1
|
Lang F, Rönicke F, Wagenknecht HA. Cell-resistant wavelength-shifting molecular beacons made of L-DNA and a clickable L-configured uridine. Org Biomol Chem 2024; 22:4568-4573. [PMID: 38771639 DOI: 10.1039/d4ob00692e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Wavelength-shifting molecular beacons were prepared from L-DNA. The clickable anchor for the two dyes, Cy3 and Cy5, was 2'-O-propargyl-L-uridine and was synthesized from L-ribose. Four clickable molecular beacons were prepared and double-modified with the azide dyes by a combination of click chemistry on a solid support for Cy3 during DNA synthesis and postsynthetic click chemistry for Cy5 in solution. Cy3 and Cy5 successfully formed a FRET pair in the beacons, and the closed form (red fluorescence) and the open form (green fluorescence) can be distinguished by the two-color fluorescence readout. Two molecular beacons were identified to show the greatest fluorescence contrast in temperature-dependent fluorescence measurements. The stability of the L-configured molecular beacons was demonstrated after several heating and cooling cycles as well as in the cell lysate. In comparison, D-configured molecular beacons showed a rapid decrease of fluorescence contrast in the cell lysate, which is caused by the opening of the beacons, probably due to degradation. This was confirmed in cell experiments using confocal microscopy. The L-configured molecular beacons are potential intracellular thermometers for future applications.
Collapse
Affiliation(s)
- Fabian Lang
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Franziska Rönicke
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
2
|
Schlosser J, Ihmels H. Ligands for Abasic Site-containing DNA and their Use as Fluorescent Probes. Curr Org Synth 2023; 20:96-113. [PMID: 35170411 DOI: 10.2174/1570179419666220216091422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Apurinic and apyrimidinic sites, also referred to as abasic or AP sites, are residues of duplex DNA in which one DNA base is removed from a Watson-Crick base pair. They are formed during the enzymatic repair of DNA and offer binding sites for a variety of guest molecules. Specifically, the AP site may bind an appropriate ligand as a substitute for the missing nucleic base, thus stabilizing the abasic site-containing DNA (AP-DNA). Notably, ligands that bind selectively to abasic sites may be employed for analytical and therapeutical purposes. As a result, there is a search for structural features that establish a strong and selective association of a given ligand with the abasic position in DNA. Against this background, this review provides an overview of the different classes of ligands for abasic site-containing DNA (AP-DNA). This review covers covalently binding substrates, namely amine and oxyamine derivatives, as well as ligands that bind to AP-DNA by noncovalent association, as represented by small heterocyclic aromatic compounds, metal-organic complexes, macrocyclic cyclophanes, and intercalator-nucleobase conjugates. As the systematic development of fluorescent probes for AP-DNA has been somewhat neglected so far, this review article contains a survey of the available reports on the fluorimetric response of the ligand upon binding to the AP-DNA. Based on these data, this compilation shall present a perspective for future developments of fluorescent probes for AP-DNA.
Collapse
Affiliation(s)
- Julika Schlosser
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
3
|
Wickhorst PJ, Ihmels H. Selective, pH-Dependent Colorimetric and Fluorimetric Detection of Quadruplex DNA with 4-Dimethylamino(phenyl)-Substituted Berberine Derivatives. Chemistry 2021; 27:8580-8589. [PMID: 33855748 PMCID: PMC8252107 DOI: 10.1002/chem.202100297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/20/2022]
Abstract
The 9- and 12-dimethylaminophenyl-substituted berberine derivatives 3 a and 3 b were readily synthesized by Suzuki-Miyaura reactions and shown to be useful fluorescent probes for the optical detection of quadruplex DNA (G4-DNA). Their association with the nucleic acids was investigated by spectrometric titrations, CD and LD spectroscopy, and with DNA-melting analysis. Both ligands bind to duplex DNA by intercalation and to G4-DNA by terminal π stacking. At neutral conditions, they bind with higher affinity (Kb =105 -106 M-1 ) to representative quadruplex forming oligonucleotides 22AG, c-myc, c-kit, and a2, than to duplex calf thymus (ct) DNA (Kb =5-7×104 M-1 ). At pH 5, however, the affinity of 3 a towards G4-DNA 22AG is higher (Kb =1.2×106 M-1 ), whereas the binding constant towards ct DNA is lower (Kb =3.9×103 M-1 ) than under neutral conditions. Notably, the association of the ligand with DNA results in characteristic changes of the absorption and emission properties under specific conditions, which may be used for optical DNA detection. Other than the parent berberine, the ligands do not show a noticeable increase of their very low intrinsic emission intensity upon association with DNA at neutral conditions. In contrast, a fluorescence light-up effect was observed upon association to duplex (Φfl =0.01) and quadruplex DNA (Φfl =0.04) at pH 5. This fluorimetric response to G4-DNA association in combination with the distinct, red-shifted absorption under these conditions provides a simple and conclusive optical detection of G4-DNA at lower pH.
