high temperature, expensive catalysts and excess oxidants are normally required for carboxylic acid group transformations. Therefore, more eco-friendly and efficient methods are urgently needed. Organic electrochemistry, as an environmentally friendly and sustainable synthetic method, can potentially avoid the above problems and is favored by more and more organic chemists. This review summarized the recent progress on the electrochemical synthesis of carboxylic acids to construct more complex compounds, emphasizing the development of electrosynthesis methodologies and mechanisms in order to attract more chemists to recognize the importance and applications of electrochemical synthesis.
Collapse
Affiliation(s)
- Na Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
32
|
Heard DM, Lennox AJJ. Electrode Materials in Modern Organic Electrochemistry. Angew Chem Int Ed Engl 2020; 59:18866-18884. [PMID: 32633073 PMCID: PMC7589451 DOI: 10.1002/anie.202005745] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/11/2022]
Abstract
The choice of electrode material is critical for achieving optimal yields and selectivity in synthetic organic electrochemistry. The material imparts significant influence on the kinetics and thermodynamics of electron transfer, and frequently defines the success or failure of a transformation. Electrode processes are complex and so the choice of a material is often empirical and the underlying mechanisms and rationale for success are unknown. In this review, we aim to highlight recent instances of electrode choice where rationale is offered, which should aid future reaction development.
Collapse
Affiliation(s)
- David M. Heard
- University of BristolSchool of ChemistryCantocks CloseBristol, AvonBS8 1TSUK
| | | |
Collapse
|
33
|
Affiliation(s)
- David M. Heard
- University of Bristol School of Chemistry Cantocks Close Bristol, Avon BS8 1TS UK
| | | |
Collapse
|
34
|
Opatz T, Geske L, Sato E. Anodic Oxidation as an Enabling Tool for the Synthesis of Natural Products. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry provides a valuable toolbox for organic synthesis and offers an appealing, environmentally benign alternative to the use of stoichiometric quantities of chemical oxidants or reductants. Its potential to control current efficiency along with providing alternative reaction conditions in a classical sense makes electrochemistry a suitable method for large-scale industrial transformations as well as for laboratory applications in the synthesis of complex molecular architectures. Even though research in this field has intensified over the recent decades, many synthetic chemists still hesitate to add electroorganic reactions to their standard repertoire, and hence, the full potential of preparative organic electrochemistry has not yet been unleashed. This short review highlights the versatility of anodic transformations by summarizing their application in natural product synthesis.1 Introduction2 Shono-Type Oxidation3 C–N/N–N Bond Formation4 Aryl–Alkene/Aryl–Aryl Coupling5 Cycloadditions Triggered by Oxidation of Electron-Rich Arenes6 Spirocycles7 Miscellaneous Transformations8 Future Prospects
Collapse
Affiliation(s)
- Till Opatz
- Department Chemie, Johannes Gutenberg-Universität
| | | | | |
Collapse
|
35
|
Thobokholt EN, Larghi EL, Bracca ABJ, Kaufman TS. Isolation and synthesis of cryptosanguinolentine (isocryptolepine), a naturally-occurring bioactive indoloquinoline alkaloid. RSC Adv 2020; 10:18978-19002. [PMID: 35518305 PMCID: PMC9054090 DOI: 10.1039/d0ra03096a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022] Open
Abstract
Cryptosanguinolentine (isocryptolepine) is one of the minor naturally-occurring monomeric indoloquinoline alkaloids, isolated from the West African climbing shrub Cryptolepis sanguinolenta. The natural product displays such a simple and unique skeleton, which chemists became interested in well before it was found in Nature. Because of its structure and biological activity, the natural product has been targeted for synthesis on numerous occasions, employing a wide range of different strategies. Hence, discussed here are aspects related to the isolation of isocryptolepine, as well as the various approaches toward its total synthesis.