Collapse
Affiliation(s)
- Peter Jonas Wickhorst
- Department of Chemistry – BiologyUniversity of Siegen, andCenter of Micro- and Nanochemistry and Engineering (Cμ)Adolf-Reichwein-Str. 257068SiegenGermany
| | - Heiko Ihmels
- Department of Chemistry – BiologyUniversity of Siegen, andCenter of Micro- and Nanochemistry and Engineering (Cμ)Adolf-Reichwein-Str. 257068SiegenGermany
| |
Collapse
|
4
|
Suss O, Motiei L, Margulies D. Broad Applications of Thiazole Orange in Fluorescent Sensing of Biomolecules and Ions. Molecules 2021; 26:2828. [PMID: 34068759 PMCID: PMC8126248 DOI: 10.3390/molecules26092828] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Fluorescent sensing of biomolecules has served as a revolutionary tool for studying and better understanding various biological systems. Therefore, it has become increasingly important to identify fluorescent building blocks that can be easily converted into sensing probes, which can detect specific targets with increasing sensitivity and accuracy. Over the past 30 years, thiazole orange (TO) has garnered great attention due to its low fluorescence background signal and remarkable 'turn-on' fluorescence response, being controlled only by its intramolecular torsional movement. These features have led to the development of numerous molecular probes that apply TO in order to sense a variety of biomolecules and metal ions. Here, we highlight the tremendous progress made in the field of TO-based sensors and demonstrate the different strategies that have enabled TO to evolve into a versatile dye for monitoring a collection of biomolecules.
Collapse
Affiliation(s)
| | | | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (O.S.); (L.M.)
| |
Collapse
|
5
|
Taskova M, Astakhova K. Fluorescent Oligonucleotides with Bis(prop-2-yn-1-yloxy)butane-1,3-diol Scaffold Rapidly Detect Disease-Associated Nucleic Acids. Bioconjug Chem 2019; 30:3007-3012. [DOI: 10.1021/acs.bioconjchem.9b00746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Taskova
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kgs. Lyngby, Denmark
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Steinmeyer J, Walter HK, Bichelberger MA, Schneider V, Kubař T, Rönicke F, Olshausen B, Nienhaus K, Nienhaus GU, Schepers U, Elstner M, Wagenknecht HA. "siRNA traffic lights": arabino-configured 2'-anchors for fluorescent dyes are key for dual color readout in cell imaging. Org Biomol Chem 2019; 16:3726-3731. [PMID: 29565089 DOI: 10.1039/c8ob00417j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two fluorescent dyes covalently attached in diagonal interstrand orientation to siRNA undergo energy transfer and thereby enable a dual color fluorescence readout (red/green) for hybridization. Three different structural variations were carried out and compared by their optical properties, including (i) the base surrogate approach with an acyclic linker as a substitute of the 2-deoxyriboside between the phosphodiester bridges, (ii) the 2'-modification of conventional ribofuranosides and (iii) the arabino-configured 2'-modification. The double stranded siRNA with the latter type of modification delivered the best energy transfer efficiency, which was explained by molecular dynamics simulations that showed that the two dyes are more flexible at the arabino-configured sugars compared to the completely stacked situation at the ribo-configured ones. Single molecule fluorescence lifetime measurements indicate their application in fluorescence cell imaging, which reveals a red/green fluorescence contrast in particular for the arabino-configured 2'-modification by the two dyes, which is key for tracking of siRNA transport into HeLa cells.