Collapse
Affiliation(s)
- Elida N Thobokholt
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| |
Collapse
|
36
|
Kumar GS, Peshkov A, Brzozowska A, Nikolaienko P, Zhu C, Rueping M. Nickel‐Catalyzed Chain‐Walking Cross‐Electrophile Coupling of Alkyl and Aryl Halides and Olefin Hydroarylation Enabled by Electrochemical Reduction. Angew Chem Int Ed Engl 2020; 59:6513-6519. [DOI: 10.1002/anie.201915418] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Gadde Sathish Kumar
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Anatoly Peshkov
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Aleksandra Brzozowska
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Pavlo Nikolaienko
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Chen Zhu
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
37
|
Kumar GS, Peshkov A, Brzozowska A, Nikolaienko P, Zhu C, Rueping M. Nickel‐Catalyzed Chain‐Walking Cross‐Electrophile Coupling of Alkyl and Aryl Halides and Olefin Hydroarylation Enabled by Electrochemical Reduction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Gadde Sathish Kumar
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Anatoly Peshkov
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Aleksandra Brzozowska
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Pavlo Nikolaienko
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Chen Zhu
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
38
|
Yu Y, Zhong J, Xu K, Yuan Y, Ye K. Recent Advances in the Electrochemical Synthesis and Functionalization of Indole Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901520] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yi Yu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| | - Jun‐Song Zhong
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| | - Kai Xu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| | - Yaofeng Yuan
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| | - Ke‐Yin Ye
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou University Fuzhou 350116 People's Republic of China
| |
Collapse
|
39
|
Mulina OM, Zhironkina NV, Paveliev SA, Demchuk DV, Terent’ev AO. Electrochemically Induced Synthesis of Sulfonylated N-Unsubstituted Enamines from Vinyl Azides and Sulfonyl Hydrazides. Org Lett 2020; 22:1818-1824. [DOI: 10.1021/acs.orglett.0c00139] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Nataliya V. Zhironkina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russian Federation
| | - Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Dmitry V. Demchuk
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russian Federation
| |
Collapse
|
40
|
Yang Z, Zhang J, Hu L, Li L, Liu K, Yang T, Zhou C. Electrochemical Oxidative Intramolecular N–S Bond Formation: Synthesis of 3-Substituted 5-Amino-1,2,4-Thiadiazoles. J Org Chem 2020; 85:3358-3363. [DOI: 10.1021/acs.joc.9b03155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zan Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jiaqi Zhang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Liping Hu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Lijun Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Kun Liu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Congshan Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
41
|
Gleede B, Selt M, Gütz C, Stenglein A, Waldvogel SR. Large, Highly Modular Narrow-Gap Electrolytic Flow Cell and Application in Dehydrogenative Cross-Coupling of Phenols. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00451] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barbara Gleede
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maximilian Selt
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Gütz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
42
|
Wang H, Shi J, Tan J, Xu W, Zhang S, Xu K. Electrochemical Synthesis of trans-2,3-Disubstituted Aziridines via Oxidative Dehydrogenative Intramolecular C(sp3)–H Amination. Org Lett 2019; 21:9430-9433. [DOI: 10.1021/acs.orglett.9b03641] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huiqiao Wang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jianxue Shi
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jiajing Tan
- Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenting Xu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Sheng Zhang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Kun Xu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
43
|
Lin DZ, Huang JM. Synthesis of 3-Formylindoles via Electrochemical Decarboxylation of Glyoxylic Acid with an Amine as a Dual Function Organocatalyst. Org Lett 2019; 21:5862-5866. [DOI: 10.1021/acs.orglett.9b01971] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dian-Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
44
|
Shatskiy A, Lundberg H, Kärkäs MD. Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem 2019. [DOI: 10.1002/celc.201900435] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrey Shatskiy
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Helena Lundberg
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Markus D. Kärkäs
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| |
Collapse
|
45
|
Ye Z, Zhang F. Recent Advances in Constructing Nitrogen‐Containing Heterocycles
via
Electrochemical Dehydrogenation. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900049] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zenghui Ye
- College of Pharmaceutical ScienceZhejiang University of Technology, No. 18 Chaowang Road Hangzhou Zhejiang 310014 China
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology, No. 18 Chaowang Road Hangzhou Zhejiang 310014 China
| | - Fengzhi Zhang
- College of Pharmaceutical ScienceZhejiang University of Technology, No. 18 Chaowang Road Hangzhou Zhejiang 310014 China
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology, No. 18 Chaowang Road Hangzhou Zhejiang 310014 China
| |
Collapse
|
46
|
Affiliation(s)
- Muhammad H. Rahman
- School of PharmacyUniversity of Birmingham Edgbaston B15 2TT United Kingdom
| | - Mandeep K. Bal
- Faculty of Science and EngineeringManchester Metropolitan University Chester Street Manchester M1 5GD United Kingdom
| | - Alan M. Jones
- School of PharmacyUniversity of Birmingham Edgbaston B15 2TT United Kingdom
| |
Collapse
|
47
|
Wang F, Stahl SS. Merging Photochemistry with Electrochemistry: Functional-Group Tolerant Electrochemical Amination of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2019; 58:6385-6390. [PMID: 30763466 DOI: 10.1002/anie.201813960] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Direct amination of C(sp3 )-H bonds is of broad interest in the realm of C-H functionalization because of the prevalence of nitrogen heterocycles and amines in pharmaceuticals and natural products. Reported here is a combined electrochemical/photochemical method for dehydrogenative C(sp3 )-H/N-H coupling that exhibits good reactivity with both sp2 and sp3 N-H bonds. The results show how use of iodide as an electrochemical mediator, in combination with light-induced cleavage of intermediate N-I bonds, enables the electrochemical process to proceed at low electrode potentials. This approach significantly improves the functional-group compatibility of electrochemical C-H amination, for example, tolerating electron-rich aromatic groups that undergo deleterious side reactions in the presence of high electrode potentials.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
48
|
Wang F, Stahl SS. Merging Photochemistry with Electrochemistry: Functional‐Group Tolerant Electrochemical Amination of C(sp
3
)−H Bonds. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813960] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fei Wang
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Shannon S. Stahl
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|
49
|
Haupt JD, Berger M, Waldvogel SR. Electrochemical Fluorocyclization of N-Allylcarboxamides to 2-Oxazolines by Hypervalent Iodine Mediator. Org Lett 2018; 21:242-245. [DOI: 10.1021/acs.orglett.8b03682] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- John D. Haupt
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Michael Berger
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
50
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 605] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|