Collapse
Affiliation(s)
- Jeannine Steinmeyer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Wagenknecht @kit.edu
| | - Heidi-Kristin Walter
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Wagenknecht @kit.edu
| | - Mathilde A Bichelberger
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Violetta Schneider
- Institute of Physical Chemistry and Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry and Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Franziska Rönicke
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Wagenknecht @kit.edu
| | - Bettina Olshausen
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany and Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St, Urbana, IL 61801, USA and Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry and Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Wagenknecht @kit.edu
| |
Collapse
|
7
|
Hemicyanine-linked pyrimidine mimics as solvatochromic fluorophores with visible excitation wavelengths. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Light-induced functions in DNA. Curr Opin Chem Biol 2017; 40:119-126. [DOI: 10.1016/j.cbpa.2017.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/13/2017] [Accepted: 07/20/2017] [Indexed: 12/30/2022]
|
9
|
Erdmann RM, Hoffmann A, Walter HK, Wagenknecht HA, Groß-Hardt R, Gehring M. Molecular movement in the Arabidopsis thaliana female gametophyte. PLANT REPRODUCTION 2017; 30:141-146. [PMID: 28695277 PMCID: PMC5599461 DOI: 10.1007/s00497-017-0304-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/02/2017] [Indexed: 05/03/2023]
Abstract
Size limits on molecular movement among female gametes. Cellular decisions can be influenced by information communicated from neighboring cells. Communication can occur via signaling or through the direct transfer of molecules. Movement of RNAs and proteins has frequently been observed among symplastically connected plant cells. In flowering plants, the female gametes, the egg cell and central cell, are closely apposed within the female gametophyte. Here we investigated the ability of fluorescently labeled dyes and small RNAs to move from the Arabidopsis thaliana central cell to the egg apparatus following microinjection. These results define a size limit of at least 20 kDa for symplastic movement between the two gametes, somewhat larger than that previously observed in Torenia fournieri. Our results indicate that symplastic connectivity in Arabidopsis thaliana changes after fertilization and suggest that prior to fertilization mechanisms are in place to facilitate small RNA movement from the central cell to the egg cell and synergids.
Collapse
Affiliation(s)
- Robert M Erdmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anja Hoffmann
- Department of Plant Molecular Genetics, University of Bremen, 28359, Bremen, Germany
| | - Heidi-Kristin Walter
- Institute for Organic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute for Organic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Rita Groß-Hardt
- Department of Plant Molecular Genetics, University of Bremen, 28359, Bremen, Germany
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Steinmeyer J, Rönicke F, Schepers U, Wagenknecht HA. Synthesis of Wavelength-Shifting Fluorescent DNA and RNA with Two Photostable Cyanine-Styryl Dyes as the Base Surrogate Pair. ChemistryOpen 2017; 6:514-518. [PMID: 28794946 PMCID: PMC5542753 DOI: 10.1002/open.201700059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 01/19/2023] Open
Abstract
Two nucleic acid building blocks were synthesized, consisting of two photostable green‐ and red‐emitting cyanine–styryl dyes and (S)‐3‐amino‐1,2‐propanediol as a substitute for the ribofuranoside, and incorporated as base‐pair surrogates by using automated phosphoramidte chemistry in the solid phase. The optical properties and, in particular, the energy‐transfer properties were screened in a range of DNA duplexes, in which the “counter bases” of the two dyes were varied and the distance between the two dyes was enlarged to up to three intervening adenosine–thymidine pairs. The DNA duplex with the best optical properties and the best red/green emission ratio as the readout bore adenosine and thymidine opposite to the dyes, and the two dyes directly adjacent to each other as the base surrogate pair. This structural arrangement can be transferred to RNA to obtain similarly fluorescent RNA probes. Representatively, the positively evaluated DNA duplex was applied to verify the fluorescence readout in living HeLa cells by using fluorescence confocal microscopy.
Collapse
Affiliation(s)
- Jeannine Steinmeyer
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Franziska Rönicke
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Ute Schepers
- Institute of Toxicology and Genetics Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|